Overview
Comment:To RCS
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 3fd9d6efa9629e9d28b2c9931f8f88a67442d951c8f057ff8be708309584b198
User & Date: gawthrop@users.sourceforge.net on 2000-12-28 18:17:57.000
Other Links: branch diff | manifest | tags
Context
2000-12-28
18:42:18
New input definition.
NB Needs to handle mutiports properly and state.txt modified accordingly
check-in: f46da74fa9 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
18:17:57
To RCS check-in: 3fd9d6efa9 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
17:12:57
To RCS check-in: a822056bb5 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes
1
2
3
4
5
6
7
8
9
10
11



12
13
14
15
16
17
18
%SUMMARY MotorGenerator: Motor-generator example
%DESCRIPTION A simple example of DC motor driving a generator via
%DESCRIPTION a flexible shaft

%% Label file for system MotorGenerator (MotorGenerator_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.3  2000/05/20 16:38:40  peterg
% %% New SS foramt
% %%
% %% Revision 1.2  1998/04/04 10:51:59  peterg
% %% New version using port coercion
% %%
% %% Revision 1.1  1996/12/04  16:24:01  peterg











>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
%SUMMARY MotorGenerator: Motor-generator example
%DESCRIPTION A simple example of DC motor driving a generator via
%DESCRIPTION a flexible shaft

%% Label file for system MotorGenerator (MotorGenerator_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  2000/11/16 09:58:49  peterg
% %% Initial revision
% %%
% %% Revision 1.3  2000/05/20 16:38:40  peterg
% %% New SS foramt
% %%
% %% Revision 1.2  1998/04/04 10:51:59  peterg
% %% New version using port coercion
% %%
% %% Revision 1.1  1996/12/04  16:24:01  peterg
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

% Voltage out
v2	SS	external,0

%Motor
motor		lin	k_m;l_m;r_m;j_m;b_m

%Shaft compliance
c_s		lin	effort,c_s

%Generator
gener		lin	k_g;l_g;r_g;j_g;b_g

% Resistive load
r_l		lin	flow,r_l








|
|







33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

% Voltage out
v2	SS	external,0

%Motor
motor		lin	k_m;l_m;r_m;j_m;b_m

%Shaft
shaft	        lin     c_s

%Generator
gener		lin	k_g;l_g;r_g;j_g;b_g

% Resistive load
r_l		lin	flow,r_l

1
2
3
4
5
6
7
8



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

# Numerical parameter file (MotorGenerator_numpar.txt)
# Generated by MTT at Wed Dec 10 08:29:31 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$



# %% Revision 1.1  2000/08/01 12:26:48  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Parameters
b_g = 	0.0; # Parameter b_g for MotorGenerator
b_m = 	0.0; # Parameter b_m for MotorGenerator
c_s = 	0.01; # Parameter c_s for MotorGenerator
j_g = 	1.0; # Parameter j_g for MotorGenerator
j_m = 	1.0; # Parameter j_m for MotorGenerator
k_g = 	1.0; # Parameter k_g for MotorGenerator
k_m = 	1.0; # Parameter k_m for MotorGenerator
l_g = 	0.1; # Parameter l_g for MotorGenerator
l_m = 	0.1; # Parameter l_m for MotorGenerator
r_g = 	0.1; # Parameter r_g for MotorGenerator
r_l = 	1.0; # Parameter r_l for MotorGenerator
r_m = 	0.1; # Parameter r_m for MotorGenerator










>
>
>

















|

>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Numerical parameter file (MotorGenerator_numpar.txt)
# Generated by MTT at Wed Dec 10 08:29:31 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %% Revision 1.1  2000/12/04 14:42:47  peterg
# %% Initial revision
# %%
# %% Revision 1.1  2000/08/01 12:26:48  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Parameters
b_g = 	0.0; # Parameter b_g for MotorGenerator
b_m = 	0.0; # Parameter b_m for MotorGenerator
c_s = 	0.01; # Parameter c_s for MotorGenerator
j_g = 	1.0; # Parameter j_g for MotorGenerator
j_m = 	1.0; # Parameter j_m for MotorGenerator
k_g = 	1.0; # Parameter k_g for MotorGenerator
k_m = 	1.0; # Parameter k_m for MotorGenerator
l_g = 	0.1; # Parameter l_g for MotorGenerator
l_m = 	0.1; # Parameter l_m for MotorGenerator
r_g = 	0.1; # Parameter r_g for MotorGenerator
r_l = 	1.0; # Parameter r_l for MotorGenerator
## Removed by MTT on Mon Dec  4 14:44:19 GMT 2000: r_m_1 = 	0.1; # Parameter r_m for MotorGenerator

r_m	= 0.1; # Added by MTT on Mon Dec 04 14:44:44 GMT 2000
1
2
3
4
5
6
7
8



9
10
11
12
13
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system Bounce (Bounce_logic.txt)
# Generated by MTT on Thu May 18 12:29:15 BST 2000.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$



###############################################################


# Set the switches
bounce_ground= mttx(1)<0;








>
>
>




|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system Bounce (Bounce_logic.txt)
# Generated by MTT on Thu May 18 12:29:15 BST 2000.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.1  2000/05/18 11:29:58  peterg
## Initial revision
##
###############################################################


# Set the switches
bounce_ground_1_mtt_switch_logic	= (bounce_intf_1_mtt3<0);
1
2
3
4
5
6
7



8
9
10
11
12
13
# Simulation parameters for system Bounce (Bounce_simpar.txt)
# Generated by MTT on Sat Jul 25 15:57:56 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$



###############################################################

LAST=10.0;
DT=0.001;
STEPFACTOR=100;
METHOD=Implicit;







>
>
>

|

|
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Simulation parameters for system Bounce (Bounce_simpar.txt)
# Generated by MTT on Sat Jul 25 15:57:56 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.1  1998/10/01 19:21:04  peterg
## Initial revision
##
###############################################################
FIRST=0.0;
LAST=10.0;
DT=0.02;
STEPFACTOR=1;

1
2
3
4
5
6
7
8



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Numerical parameter file (BouncingRod_numpar.txt)
# Generated by MTT at Fri Jul  4 14:09:11 BST 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$



# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

float theta,height;

# Parameters
epsilon = 	0.1; 
l = 	1.0; # Default value
m = 	1.0; # Default value
j = 	l*l*m/3;


theta = 3.1416/4;
height = 10.0;

# Initial states
x(1) = 	0.0; # Initial state for BouncingRod_groundL (MTT_SWITCH)
x(2) = 	0.0; # Initial state for BouncingRod_groundR (MTT_SWITCH)
x(3) = 	height+l*cos(theta); # Initial state for BouncingRod_intfL (3)
x(4) = 	height-l*cos(theta); # Initial state for BouncingRod_intfR (3)
x(5) = 	0.0; # Initial state for BouncingRod_rod (J)
x(6) = 	0.0; # Initial state for BouncingRod_rod (m_x)
x(7) = 	0.0; # Initial state for BouncingRod_rod (m_y)
x(8) = 	theta; # Initial state for BouncingRod_rod_th (3)










>
>
>


<
<

|




|
|
<

<
<
<
<
<
<
<
<
<


1
2
3
4
5
6
7
8
9
10
11
12
13


14
15
16
17
18
19
20
21

22









23
24
# Numerical parameter file (BouncingRod_numpar.txt)
# Generated by MTT at Fri Jul  4 14:09:11 BST 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %% Revision 1.1  1997/07/06 16:17:27  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



