Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994
Dump file created: Mon May 23 10:39:11 1994
REDUCE 3.5, 15-Oct-93 ...
Memory allocation: 6023424 bytes
+++ About to read file ndotest.red
% Test SCOPE Package.
% NOTE: The SCOPE, GHORNER, GSTRUCTR and GENTRAN packages must be loaded
% to run these tests.
on priall$
optimize z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2
iname s;
Sumscheme :
|| EC|Far
------------
0|| 1| z
------------
Productscheme :
| 0 1 2| EC|Far
---------------------
1| 2 2| 1| 0
2| 6 2| 10| 0
3| 2 2| 1| 0
4| 4 1 1| 2| 0
5| 6 2 | 2| 0
6| 2 2 | 1| 0
---------------------
0 : m
1 : b
2 : a
Number of operations in the input is:
Number of (+,-)-operations : 5
Number of (*)-operations : 10
Number of integer exponentiations : 11
Number of other operations : 0
s0 := b*a
s4 := m*m
s1 := s4*b*b
s2 := s4*a*a
s3 := s4*s4
z := s1 + s2 + s0*(2*s3 + s0) + s3*(2*s1 + 10*s2)
Number of operations after optimization is:
Number of (+,-)-operations : 5
Number of (*)-operations : 12
Number of integer exponentiations : 0
Number of other operations : 0
Sumscheme :
| 0 3 4 5| EC|Far
------------------------
0| 1 1| 1| z
15| 2 10| 1| 14
17| 2 1 | 1| 16
------------------------
0 : s3
3 : s0
4 : s1
5 : s2
Productscheme :
| 8 9 10 11 17 18 19 20| EC|Far
------------------------------------
7| 1 1| 1| s0
8| 1 2 | 1| s1
9| 1 2| 1| s2
10| 2 | 1| s3
11| 2 | 1| s4
14| 1 | 1| 0
16| 1 | 1| 0
------------------------------------
8 : s4
9 : s3
10 : s2
11 : s1
17 : s0
18 : m
19 : b
20 : a
off priall$
on primat,acinfo$
optimize
ghorner <<z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2>>
vorder m
iname s;
2 2 2 2 2 2 2 2 2
z := a *b + m *((a + b ) + m *(2*a*b + m *(10*a + 2*b )))
Sumscheme :
|| EC|Far
------------
0|| 1| z
3|| 1| 2
7|| 1| 6
10|| 1| 9
------------
Productscheme :
| 0 1 2| EC|Far
---------------------
1| 2 2| 1| 0
2| 2 | 1| 0
4| 2| 1| 3
5| 2 | 1| 3
6| 2 | 1| 3
8| 1 1| 2| 7
9| 2 | 1| 7
11| 2| 10| 10
12| 2 | 2| 10
---------------------
0 : m
1 : b
2 : a
Number of operations in the input is:
Number of (+,-)-operations : 5
Number of (*)-operations : 8
Number of integer exponentiations : 9
Number of other operations : 0
s0 := b*a
s1 := b*b
s2 := a*a
s3 := m*m
z := s0*s0 + s3*(s1 + s2 + s3*(2*s0 + s3*(2*s1 + 10*s2)))
Number of operations after optimization is:
Number of (+,-)-operations : 5
Number of (*)-operations : 11
Number of integer exponentiations : 0
Number of other operations : 0
Sumscheme :
| 0 1 2| EC|Far
---------------------
0| | 1| z
3| 1 1| 1| 2
7| 2 | 1| 6
10| 2 10| 1| 9
---------------------
0 : s0
1 : s1
2 : s2
Productscheme :
| 3 4 5 9 10 11 12| EC|Far
---------------------------------
1| 2 | 1| 0
2| 1 | 1| 0
6| 1 | 1| 3
9| 1 | 1| 7
13| 1 1| 1| s0
14| 2 | 1| s1
15| 2| 1| s2
16| 2 | 1| s3
---------------------------------
3 : s3
4 : s2
5 : s1
9 : s0
10 : m
11 : b
12 : a
operator a$
k:=j:=1$
u:=c*x+d$
v:=sin(u)$
optimize {a(k,j):=v*(v^2*cos(u)^2+u),
a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;
2 2
a(k,j) := v*(v *cos(u) + u)
a(1,1) :=
2 3
cos(c*x + d) *sin(c*x + d) + sin(c*x + d)*c*x + sin(c*x + d)*d
