68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
-
|
return err
}
// ... and stage the rest of the data in the buffer
ctx.input = append(ctx.input, data[blockSize-bufferLength:]...)
return nil
}
// TODO allocate this on ctx.buffer ...
var buf []byte = make([]byte, 1, blockSize+1)
for block := 0; block < len(data)/blockSize; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
|
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
-
+
-
-
-
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
-
+
-
-
+
+
+
+
+
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
-
+
+
+
-
+
-
-
-
+
+
+
+
-
+
|
// Required to implement io.Reader
func (r decompressor) Read(output []byte) (int, error) {
return r(output)
}
// Returns an io.Reader implementation that wraps the provided io.Reader
// and decompresses data according to the predictor algorithm
func Decompressor(wrapped io.Reader) io.Reader {
func Decompressor(reader io.Reader) io.Reader {
var ctx context
ctx.input = make([]byte, 0, 8)
return decompressor(func(output []byte) (int, error) {
var (
err error
flags byte
readCount int
err error
flags byte
readCount, available int
)
// Sanity check for space to read into
if len(output) == 0 {
return 0, nil
}
// Check whether we have leftover data in the buffer
if len(ctx.input) > 0 {
readCount = copy(output, ctx.input)
// Check whether we still have leftover data in the buffer :)
if readCount < len(ctx.input) {
ctx.input = ctx.input[:copy(ctx.input, ctx.input[readCount:])]
}
return readCount, nil
}
// This is single-iteration only but it is fine according to io.Reader's contract ?!
// TODO - read all bytes from a block based on the hamming weight of the flag
// and just shuffle them for predictions instead of bite-sized reads ;)
// Read the flags
readCount, err = wrapped.Read(ctx.input[:1])
if readCount == 0 || err != nil {
return readCount, err
// Read the next prediction header
readCount, err = reader.Read(ctx.input[:1])
// Fail on error unless it is EOF
if err != nil && err != io.EOF {
return 0, err
} else if readCount == 0 {
return 0, err
}
// Extend the buffer, copy the prediction header
// and calculate the number of subsequent bytes to read
ctx.input = ctx.input[:8]
flags = ctx.input[0]
available = 8 - int(bits.Hamming(flags))
// Read the non-predicted bytes according to header.
readCount, err = reader.Read(ctx.input[:available])
retryData:
if readCount < int(available) && err == nil {
// Retry the read if we have fewer bytes than what the prediction header indicates
var i uint = 0
var rc int
for ; i < 8; i++ {
if flags&(1<<i) > 0 {
// Guess was right
ctx.input[i] = ctx.table[ctx.hash]
rc, err = reader.Read(ctx.input[readCount:available])
} else {
readCount, err = wrapped.Read(ctx.input[i:(i + 1)])
readCount += rc
goto retryData
} // Continue on any error, try to decompress and return it along the result
// Spread the read bytes right to left to avoid overlapping
for i, a := 7, available-1; i >= 0; i-- {
if err == io.EOF {
break
}
if ((flags >> uint(i)) & 1) == 0 {
ctx.input[i] = ctx.input[a]
a--
}
}
if err != nil {
return readCount, err
}
if readCount == 0 { // treat as EoF
break
}
// Walk the buffer, fill in the predicted blanks and update the guess table
for i := uint(0); i < 8; i++ {
if (flags & (1 << i)) > 0 {
// Guess succeeded, fill in from the table
ctx.input[i] = ctx.table[ctx.hash]
readCount++
} else {
// Guess failed, update the table
ctx.table[ctx.hash] = ctx.input[i]
}
// Update the hash
ctx.hash = (ctx.hash << 4) ^ uint16(ctx.input[i])
}
// readCount now contains the precise amount of populated data
ctx.input = ctx.input[:readCount]
readCount = copy(output, ctx.input[:i])
available = copy(output, ctx.input)
// Place any remaining bytes in the buffer
if uint(readCount) < i {
ctx.input = ctx.input[readCount:i]
// Check for remaining bytes that dont fit in the output buffer
if available < readCount {
ctx.input = ctx.input[:copy(ctx.input, ctx.input[available:])]
} else {
// Clear the buffer
ctx.input = ctx.input[:0]
}
return readCount, nil
return available, err
})
}
|