# Parameters
epsilon = 	0.01; 
l = 	1.0; # Default value
m = 	1.0; # Default value
j = 	l*l*m/3;

## Declare pi
pi = 3.142;













1
2
3
4
5
6
7



8
9
10
11
12
13
14
15

16

17
18
# Outline report file for system BouncingRod (BouncingRod_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -s -o -c BouncingRod abg tex
mtt -s -o -c BouncingRod struc tex
mtt -s -o -c BouncingRod ode tex
mtt -s -o -c BouncingRod odes h
mtt -s -o -c BouncingRod numpar txt
mtt -s -o -c BouncingRod input txt

mtt -s -o -c BouncingRod odeso ps










>
>
>


|
|
|
<
|
|
>
|
>


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
# Outline report file for system BouncingRod (BouncingRod_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1997/07/06 16:20:44  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt BouncingRod abg tex
mtt BouncingRod struc tex
mtt BouncingRod ode tex

mtt BouncingRod numpar txt
mtt BouncingRod input txt
mtt BouncingRod logic txt
mtt -c  BouncingRod odeso ps



1
2
3
4
5
6
7



8
9
10
11
12

13
# Simulation parameters for system BouncingRod (BouncingRod_simpar.txt)
# Generated by MTT on Sun Jul 26 12:14:17 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$



###############################################################

LAST=100.0;
DT=0.1;
STEPFACTOR=100;









>
>
>


|
|
|
>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Simulation parameters for system BouncingRod (BouncingRod_simpar.txt)
# Generated by MTT on Sun Jul 26 12:14:17 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.1  1999/12/21 08:07:38  peterg
## Initial revision
##
###############################################################

LAST=20;
DT=0.01;
STEPFACTOR=1;


1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25



26
27
28
29
30
31
32
%SUMMARY	ROD: rigid rod in two dimensions
%DESCRIPTION	Port [1]:	Angular torque/velocity - end 1
%DESCRIPTION	Port [2]:	Angular torque/velocity - end 2
%DESCRIPTION	Port [3]:	x force/velocity - end 1
%DESCRIPTION	Port [4]:	x force/velocity - end 2
%DESCRIPTION	Port [5]:	y force/velocity - end 1
%DESCRIPTION	Port [6]:	y force/velocity - end 2
%DESCRIPTION	Port [7]:	x force/velocity - mass centre

%DESCRIPTION	Port [8]:	x force/velocity - mass centre
%DESCRIPTION	Parameter 1:	length from end 1 to mass centre
%DESCRIPTION	Parameter 2:	length from end 2 to mass centre
%DESCRIPTION	Parameter 3:	inertia about mass centre
%DESCRIPTION	Parameter 4:	mass
%DESCRIPTION	See Section 10.2 of "Metamodelling"


%% Label file for system ROD (ROD_lbl.txt)



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank








|
>
|
















>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
%SUMMARY	ROD: rigid rod in two dimensions
%DESCRIPTION	Port [1]:	Angular torque/velocity - end 1
%DESCRIPTION	Port [2]:	Angular torque/velocity - end 2
%DESCRIPTION	Port [3]:	x force/velocity - end 1
%DESCRIPTION	Port [4]:	x force/velocity - end 2
%DESCRIPTION	Port [5]:	y force/velocity - end 1
%DESCRIPTION	Port [6]:	y force/velocity - end 2
%DESCRIPTION	Port [7]:	x force/velocity - centre
%DESCRIPTION	Port [8]:	y force/velocity - centre
%DESCRIPTION
%DESCRIPTION	Parameter 1:	length from end 1 to mass centre
%DESCRIPTION	Parameter 2:	length from end 2 to mass centre
%DESCRIPTION	Parameter 3:	inertia about mass centre
%DESCRIPTION	Parameter 4:	mass
%DESCRIPTION	See Section 10.2 of "Metamodelling"


%% Label file for system ROD (ROD_lbl.txt)



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% Revision 1.1  1996/11/07  10:57:17  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

40
41
42
43
44
45
46
47
48









%Modulated transformers
s1	lsin	flow,$1
s2	lsin	flow,$2
c1	lcos	flow,$1
c2	lcos	flow,$2


	















|

>
>
>
>
>
>
>
>
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

%Modulated transformers
s1	lsin	flow,$1
s2	lsin	flow,$2
c1	lcos	flow,$1
c2	lcos	flow,$2

% ports
	
[p1]	SS	external,external
[p2]	SS	external,external
[p3]	SS	external,external
[p4]	SS	external,external
[p5]	SS	external,external
[p6]	SS	external,external
[p7]	SS	external,external
[p8]	SS	external,external

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16


17
18
19
20
21

% Verbal description for system Weir (Weir_desc.tex)
% Generated by MTT on Thu Jul 3 10:27:26 BST 1997.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   The acausal bond graph of system \textbf{Weir} is
   displayed in Figure \Ref{Weir_abg} and its label
   file is listed in Section \Ref{sec:Weir_lbl}.
   The subsystems are listed in Section \Ref{sec:Weir_sub}.

Each weir is modeled by two {\bf ISW} components: one for flow


left-right and one for flow right-left. The switching is such that
they become non-return valves when the left hand (respectively
right-hand) level reaches an appropriate value. The parameters appear
in Section \Ref{sec:Weir_numpar.txt} and the switching conditions in
Section \Ref{sec:Weir_input.txt}.
>

|













|
>
>
|
|
|
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
% -*-latex-*- Put EMACS into LaTeX-mode
% Verbal description for system Weir (Weir_desc.tex)
% Generated by MTT on Tue Mar 2 22:05:29 GMT 1999.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   The acausal bond graph of system \textbf{Weir} is
   displayed in Figure \Ref{Weir_abg} and its label
   file is listed in Section \Ref{sec:Weir_lbl}.
   The subsystems are listed in Section \Ref{sec:Weir_sub}.


The weir is modelled by an \textbf{ISW} component in series with an
\textbf{R} component. Physicaly, the former represents the inertia of
the fluid together with the switching effect of the weir; the latter
represents the flow resistance.

The switching logic is on if the level on either side of the weir
reaches the level of the weir.
18
19
20
21
22
23
24



25
26
27
28
29
30
31


% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% Revision 1.1  1996/11/07  10:57:17  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)







>
>
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34


% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.2  1997/08/15  09:43:06  peterg
% %% Now has lablelled (as opposed to numbered) ports.
% %%
% Revision 1.1  1996/11/07  10:57:17  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
41
42
43
44
45
46
47
48
49
50
51
th

%Modulated transformers
s1	lsin	flow,$1
s2	lsin	flow,$2
c1	lcos	flow,$1
c2	lcos	flow,$2



	







<



44
45
46
47
48
49
50

51
52
53
th

%Modulated transformers
s1	lsin	flow,$1
s2	lsin	flow,$2
c1	lcos	flow,$1
c2	lcos	flow,$2



	
1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
% -*-latex-*- Put EMACS into LaTeX-mode
% Verbal description for system PinnedBeam (PinnedBeam_desc.tex)
% Generated by MTT on Mon Apr 19 07:04:54 BST 1999.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.1  1999/10/11 05:08:14  peterg
% %% Initial revision
% %%
% %% Revision 1.1  1999/05/18 04:01:50  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%









>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
% -*-latex-*- Put EMACS into LaTeX-mode
% Verbal description for system PinnedBeam (PinnedBeam_desc.tex)
% Generated by MTT on Mon Apr 19 07:04:54 BST 1999.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.2  1999/11/24 22:17:26  peterg
% %% Updated to correspond to Reza's beam
% %%
% %% Revision 1.1  1999/10/11 05:08:14  peterg
% %% Initial revision
% %%
% %% Revision 1.1  1999/05/18 04:01:50  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