Sumscheme :
| 7 8| EC|Far
------------------
1| 1 | 1| 0
3| | 1| s2
5| 1| 1| s4
------------------
7 : u
8 : d
Productscheme :
| 0 1 2 3 4 5 6| EC|Far
---------------------------------
0| 1| 1| s0
2| 2 2| 1| 1
4| 3 2 | 1| 3
6| 1 1 | 1| 5
7| 1 1 1 | 1| 3
8| 1 1 | 1| 3
---------------------------------
0 : d
1 : s5=sin(s4)
2 : s3=cos(s4)
3 : x
4 : c
5 : s1=cos(u)
6 : v
Number of operations in the input is:
Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 4
Number of other operations : 5
s8 := cos(u)*v
a(k,j) := v*(u + s8*s8)
s4 := x*c + d
s5 := sin(s4)
s9 := s5*cos(s4)
a(1,1) := s5*(s4 + s9*s9)
Number of operations after optimization is:
Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3
Sumscheme :
| 2 3 12 13| EC|Far
------------------------
1| 1 | 1| 0
3| | 1| s2
5| 1 1| 1| s4
11| 1 | 1| 10
------------------------
2 : s4
3 : s6
12 : u
13 : d
Productscheme :
| 0 1 4 5 6 7 8 9 10 11| EC|Far
------------------------------------------
0| 1| 1| s0
2| 2 | 1| 1
4| 2 | 1| 11
9| 1 1 | 1| s6
10| 1 | 1| 3
13| 1 1| 1| s8
14| 1 1 | 1| s9
------------------------------------------
0 : s9
1 : s8
4 : s6
5 : d
6 : s5=sin(s4)
7 : s3=cos(s4)
8 : x
9 : c
10 : s1=cos(u)
11 : v
off exp$
optimize {a(k,j):=v*(v^2*cos(u)^2+u),
a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;
2 2
a(k,j) := v*(v *cos(u) + u)
2 2
a(1,1) := (cos(c*x + d) *sin(c*x + d) + c*x + d)*sin(c*x + d)
Sumscheme :
| 6 7| EC|Far
------------------
1| 1 | 1| 0
4| 1| 1| 3
6| 1| 1| s4
------------------
6 : u
7 : d
Productscheme :
| 0 1 2 3 4 5| EC|Far
------------------------------
0| 1| 1| s0
2| 2 2| 1| 1
3| 1 | 1| s2
5| 2 2 | 1| 4
7| 1 1 | 1| 6
8| 1 1 | 1| 4
------------------------------
0 : s5=sin(s4)
1 : s3=cos(s4)
2 : x
3 : c
4 : s1=cos(u)
5 : v
Number of operations in the input is:
Number of (+,-)-operations : 6
Number of (*)-operations : 8
Number of integer exponentiations : 4
Number of other operations : 4
s8 := cos(u)*v
a(k,j) := v*(u + s8*s8)
s4 := x*c + d
s5 := sin(s4)
s9 := s5*cos(s4)
a(1,1) := s5*(s4 + s9*s9)
Number of operations after optimization is:
Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3
Sumscheme :
| 2 3 11 12| EC|Far
------------------------
1| 1 | 1| 0
4| 1 | 1| 3
6| 1 1| 1| s4
------------------------
2 : s4
3 : s6
11 : u
12 : d
Productscheme :
| 0 1 4 5 6 7 8 9 10| EC|Far
---------------------------------------
0| 1| 1| s0
2| 2 | 1| 1
3| 1 | 1| s2
5| 2 | 1| 4
9| 1 1 | 1| s6
11| 1 1| 1| s8
12| 1 1 | 1| s9
---------------------------------------
0 : s9
1 : s8
4 : s6
5 : s5=sin(s4)
6 : s3=cos(s4)
7 : x
8 : c
9 : s1=cos(u)
10 : v
off primat,acinfo,period$
on fort$
optimize z:=(6*a+18*b+9*c+3*d+6*e+18*f+6*g+5*h+5*k+3)^13 iname s;
s0=5.0*(h+k)+3.0*(3.0*c+d+1.0+6.0*(b+f)+2.0*(a+exp(1.0)+g))
s3=s0*s0*s0
s2=s3*s3
z=s0*s2*s2
optimize {x:=3*a*p,y:=3*a*q,z:=6*a*r+2*b*p,u:=6*a*d+2*b*q,
v:=9*a*c+4*b*d,w:=4*b} iname s;
s2=3.0*a
x=s2*p
y=s2*q
s1=2.0*b
s3=6.0*a
z=s1*p+s3*r
u=s1*q+s3*d
s0=4.0*b
v=s0*d+9.0*c*a
w=s0
off fort$
clear a$
matrix a(2,2)$
a(1,1):=x+y+z$
a(1,2):=x*y$
a(2,1):=(x+y)*x*y$
a(2,2):=(x+2*y+3)^3-x$
on acinfo$