The system parameters are also given in Section
\Ref{sec:PinnedBeam_numpar.tex}.


\begin{table}[htbp]
  \begin{center}
    \begin{tabular}{||l|l|l|l||}
      \hline
      \hline
Index   & Theory        & Model         & Theory        & Model \\ 
\hline
1       & 19.05         & 19.01         & 29.72         & 31.28\\ 
2       & 76.24         & 75.57         & 96.50         & 100.80\\ 
3       & 171.58        & 168.29        & 200.73        & 208.20\\ 
4       & 304.76        & 294.89        & 344.13        & 350.88\\ 
5       & 476.34        & 452.25        & 524.98        & 525.23\\ 
      \hline
      \hline
    \end{tabular}
    \caption{Mode frequencies (rad $s^{-1}$)}
    \label{tab:freq}
  \end{center}
\end{table}

Standard modal analysis give the theoretical system resonant
frequencies (based on the Bernoulli-Euler beam with the same values of
$EI$ and $\rho A$). The system anti-resonances correspond to those of
the \emph{inverse} system with reversed causality, that the driven
pinned end is replaced by a clamped end; again modal analysis of the
inverse system gives the system anti resonances. The model and
theoretical values are compared in Table \ref{tab:freq} for the first
5 modes. (This table was generated using the script MakeFreqTable.m)








|


|









|





|
|






68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

The system parameters are also given in Section
\Ref{sec:PinnedBeam_numpar.tex}.


\begin{table}[htbp]
  \begin{center}
    \begin{tabular}{||l|l|l|l|l||}
      \hline
      \hline
Index   & $f_r$ (theory) & $f_r$ (model)& $f_a$ (theory) & $f_a$ (model) \\ 
\hline
1       & 19.05         & 19.01         & 29.72         & 31.28\\ 
2       & 76.24         & 75.57         & 96.50         & 100.80\\ 
3       & 171.58        & 168.29        & 200.73        & 208.20\\ 
4       & 304.76        & 294.89        & 344.13        & 350.88\\ 
5       & 476.34        & 452.25        & 524.98        & 525.23\\ 
      \hline
      \hline
    \end{tabular}
    \caption{Resonant and anti-resonant frequencies (Hz)}
    \label{tab:freq}
  \end{center}
\end{table}

Standard modal analysis give the theoretical system resonant
frequencies $f_r$ (based on the Bernoulli-Euler beam with the same values of
$EI$ and $\rho A$). The system anti-resonances $f_a$ correspond to those of
the \emph{inverse} system with reversed causality, that the driven
pinned end is replaced by a clamped end; again modal analysis of the
inverse system gives the system anti resonances. The model and
theoretical values are compared in Table \ref{tab:freq} for the first
5 modes. (This table was generated using the script MakeFreqTable.m)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15



16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%SUMMARY pendulum: Pendulum example from Section 10.3 of "Metamodelling"
%DESCRIPTION This is a heirachical version of the 
%DESCRIPTION example from Section 10.3 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling".


%% Label file for system pend (pend_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% Revision 1.1  1996/11/09  18:44:58  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters
rod	none	l;l;j;m

%Zero velocity sources
v_x	internal	0

%Zero force/torque sources
F_x	0	internal
F_y	0	internal
F_a	0	internal

%Torque at end
f_a	external external

%Gravity
gravity





|







>







>
>
>














|


|
|
|


|








1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
%SUMMARY Pendulum: Pendulum example from Section 10.3 of "Metamodelling"
%DESCRIPTION This is a heirachical version of the 
%DESCRIPTION example from Section 10.3 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling".

%ALIAS ACCEL	Mechanical-2D/ACCEL # Constant acceleration
%% Label file for system pend (pend_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.2  1997/08/15  09:46:22  peterg
% %% New labeled ports version
% %%
% Revision 1.1  1996/11/09  18:44:58  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters
rod	none	l;l;j;m

%Zero velocity sources
v_x	SS     internal,0

%Zero force/torque sources
F_x	SS	   0,internal
F_y	SS	   0,internal
F_a	SS	   0,internal

%Torque at end
f_a	SS external,external

%Gravity
gravity





1
2
3
4
5
6
7
8



9
10
11
12
13
14
15
16
17
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system Pendulum (Pendulum_simpar.txt)
# Generated by MTT on Mon Jul 27 12:27:43 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$



## Revision 1.2  1999/02/22 10:08:05  peterg
## method to Euler
##
## Revision 1.1  1998/07/27 11:29:13  peterg
## Initial revision
##
###############################################################










>
>
>

|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system Pendulum (Pendulum_simpar.txt)
# Generated by MTT on Mon Jul 27 12:27:43 BST 1998.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.3  1999/12/23 20:16:47  peterg
## Removed MTHOD
##
## Revision 1.2  1999/02/22 10:08:05  peterg
## 
##
## Revision 1.1  1998/07/27 11:29:13  peterg
## Initial revision
##
###############################################################


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
%SUMMARY twolinkxyc: two-link manipulator with collocated tip source-sensors.
%DESCRIPTION This is related to a heirachical version of the 
%DESCRIPTION example from Section 10.5 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling"
%DESCRIPTION except that the  collocated  source-sensors act at the
%DESCRIPTION tip rather than at the joints.

%% Label (twolinkxyc_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.2  1996/12/05  12:39:49  peterg
% %% Documentation
% %%
% %% Revision 1.1  1996/12/05 12:17:15  peterg
% %% Initial revision
% %%
% %% Revision 1.1  1996/11/14  10:48:42  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters - identical rods
rod1	none	l;l;j;m;mg
rod2	none	l;l;j;m;mg

%Zero velocity sources
v_x	internal	0


%Zero force/torque sources
F_a	0	internal


%Torque at joints
f_a1	0	internal
f_a2	0	internal

%Forces at tip
F_x	external	external
F_y	external	external


%Gravity
g

|









|






<
<
<
|
<
<
<














|



|



|
|


|
|





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17



18



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%SUMMARY TwoLinkxyc: two-link manipulator with collocated tip source-sensors.
%DESCRIPTION This is related to a heirachical version of the 
%DESCRIPTION example from Section 10.5 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling"
%DESCRIPTION except that the  collocated  source-sensors act at the
%DESCRIPTION tip rather than at the joints.

%% Label (TwoLinkxyc_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.1  1998/01/06  15:56:31  peterg



% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters - identical rods
rod1	none	l;l;j;m;mg
rod2	none	l;l;j;m;mg

%Zero velocity sources
v_x	SS     internal,0


%Zero force/torque sources
F_a	SS	   0,internal


%Torque at joints
f_a1	SS	0,internal
f_a2	SS	0,internal

%Forces at tip
F_x	SS	external,external
F_y	SS	external,external


%Gravity
g

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
% Verbal description for system twolinkxyn (twolinkxyn_desc.tex)
% Generated by MTT on Fri Jun 13 16:30:23 BST 1997.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% Revision 1.1  1997/08/15  13:31:00  peterg
% Initial revision
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   The acausal bond graph of system \textbf{twolinkxyn} is
   displayed in Figure \Ref{twolinkxyn_abg} and its label
   file is listed in Section \Ref{sec:twolinkxyn_lbl}.
   The subsystems are listed in Section \Ref{sec:twolinkxyn_sub}.

This system is identical to  \textbf{twolink} except that there are
now two non-collocated input-output pairs: The torque input to joint 1
-- x velocity of the tip and the torque input to joint 2
-- y velocity of the tip. 

It uses two compound components: {\bf ROD} and {\bf GRAV}.  {\bf ROD}
|







|

<


|
|
|
|







1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
% Verbal description for system TwoLinkxyn (TwoLinkxyn_desc.tex)
% Generated by MTT on Fri Jun 13 16:30:23 BST 1997.

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% Revision 1.1  1998/01/06  17:36:33  peterg
% Initial revision

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   The acausal bond graph of system \textbf{TwoLinkxyn} is
   displayed in Figure \Ref{TwoLinkxyn_abg} and its label
   file is listed in Section \Ref{sec:TwoLinkxyn_lbl}.
   The subsystems are listed in Section \Ref{sec:TwoLinkxyn_sub}.

This system is identical to  \textbf{twolink} except that there are
now two non-collocated input-output pairs: The torque input to joint 1
-- x velocity of the tip and the torque input to joint 2
-- y velocity of the tip. 

It uses two compound components: {\bf ROD} and {\bf GRAV}.  {\bf ROD}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%SUMMARY twolinkxyn: two-link manipulator with collocated tip source-sensors.
%DESCRIPTION This is related to a heirachical version of the 
%DESCRIPTION example from Section 10.5 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling"
%DESCRIPTION except that the source sensors are not collocated:
%DESCRIPTION sources at the joints, sensors at the xy motion of the tip.

%% Label (twolinkxyn_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/01/06  15:56:31  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters - identical rods
rod1	none	l;l;j;m;mg
rod2	none	l;l;j;m;mg

%Zero velocity sources
v_x	internal	0


%Zero force/torque sources
F_a	0	internal


%Torque at joints
f_a1	external	internal
f_a2	external	internal

%Forces at tip
F_x	0		external
F_y	0		external


%Gravity
g

|









|






|














|



|



|
|


|
|





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
%SUMMARY TwoLinkxyn: two-link manipulator with collocated tip source-sensors.
%DESCRIPTION This is related to a heirachical version of the 
%DESCRIPTION example from Section 10.5 of "Metamodelling".
%DESCRIPTION It uses two compound components: ROD and GRA
%DESCRIPTION ROD is essentially as described in Figure 10.2
%DESCRIPTION GRAV represents gravity by a vertical accelleration
%DESCRIPTION as in Section 10.9 of "Metamodelling"
%DESCRIPTION except that the source sensors are not collocated:
%DESCRIPTION sources at the joints, sensors at the xy motion of the tip.

%% Label (TwoLinkxyn_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/01/06  17:37:55  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%Rod parameters - identical rods
rod1	none	l;l;j;m;mg
rod2	none	l;l;j;m;mg

%Zero velocity sources
v_x	SS     internal,0


%Zero force/torque sources
F_a	SS	   0,internal


%Torque at joints
f_a1	SS	external,internal
f_a2	SS	external,internal

%Forces at tip
F_x	SS	0,external
F_y	SS	0,external


%Gravity
g

1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
# Outline report file for system gTwoLink (gTwoLink_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt gTwoLink abg tex
mtt gTwoLink struc tex
mtt gTwoLink sympar tex
mtt gTwoLink dae tex
mtt gTwoLink cse tex
mtt gTwoLink rfe tex
mtt gTwoLink ode tex
mtt gTwoLink input txt
mtt gTwoLink numpar txt
mtt gTwoLink odeso ps







>
>
>











|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Outline report file for system gTwoLink (gTwoLink_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/22 09:18:53  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt gTwoLink abg tex
mtt gTwoLink struc tex
mtt gTwoLink sympar tex
mtt gTwoLink dae tex
mtt gTwoLink cse tex
mtt gTwoLink rfe tex
mtt gTwoLink ode tex
mtt gTwoLink input txt
mtt gTwoLink numpar txt
mtt -c gTwoLink odeso ps
1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
%% Label file for system sRCr (sRCr_lbl.txt)
%SUMMARY sRCr Sensitivity of output of RC circuit wrt value of r
%DESCRIPTION Uses the sR and sC components and vector bonds

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% Port aliases

% Argument aliases

%% Each line should be of one of the following forms:
%	     a comment (ie starting with %)
%	     component-name	cr_name	arg1,arg2,..argn
%	     blank

% ---- Component labels ----

% Component type sSe
	e1	

% Component type sDe
	e2

% Component type sC
	c	 lin;lin	effort,c;0

% Component type sR
	r	 lin;lin	flow,r;1









>
>
>















|









1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
%% Label file for system sRCr (sRCr_lbl.txt)
%SUMMARY sRCr Sensitivity of output of RC circuit wrt value of r
%DESCRIPTION Uses the sR and sC components and vector bonds

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/07/29 05:18:59  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


% Port aliases

% Argument aliases

%% Each line should be of one of the following forms:
%	     a comment (ie starting with %)
%	     component-name	cr_name	arg1,arg2,..argn
%	     blank

% ---- Component labels ----

% Component type sSe
	e1       lin		external;0	

% Component type sDe
	e2

% Component type sC
	c	 lin;lin	effort,c;0

% Component type sR
	r	 lin;lin	flow,r;1
1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

%SUMMARY Segment: Segment of HeatedRod
%DESCRIPTION Part of the HeatedRod example.
%% Label file for system Segment (Segment_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.1  1997/09/11 16:17:14  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type CT
	c_t		lin	effort,c_t

% Component type RS
	r		lin	flow,r

% Component type RT
	r_t		lin	flow,r_t

% Component type SS
	T_s		SS		external,0
	[t_in]		SS		external,external
	[t_out]		SS		external,external
	[e_in]		SS		external,external
	[e_out]		SS		external,external










>
>
>









<
<












|
|
|
|
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21


22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
%SUMMARY Segment: Segment of HeatedRod
%DESCRIPTION Part of the HeatedRod example.
%% Label file for system Segment (Segment_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.2  1998/08/10 12:29:48  peterg
% %% Added missing ports.
% %%
% %% Revision 1.1  1997/09/11 16:17:14  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type CT
	c_t		lin	effort,c_t

% Component type RS
	r		lin	flow,r

% Component type RT
	r_t		lin	flow,r_t

% Component type SS
	T_s		SS		external,0
	[t_in]		SS		external,internal
	[t_out]		SS		internal,external
	[e_in]		SS		external,internal
	[e_out]		SS		external,internal

1
2
3
4
5
6
7
8
9
10



11
12
13
14
15
16
17
18
19
20
21
22
23
24

%SUMMARY In: Inflow conditions
%DESCRIPTION <Detailed description here>
%ALIAS	in|out Th_out,Hy_out
%% Label file for system In (In_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type SS
	[Hy_out]	SS	external,external
	[Th_out]	SS	external,external
	Hy_in		SS	p_1,internal
	Th_in		SS	t_1,internal











>
>
>














>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
%SUMMARY In: Inflow conditions
%DESCRIPTION <Detailed description here>
%ALIAS	in|out Th_out,Hy_out
%% Label file for system In (In_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/04 09:41:53  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type SS
	[Hy_out]	SS	external,external
	[Th_out]	SS	external,external
	Hy_in		SS	p_1,internal
	Th_in		SS	t_1,internal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26




27
28
29

30
31
32
33



34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50









51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
%SUMMARY SimpleGasTurbine: single-spool gas turbine producing shaft power
%DESCRIPTION SimpleGasTurbine can be regarded as an single-spool gas
%DESCRIPTION turbine (producing shaft power) with an ideal-gas working fluid. It
%DESCRIPTION corresponds to the simple Joule Cycle as described in Chapter 12 of
%DESCRIPTION Rogers and Mayhew and in Chapter 2 of Cohen, Rogers and
%DESCRIPTION Saravanamutto. However, unlike those examples, the system is
%DESCRIPTION written with dynamics in mind.