optimize gstructr<<a;
aa:=(x+y)^2;b:=(x+y)*(y+z);c:=(x+2*y)*(y+z)*(z+x)^2>>
name v iname s;
a(1,1) := x + y + z
a(1,2) := x*y
v2 := x + y
a(2,1) := v2*x*y
3
a(2,2) := (x + 2*y + 3) - x
2
aa := v2
v5 := y + z
b := v2*v5
2
c := (x + 2*y)*(x + z) *v5
Number of operations in the input is:
Number of (+,-)-operations : 9
Number of (*)-operations : 8
Number of integer exponentiations : 3
Number of other operations : 0
s5 := x + z
a(1,1) := s5 + y
s8 := y*x
a(1,2) := s8
v2 := x + y
a(2,1) := s8*v2
s6 := x + 2*y
s4 := s6 + 3
a(2,2) := s4*s4*s4 - x
aa := v2*v2
v5 := y + z
b := v5*v2
c := s6*s5*s5*v5
Number of operations after optimization is:
Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 0
Number of other operations : 0
clear a$
off fort;
on priall$
optimize z:=:for j:=2:6 sum a^(1/j) iname s;
1/3 1/4 1/5 1/6
z := (((a + sqrt(a)) + a ) + a ) + a
Sumscheme :
|| EC|Far
------------
0|| 1| z
------------
Productscheme :
| 0| EC|Far
---------------
1| 20| 1| 0
2| 30| 1| 0
3| 15| 1| 0
4| 12| 1| 0
5| 10| 1| 0
---------------
0 : a
Number of operations in the input is:
Number of (+,-)-operations : 4
Number of (*)-operations : 0
Number of integer exponentiations : 0
Number of other operations : 5
1/60
a := a
s7 := a*a
s6 := s7*a
s4 := s7*s6
s2 := s4*s4
s1 := s7*s2
s0 := s6*s1
s3 := s4*s0
z := s2 + s1 + s0 + s3 + s3*s2
Number of operations after optimization is:
Number of (+,-)-operations : 4
Number of (*)-operations : 8
Number of integer exponentiations : 0
Number of other operations : 1
Sumscheme :
| 3 4 5 6| EC|Far
------------------------
0| 1 1 1 1| 1| z
------------------------
3 : s2
4 : s1
5 : s0
6 : s3
Productscheme :
| 9 10 12 13 14 15 16 22| EC|Far
------------------------------------
2| 1 1 | 1| 0
6| 1 1 | 1| s0
7| 1 1 | 1| s1
8| 2 | 1| s2
9| 1 1 | 1| s3
10| 1 1 | 1| s4
12| 1 1| 1| s6
13| 2| 1| s7
------------------------------------
9 : s7
10 : s6
12 : s4
13 : s3
14 : s2
15 : s1
16 : s0
22 : a
off acinfo,priall$
on optdecs$
optlang!*:='fortran$
optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
declare <<x(4),a(4,4),y(5):real;b(5):integer>>;
integer b(5),i,s1,s2
real a(4,4),s4,x(4),y(5)
s1=i+1.0
s2=i-1.0
s4=b(i)
x(s1,s2)=a(s1,s2)+s4
y(s2)=a(s2,s1)-s4
optlang!*:='c$
optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
declare <<x(4),a(4,4),y(5):real;b(5):integer>>;
int b[6],i,s1,s2;
float a[5][5],s4,x[5],y[6];
{
s1=i+1.0;
s2=i-1.0;
s4=b[i];
x[s1][s2]=a[s1][s2]+s4;
y[s2]=a[s2][s1]-s4;
}
optlang!*:= 'pascal$
optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
declare <<x(4),a(4,4),y(5):real;b(5):integer>>;
var
s2,s1,i: integer;
b: array[0..5] of integer;
s4: real;
y: array[0..5] of real;
x: array[0..4] of real;
a: array[0..4,0..4] of real;
begin
s1:=i+1.0;
s2:=i-1.0;
s4:=b[i];
x[s1,s2]:=a[s1,s2]+s4;
y[s2]:=a[s2,s1]-s4
end;
optlang!*:='ratfor$
optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
declare <<x(4),a(4,4),y(5):real;b(5):integer>>;
integer b(5),i,s1,s2
real a(4,4),s4,x(4),y(5)
{
s1=i+1.0
s2=i-1.0
s4=b(i)
x(s1,s2)=a(s1,s2)+s4
y(s2)=a(s2,s1)-s4
}
end;
(TIME: scope 1283 1333)
End of Lisp run after 1.31+0.91 seconds