%ALIAS	Comb	CompressibleFlow/Comb
%ALIAS	Pump	CompressibleFlow/Pump

%VAR t_2;
%VAR t_3;
%VAR t_4;
%VAR p_2;
%VAR p_3;
%VAR p_4;
%VAR mdot;
%VAR gamma_0;
%VAR q_0;
%VAR w_0;
%VAR omega_0;
%VAR r_p;
%VAR c_p;
%VAR mom_0;





%% Label file for system SimpleGasTurbine (SimpleGasTurbine_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.3  1998/07/03 14:54:45  peterg
% %% k_p --> k
% %% k_t --> k
% %%
% %% Revision 1.2  1998/07/03 14:53:38  peterg
% %% Renames tank to comb to be consistent.
% %%
% %% Revision 1.1  1998/05/18 15:46:02  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank










% Component type Comb
	c1		none		m_c;v_c;r

% Component type I
	j_s		lin		flow,j_s

% Component type Pump
	comp		none		c_v;density,ideal_gas,r;alpha;effort,k
	turb		none		c_v;density,ideal_gas,r;alpha;effort,k


% Component type SS
	Work		SS	0,external
	Heat		SS	0,external
	Speed		SS	0,external
	T3		SS	external,external

% Component type In
	in

% Component type Out
	out




|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

>
>
>
>
|

<
>
|
|
|
|
>
>
>
|
|
|
|
|
|
|
|
|
|
<
>

|
|
|
|

>
>
>
>
>
>
>
>
>
|


|
|

|
<
<
|

|
<
|
<
<

|
|

|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


74
75
76

77


78
79
80
81
82
83
84
85
86
87
#SUMMARY SimpleGasTurbine: single-spool gas turbine producing shaft power
#DESCRIPTION SimpleGasTurbine can be regarded as an single-spool gas
#DESCRIPTION turbine (producing shaft power) with an ideal-gas working fluid. It
#DESCRIPTION corresponds to the simple Joule Cycle as described in Chapter 12 of
#DESCRIPTION Rogers and Mayhew and in Chapter 2 of Cohen, Rogers and
#DESCRIPTION Saravanamutto. However, unlike those examples, the system is
#DESCRIPTION written with dynamics in mind.

#ALIAS	Comb	CompressibleFlow/Comb
#ALIAS	Pump	CompressibleFlow/Pump

#PAR t_2
#PAR t_3
#PAR t_4
#PAR p_2
#PAR p_3
#PAR p_4
#PAR mdot
#PAR gamma_0
#PAR q_0
#PAR w_0
#PAR omega_0
#PAR r_p
#PAR c_p
#PAR mom_0

#NOTPAR 	density
#NOTPAR	ideal_gas
#NOTPAR	q_0

## Label file for system SimpleGasTurbine (SimpleGasTurbine_lbl.txt)


# ###############################################################
# ## Version control history
# ###############################################################
# ## $Id$
# ## $Log$
# ## Revision 1.4  1998/07/30 15:27:42  peterg
# ## Use #VAR inplace of dummy component.
# ##
# ## Revision 1.3  1998/07/03 14:54:45  peterg
# ## k_p --> k
# ## k_t --> k
# ##
# ## Revision 1.2  1998/07/03 14:53:38  peterg
# ## Renames tank to comb to be consistent.
# ##
# ## Revision 1.1  1998/05/18 15:46:02  peterg
# ## Initial revision
# ##

# ###############################################################

## Each line should be of one of the following forms:
#	a comment (ie starting with #)
#	Component-name	CR_name	arg1,arg2,..argn
#	blank

# Component type Fuel
	fuel

# Component type In
	in

# Component type Pump
	comp		none		c_v;density,ideal_gas,r;alpha;effort,k

# Component type Comb
	c1		none		m_c;v_c;r

# Component type Pump
	turb		none		c_v;density,ideal_gas,r;alpha;effort,k

# Component type Out


	out

# Component type Shaft

        shaft		none		j_s



# Component type Load
	load		none		r_l







1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Outline report file for system SimpleGasTurbine (SimpleGasTurbine_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss SimpleGasTurbine abg tex
mtt -o -ss SimpleGasTurbine struc tex
mtt -o -ss SimpleGasTurbine sympar tex
mtt -o -ss SimpleGasTurbine ode tex

mtt -o -ss SimpleGasTurbine sspar r
mtt -o -ss SimpleGasTurbine ss tex
mtt -o -ss SimpleGasTurbine sm tex

mtt -o -ss SimpleGasTurbine numpar tex
mtt -o -ss SimpleGasTurbine input tex
mtt -o -ss SimpleGasTurbine state tex
mtt -o -ss SimpleGasTurbine simpar tex
mtt -o -ss -c SimpleGasTurbine odeso ps \
    'SimpleGasTurbine_comp_1_T,SimpleGasTurbine_c1_1_T,SimpleGasTurbine_turb_1_T'

mtt -o -ss -c SimpleGasTurbine odeso ps \
    'SimpleGasTurbine_fuel_1_Heat_1_y,SimpleGasTurbine_load_1_Work_1_y'

mtt -o -ss -c SimpleGasTurbine odeso ps \
    'SimpleGasTurbine_shaft_1_speed_1_y'

mtt -o -ss -c SimpleGasTurbine odeso ps \
    'SimpleGasTurbine_c1_1_P'












>
>
>















<
|

|
<

|
<

|
<





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28

29
30

31
32

33
34
35
36
37
# Outline report file for system SimpleGasTurbine (SimpleGasTurbine_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  2000/11/27 18:16:18  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss SimpleGasTurbine abg tex
mtt -o -ss SimpleGasTurbine struc tex
mtt -o -ss SimpleGasTurbine sympar tex
mtt -o -ss SimpleGasTurbine ode tex

mtt -o -ss SimpleGasTurbine sspar r
mtt -o -ss SimpleGasTurbine ss tex
mtt -o -ss SimpleGasTurbine sm tex

mtt -o -ss SimpleGasTurbine numpar tex
mtt -o -ss SimpleGasTurbine input tex
mtt -o -ss SimpleGasTurbine state tex
mtt -o -ss SimpleGasTurbine simpar tex

mtt -o -ss -c SimpleGasTurbine odeso ps 'SimpleGasTurbine_comp_1_T,SimpleGasTurbine_c1_1_T,SimpleGasTurbine_turb_1_T'

mtt -o -ss -c SimpleGasTurbine odeso ps 'SimpleGasTurbine_fuel_1_Heat_1_y,SimpleGasTurbine_load_1_Work_1_y'


mtt -o -ss -c SimpleGasTurbine odeso ps 'SimpleGasTurbine_shaft_1_speed_1_y'


mtt -o -ss -c SimpleGasTurbine odeso ps 'SimpleGasTurbine_c1_1_P'






1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
%SUMMARY TestPipe
%DESCRIPTION <Detailed description here>
%% Label file for system TestPipe (TestPipe_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%ALIAS Pipe IncompressibleFlow/Pipe

% Component type Pipe
	pipe		lin		rho;c_p;lin,r

% Component type SS
	Hy_in		external	external
	Hy_out		external	external
	Th_in		external	external
	Th_out		external	external









>
>
>













|
|
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
%SUMMARY TestPipe
%DESCRIPTION <Detailed description here>
%% Label file for system TestPipe (TestPipe_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/11/20 08:02:53  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%ALIAS Pipe IncompressibleFlow/Pipe

% Component type Pipe
	pipe		lin		rho;c_p;lin,r

% Component type SS
	Hy_in		SS	external,external
	Hy_out		SS	external,external
	Th_in		SS	external,external
	Th_out		SS	external,external
1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
%SUMMARY TestPump: test of incompressible-flow pump component
%DESCRIPTION
%% Label file for system TestPump (TestPump_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.4  1998/11/20 08:31:24  peterg
% %% Fixed alias error
% %%
% %% Revision 1.3  1998/11/20 08:28:41  peterg
% %% Tidied
% %%
% %% Revision 1.2  1998/11/20 08:09:57  peterg









>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
%SUMMARY TestPump: test of incompressible-flow pump component
%DESCRIPTION
%% Label file for system TestPump (TestPump_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.5  1998/11/20 13:00:27  peterg
% %% Replaces Pump by lPump in ALIAS
% %%
% %% Revision 1.4  1998/11/20 08:31:24  peterg
% %% Fixed alias error
% %%
% %% Revision 1.3  1998/11/20 08:28:41  peterg
% %% Tidied
% %%
% %% Revision 1.2  1998/11/20 08:09:57  peterg
29
30
31
32
33
34
35
36
37
38
39
40
%ALIAS lPump IncompressibleFlow/lPump


% Component type lPump
	pump		lin;lin		rho;c_p;flow,r_p;k_p;flow,r_l

% Component type SS
	Hy_in		external	external
	Hy_out		external	external
	Shaft		external	external
	Th_in		external	external
	Th_out		external	external







|
|
|
|
|
32
33
34
35
36
37
38
39
40
41
42
43
%ALIAS lPump IncompressibleFlow/lPump


% Component type lPump
	pump		lin;lin		rho;c_p;flow,r_p;k_p;flow,r_l

% Component type SS
	Hy_in		SS	external,external
	Hy_out		SS	external,external
	Shaft		SS	external,external
	Th_in		SS	external,external
	Th_out		SS	external,external
1
2
3
4
5
6
7
8
9



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
%SUMMARY TestTank: Equations for incompressible-flow Tank component
%DESCRIPTION
%% Label file for system TestTank (TestTank_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %% Revision 1.2  1998/11/20 08:09:20  peterg
% %% Added alias for Tank
% %%
% %% Revision 1.1  1998/11/20 08:07:20  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%ALIAS Tank IncompressibleFlow/Tank

% Component type SS

	Hy_in		external	external
	Hy_out		external	external
	Th_in		external	external
	Th_out		external	external

% Component type Tank
	tank		none		rho;c_p;c










>
>
>
















>
|
|
|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
%SUMMARY TestTank: Equations for incompressible-flow Tank component
%DESCRIPTION
%% Label file for system TestTank (TestTank_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.3  1998/11/20 08:36:30  peterg
% %% Corrected alias
% %%
% %% Revision 1.2  1998/11/20 08:09:20  peterg
% %% Added alias for Tank
% %%
% %% Revision 1.1  1998/11/20 08:07:20  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank

%ALIAS Tank IncompressibleFlow/Tank

% Component type SS
	Heat_in		SS	external,external
	Hy_in		SS	external,external
	Hy_out		SS	external,external
	Th_in		SS	external,external
	Th_out		SS	external,external

% Component type Tank
	tank		none		rho;c_p;c

1
2
3
4
5
6
7
8



9
10





11
12
13
14



15
16
17
# Numerical parameter file (CarnotCycle_numpar.txt)
# Generated by MTT at Mon Dec  8 20:02:31 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$



# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






# Parameters
r = 	1.0; # Parameter r for CarnotCycle
c_v = 	718.0; # Parameter c_v for CT2
gamma = 1.4; # Parameter gamma for CT2



m = 	1.0; # Parameter m for CT2
t_0 = 	300.0; # Parameter t_0 for CT









>
>
>


>
>
>
>
>

<
|
|
>
>
>
|
|

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
# Numerical parameter file (CarnotCycle_numpar.txt)
# Generated by MTT at Mon Dec  8 20:02:31 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %% Revision 1.1  1998/03/04 11:49:01  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Initial states -- needed to choose an approppriate mass
P_0 = 1e5;
V_0 = 1;
T_0 = 300;

# Parameters

c_v = 	718.0; # Parameter c_v for CU
gamma_g = 1.4; # Parameter gamma for CU
m_g = 	P_0*V_0/(T_0*(gamma_g-1)*c_v); # Parameter m for CU


r = 	1.0; # Parameter r for CarnotCycle


1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Outline report file for system CarnotCycle (CarnotCycle_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -ss -o CarnotCycle abg tex
mtt -ss -o CarnotCycle struc tex
mtt -ss -o CarnotCycle ode tex
mtt -ss -o CarnotCycle ss tex

mtt -ss -o CarnotCycle numpar txt
mtt -ss -o CarnotCycle input txt
mtt -ss -o CarnotCycle odes h
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_V'
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_P'
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_S'
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_T'
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_V:CarnotCycle_cycle_P'
mtt -ss -o CarnotCycle odeso ps 'CarnotCycle_cycle_S:CarnotCycle_cycle_T'







>
>
>









|
|
|
|
|
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Outline report file for system CarnotCycle (CarnotCycle_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:15:05  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -ss -o CarnotCycle abg tex
mtt -ss -o CarnotCycle struc tex
mtt -ss -o CarnotCycle ode tex
mtt -ss -o CarnotCycle ss tex

mtt -ss -o CarnotCycle numpar txt
mtt -ss -o CarnotCycle input txt

mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_V'
mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_P'
mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_S'
mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_T'
mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_V:CarnotCycle_cycle_P'
mtt -ss -c -o CarnotCycle odeso ps 'CarnotCycle_cycle_S:CarnotCycle_cycle_T'
1
2
3
4
5
6
7
8



9
10
11
12


















13
14
15
16
17
18
19
20
21
22

% Steady-state parameter file (CarnotCycle_sspar.r)
% Generated by MTT at Wed Mar  4 11:02:40 GMT 1998

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % $Id$
% % $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%





















% Steady-state states
MTTX1 := 	t_0*m*c_v; % CarnotCycle_cycle_gas (c)
MTTX2 := 	10.0;      % CarnotCycle_cycle_gas (c)
MTTX3 := 	m*c_v;	   % CarnotCycle_cycle_entropy (3)
MTTX4 := 	10.0;      % CarnotCycle_cycle_volume (3)

% Steady-state inputs
MTTU1 := 	0; % CarnotCycle (Heat)
MTTU2 := 	0; % CarnotCycle (Work)
;;END;









>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|
|
|





>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
% Steady-state parameter file (CarnotCycle_sspar.r)
% Generated by MTT at Wed Mar  4 11:02:40 GMT 1998

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % $Id$
% % $Log$
% % Revision 1.1  1998/03/04 11:49:14  peterg
% % Initial revision
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



% Set a pressure of 1 bar
P_0 := 10^5;

% Unit initial volume
V_0 := 1;

% Internal energy
U_0 := P_0*V_0/(gamma_g-1);

% Set initial temperature of 300k
T_0 := 300;

% Deduce the mass of gas
m :=  U_0/(T_0*c_v);

% Entropy
S_0 := U_0/T_0;

% Steady-state states
MTTX1 := 	U_0;         % CarnotCycle_cycle_gas (c)
MTTX2 := 	V_0;         % CarnotCycle_cycle_gas (c)
MTTX3 := 	S_0;         % CarnotCycle_cycle_entropy (3)
MTTX4 := 	V_0;         % CarnotCycle_cycle_volume (3)

% Steady-state inputs
MTTU1 := 	0; % CarnotCycle (Heat)
MTTU2 := 	0; % CarnotCycle (Work)
;;END;

1
2
3
4
5
6
7
8








9
10
11
12
13
14
15
16



17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
%SUMMARY DieselCycle:a simple closed thermodynamic cycle
%DESCRIPTION The Diese cycle is a simple closed thermodynamic cycle
%DESCRIPTION with four parts:
%DESCRIPTION o Isentropic compression
%DESCRIPTION o Heating at constant pressure
%DESCRIPTION o Isentropic expansion
%DESCRIPTION o Cooling at constant volume
  









%% Label file for system DieselCycle (DieselCycle_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type R
	r		lin	flow,r

% Component type SS
	Heat	SS	internal,external
	Work	SS	external,internal








>
>
>
>
>
>
>
>








>
>
>










|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
%SUMMARY DieselCycle:a simple closed thermodynamic cycle
%DESCRIPTION The Diese cycle is a simple closed thermodynamic cycle
%DESCRIPTION with four parts:
%DESCRIPTION o Isentropic compression
%DESCRIPTION o Heating at constant pressure
%DESCRIPTION o Isentropic expansion
%DESCRIPTION o Cooling at constant volume
  
%VAR P_0
%VAR T_0
%VAR V_0
%VAR S_0
%VAR U_0
%VAR TopPressure
%VAR Volume
%VAR Pressure

%% Label file for system DieselCycle (DieselCycle_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/21 15:25:50  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	none	ideal_gas;c_v;gamma_g;m_g	

% Component type R
	r		lin	flow,r

% Component type SS
	Heat	SS	internal,external
	Work	SS	external,internal
1
2
3
4
5
6
7
8



9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
# Numerical parameter file (OttoCycle_input.txt)
# Generated by MTT at Thu Dec  4 11:17:09 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$



# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Set the inputs

if ((t>=0.0)&&(t<1.0))		#Compression
  u(1) = 0.0;			# Entropy flow
else
  u(2) = -0.8;			# Volume rate-of-change
endif;

if ((t>=1.0)&&(t<2.0))		#Heating
  u(1) = 1000;			# Entropy flow
else
  u(2) = 0.0;			# Volume rate-of-change
endif;

if ((t>=2.0)&&(t<3.0))		#Expansion
  u(1) = 0.0;			# Entropy flow
else
  u(2) = 0.8;			# Volume rate-of-change
endif;

if (t>=3.0)			#Cooling
  u(1) = -1000;			# Entropy flow
else
  u(2) = 0.0;			# Volume rate-of-change
endif;












>
>
>






<





<





<





<


>



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22

23
24
25
26
27

28
29
30
31
32

33
34
35
36
37
38
# Numerical parameter file (OttoCycle_input.txt)
# Generated by MTT at Thu Dec  4 11:17:09 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %% Revision 1.1  1998/08/10 14:42:13  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Set the inputs

if ((t>=0.0)&&(t<1.0))		#Compression
  u(1) = 0.0;			# Entropy flow

  u(2) = -0.8;			# Volume rate-of-change
endif;

if ((t>=1.0)&&(t<2.0))		#Heating
  u(1) = 1000;			# Entropy flow

  u(2) = 0.0;			# Volume rate-of-change
endif;

if ((t>=2.0)&&(t<3.0))		#Expansion
  u(1) = 0.0;			# Entropy flow

  u(2) = 0.8;			# Volume rate-of-change
endif;

if (t>=3.0)			#Cooling
  u(1) = -1000;			# Entropy flow

  u(2) = 0.0;			# Volume rate-of-change
endif;




1
2
3
4
5
6
7
8



9
10





11
12
13
14
15
16
# Numerical parameter file (OttoCycle_numpar.txt)
# Generated by MTT at Thu Dec  4 11:44:46 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$



# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






# Parameters
c_v = 	718.0; # Parameter c_v for CT2
gamma = 1.4; # Parameter gamma for CT2
m = 	1.0; # Parameter m for CT2
t_0 = 	300.0; # Parameter t_0 for CT2









>
>
>


>
>
>
>
>

|
|
|
<

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
# Numerical parameter file (OttoCycle_numpar.txt)
# Generated by MTT at Thu Dec  4 11:44:46 GMT 1997

# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id$
# %% $Log$
# %% Revision 1.1  1998/03/04 11:45:49  peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

# Initial states -- needed to choose an appropriate mass
P_0 = 1e5;
V_0 = 1;
T_0 = 300;			

# Parameters
c_v = 	718.0;			# Parameter c_v for CU
gamma_g = 1.4;			# Parameter gamma for CU
m_g = 	P_0*V_0/(T_0*(gamma_g-1)*c_v);# Parameter m for CU


1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Outline report file for system OttoCycle (OttoCycle_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss OttoCycle abg tex
mtt -o -ss OttoCycle struc tex
mtt -o -ss OttoCycle ode tex
mtt -o -ss OttoCycle ss tex

mtt -o -ss OttoCycle numpar txt
mtt -o -ss OttoCycle input txt
mtt -o -ss OttoCycle odes h
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_V'
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_P'
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_S'
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_T'
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_V:OttoCycle_cycle_P'
mtt -o -ss OttoCycle odeso ps 'OttoCycle_cycle_S:OttoCycle_cycle_T'











>
>
>









|
|
|
|
|
|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Outline report file for system OttoCycle (OttoCycle_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:16:17  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss OttoCycle abg tex
mtt -o -ss OttoCycle struc tex
mtt -o -ss OttoCycle ode tex
mtt -o -ss OttoCycle ss tex

mtt -o -ss OttoCycle numpar txt
mtt -o -ss OttoCycle input txt

mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_V'
mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_P'
mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_S'
mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_T'
mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_V:OttoCycle_cycle_P'
mtt -o -ss -c OttoCycle odeso ps 'OttoCycle_cycle_S:OttoCycle_cycle_T'




1
2
3
4




5
6
7
8
9
10
11
12



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
%SUMMARY Isentropic: Isentropic thermodynamic process - ideal gas
%DESCRIPTION A dynamic simulation of an isentropic process using
%DESCRIPTION the Cycle component and the two-prt CU component.






%% Label file for system Isentropic (Isentropic_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type SS
	Heat	SS	internal,0
	Work	SS	internal,external




>
>
>
>








>
>
>










|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
%SUMMARY Isentropic: Isentropic thermodynamic process - ideal gas
%DESCRIPTION A dynamic simulation of an isentropic process using
%DESCRIPTION the Cycle component and the two-prt CU component.

%VAR P_0
%VAR T_0
%VAR V_0


%% Label file for system Isentropic (Isentropic_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/21 14:27:44  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	none	ideal_gas;c_v;gamma_g;m_g	

% Component type SS
	Heat	SS	internal,0
	Work	SS	internal,external
1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Outline report file for system Isentropic (Isentropic_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss Isentropic abg tex
mtt -o -ss Isentropic struc tex
mtt -o -ss Isentropic ode tex
mtt -o -ss Isentropic ss tex

mtt -o -ss Isentropic numpar txt
mtt -o -ss Isentropic input txt
mtt -o -ss Isentropic odes h
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_V'
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_P'
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_S'
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_T'
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_V:Isentropic_cycle_P'
mtt -o -ss Isentropic odeso ps 'Isentropic_cycle_S:Isentropic_cycle_T'











>
>
>









|
|
|
|
|
|
|
<
<
<
<
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26




# Outline report file for system Isentropic (Isentropic_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:18:41  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss Isentropic abg tex
mtt -o -ss Isentropic struc tex
mtt -o -ss Isentropic ode tex
mtt -o -ss Isentropic ss tex

mtt -o -ss Isentropic numpar txt
mtt -o -ss Isentropic input txt

mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_V'
mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_P'
mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_S'
mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_T'
mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_V:Isentropic_cycle_P'
mtt -o -ss -c Isentropic odeso ps 'Isentropic_cycle_S:Isentropic_cycle_T'




1
2
3




4
5
6
7
8
9
10
11



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
%SUMMARY Isobaric: Isobaric thermodynamic process - ideal gas 
%DESCRIPTION A dynamic simulation of an isobaric (constant pressure)
%DESCRIPTION  process using the Cycle component and the two-port CU component.





%% Label file for system Isobaric (Isobaric_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type SS
	Heat	SS	internal,external
	Work	SS	P_0,internal



>
>
>
>








>
>
>










|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
%SUMMARY Isobaric: Isobaric thermodynamic process - ideal gas 
%DESCRIPTION A dynamic simulation of an isobaric (constant pressure)
%DESCRIPTION  process using the Cycle component and the two-port CU component.

%VAR P_0
%VAR T_0
%VAR V_0

%% Label file for system Isobaric (Isobaric_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/21 14:32:49  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	none	ideal_gas;c_v;gamma_g;m_g	

% Component type SS
	Heat	SS	internal,external
	Work	SS	P_0,internal
1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Outline report file for system Isobaric (Isobaric_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt  -ss Isobaric abg tex
mtt  -ss Isobaric struc tex
mtt  -ss Isobaric ode tex
mtt  -ss Isobaric ss tex

mtt  -ss Isobaric numpar txt
mtt  -ss Isobaric input txt
mtt  -ss Isobaric odes h
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_V'
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_P'
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_S'
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_T'
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_V:Isobaric_cycle_P'
mtt  -ss Isobaric odeso ps 'Isobaric_cycle_S:Isobaric_cycle_T'











>
>
>









|
|
|
|
|
|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Outline report file for system Isobaric (Isobaric_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:19:31  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt  -ss Isobaric abg tex
mtt  -ss Isobaric struc tex
mtt  -ss Isobaric ode tex
mtt  -ss Isobaric ss tex

mtt  -ss Isobaric numpar txt
mtt  -ss Isobaric input txt

mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_V'
mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_P'
mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_S'
mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_T'
mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_V:Isobaric_cycle_P'
mtt  -ss -c Isobaric odeso ps 'Isobaric_cycle_S:Isobaric_cycle_T'




1
2
3




4
5
6
7
8
9
10
11



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
%SUMMARY Isothermal: Isothermal thermodynamic process - ideal gas
%DESCRIPTION A dynamic simulation of an isothermal process using
%DESCRIPTION the Cycle component and the two-port CU component.





%% Label file for system Isothermal (Isothermal_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type SS
	Heat		SS	t_0,internal
	Work		SS	internal,external



>
>
>
>








>
>
>










|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
%SUMMARY Isothermal: Isothermal thermodynamic process - ideal gas
%DESCRIPTION A dynamic simulation of an isothermal process using
%DESCRIPTION the Cycle component and the two-port CU component.

%VAR P_0
%VAR T_0
%VAR V_0

%% Label file for system Isothermal (Isothermal_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/21 14:30:29  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	none	ideal_gas;c_v;gamma_g;m_g	

% Component type SS
	Heat		SS	t_0,internal
	Work		SS	internal,external
1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Outline report file for system Isothermal (Isothermal_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -ss Isothermal abg tex
mtt -ss Isothermal struc tex
mtt -ss Isothermal ode tex
mtt -ss Isothermal ss tex

mtt -ss Isothermal numpar txt
mtt -ss Isothermal input txt
mtt -ss Isothermal odes h
mtt -ss Isothermal odeso ps 'Isothermal_cycle_V'
mtt -ss Isothermal odeso ps 'Isothermal_cycle_P'
mtt -ss Isothermal odeso ps 'Isothermal_cycle_S'
mtt -ss Isothermal odeso ps 'Isothermal_cycle_T'
mtt -ss Isothermal odeso ps 'Isothermal_cycle_V:Isothermal_cycle_P'
mtt -ss Isothermal odeso ps 'Isothermal_cycle_S:Isothermal_cycle_T'











>
>
>









|
|
|
|
|
|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Outline report file for system Isothermal (Isothermal_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:20:18  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -ss Isothermal abg tex
mtt -ss Isothermal struc tex
mtt -ss Isothermal ode tex
mtt -ss Isothermal ss tex

mtt -ss Isothermal numpar txt
mtt -ss Isothermal input txt

mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_V'
mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_P'
mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_S'
mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_T'
mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_V:Isothermal_cycle_P'
mtt -ss -c Isothermal odeso ps 'Isothermal_cycle_S:Isothermal_cycle_T'




1
2
3
4






5
6
7
8
9
10
11



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
%SUMMARY Isovolumetric: Isovolumetric thermodynamic process - ideal gas 
%DESCRIPTION A dynamic simulation of an Isovolumetric (constant volume)
%DESCRIPTION  process using the Cycle component and the two-port CU component.
%DESCRIPTION 






%% Label file for system Isovolumetric (Isovolumetric_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	

% Component type SS
	Heat	SS	internal,external
	Work	SS	internal,0




>
>
>
>
>
>







>
>
>










|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
%SUMMARY Isovolumetric: Isovolumetric thermodynamic process - ideal gas 
%DESCRIPTION A dynamic simulation of an Isovolumetric (constant volume)
%DESCRIPTION  process using the Cycle component and the two-port CU component.
%DESCRIPTION 
%DESCRIPTION the Cycle component and the two-port CU component.

%VAR P_0
%VAR T_0
%VAR V_0

%% Label file for system Isovolumetric (Isovolumetric_lbl.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1998/07/21 14:37:03  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Each line should be of one of the following forms:
%	a comment (ie starting with %)
%	Component-name	CR_name	arg1,arg2,..argn
%	blank



% Component type Cycle
	cycle	none	ideal_gas;c_v;gamma_g;m_g	

% Component type SS
	Heat	SS	internal,external
	Work	SS	internal,0
1
2
3
4
5
6
7



8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Outline report file for system Isovolumetric (Isovolumetric_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$



% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss Isovolumetric abg tex
mtt -o -ss Isovolumetric struc tex
mtt -o -ss Isovolumetric ode tex
mtt -o -ss Isovolumetric ss tex

mtt -o -ss Isovolumetric numpar txt
mtt -o -ss Isovolumetric input txt
mtt -o -ss Isovolumetric odes h
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_V'
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_P'
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_S'
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_T'
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_V:Isovolumetric_cycle_P'
mtt -o -ss Isovolumetric odeso ps 'Isovolumetric_cycle_S:Isovolumetric_cycle_T'











>
>
>









|
|
|
|
|
|
|




1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Outline report file for system Isovolumetric (Isovolumetric_rep.txt)

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id$
% %% $Log$
% %% Revision 1.1  1999/02/21 02:21:03  peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mtt -o -ss Isovolumetric abg tex
mtt -o -ss Isovolumetric struc tex
mtt -o -ss Isovolumetric ode tex
mtt -o -ss Isovolumetric ss tex

mtt -o -ss Isovolumetric numpar txt
mtt -o -ss Isovolumetric input txt

mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_V'
mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_P'
mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_S'
mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_T'
mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_V:Isovolumetric_cycle_P'
mtt -o -ss -c Isovolumetric odeso ps 'Isovolumetric_cycle_S:Isovolumetric_cycle_T'





MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]