Artifact 00261330fe409e87807dc5eb952624b8dd7c55ee8e1329263f877f170581f4fd:
- File
r35/xlog/scope.log
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11953) [annotate] [blame] [check-ins using] [more...]
Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994 Dump file created: Mon May 23 10:39:11 1994 REDUCE 3.5, 15-Oct-93 ... Memory allocation: 6023424 bytes +++ About to read file ndotest.red % Test SCOPE Package. % NOTE: The SCOPE, GHORNER, GSTRUCTR and GENTRAN packages must be loaded % to run these tests. on priall$ optimize z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2 iname s; Sumscheme : || EC|Far ------------ 0|| 1| z ------------ Productscheme : | 0 1 2| EC|Far --------------------- 1| 2 2| 1| 0 2| 6 2| 10| 0 3| 2 2| 1| 0 4| 4 1 1| 2| 0 5| 6 2 | 2| 0 6| 2 2 | 1| 0 --------------------- 0 : m 1 : b 2 : a Number of operations in the input is: Number of (+,-)-operations : 5 Number of (*)-operations : 10 Number of integer exponentiations : 11 Number of other operations : 0 s0 := b*a s4 := m*m s1 := s4*b*b s2 := s4*a*a s3 := s4*s4 z := s1 + s2 + s0*(2*s3 + s0) + s3*(2*s1 + 10*s2) Number of operations after optimization is: Number of (+,-)-operations : 5 Number of (*)-operations : 12 Number of integer exponentiations : 0 Number of other operations : 0 Sumscheme : | 0 3 4 5| EC|Far ------------------------ 0| 1 1| 1| z 15| 2 10| 1| 14 17| 2 1 | 1| 16 ------------------------ 0 : s3 3 : s0 4 : s1 5 : s2 Productscheme : | 8 9 10 11 17 18 19 20| EC|Far ------------------------------------ 7| 1 1| 1| s0 8| 1 2 | 1| s1 9| 1 2| 1| s2 10| 2 | 1| s3 11| 2 | 1| s4 14| 1 | 1| 0 16| 1 | 1| 0 ------------------------------------ 8 : s4 9 : s3 10 : s2 11 : s1 17 : s0 18 : m 19 : b 20 : a off priall$ on primat,acinfo$ optimize ghorner <<z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2>> vorder m iname s; 2 2 2 2 2 2 2 2 2 z := a *b + m *((a + b ) + m *(2*a*b + m *(10*a + 2*b ))) Sumscheme : || EC|Far ------------ 0|| 1| z 3|| 1| 2 7|| 1| 6 10|| 1| 9 ------------ Productscheme : | 0 1 2| EC|Far --------------------- 1| 2 2| 1| 0 2| 2 | 1| 0 4| 2| 1| 3 5| 2 | 1| 3 6| 2 | 1| 3 8| 1 1| 2| 7 9| 2 | 1| 7 11| 2| 10| 10 12| 2 | 2| 10 --------------------- 0 : m 1 : b 2 : a Number of operations in the input is: Number of (+,-)-operations : 5 Number of (*)-operations : 8 Number of integer exponentiations : 9 Number of other operations : 0 s0 := b*a s1 := b*b s2 := a*a s3 := m*m z := s0*s0 + s3*(s1 + s2 + s3*(2*s0 + s3*(2*s1 + 10*s2))) Number of operations after optimization is: Number of (+,-)-operations : 5 Number of (*)-operations : 11 Number of integer exponentiations : 0 Number of other operations : 0 Sumscheme : | 0 1 2| EC|Far --------------------- 0| | 1| z 3| 1 1| 1| 2 7| 2 | 1| 6 10| 2 10| 1| 9 --------------------- 0 : s0 1 : s1 2 : s2 Productscheme : | 3 4 5 9 10 11 12| EC|Far --------------------------------- 1| 2 | 1| 0 2| 1 | 1| 0 6| 1 | 1| 3 9| 1 | 1| 7 13| 1 1| 1| s0 14| 2 | 1| s1 15| 2| 1| s2 16| 2 | 1| s3 --------------------------------- 3 : s3 4 : s2 5 : s1 9 : s0 10 : m 11 : b 12 : a operator a$ k:=j:=1$ u:=c*x+d$ v:=sin(u)$ optimize {a(k,j):=v*(v^2*cos(u)^2+u), a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s; 2 2 a(k,j) := v*(v *cos(u) + u) a(1,1) := 2 3 cos(c*x + d) *sin(c*x + d) + sin(c*x + d)*c*x + sin(c*x + d)*d Sumscheme : | 7 8| EC|Far ------------------ 1| 1 | 1| 0 3| | 1| s2 5| 1| 1| s4 ------------------ 7 : u 8 : d Productscheme : | 0 1 2 3 4 5 6| EC|Far --------------------------------- 0| 1| 1| s0 2| 2 2| 1| 1 4| 3 2 | 1| 3 6| 1 1 | 1| 5 7| 1 1 1 | 1| 3 8| 1 1 | 1| 3 --------------------------------- 0 : d 1 : s5=sin(s4) 2 : s3=cos(s4) 3 : x 4 : c 5 : s1=cos(u) 6 : v Number of operations in the input is: Number of (+,-)-operations : 7 Number of (*)-operations : 10 Number of integer exponentiations : 4 Number of other operations : 5 s8 := cos(u)*v a(k,j) := v*(u + s8*s8) s4 := x*c + d s5 := sin(s4) s9 := s5*cos(s4) a(1,1) := s5*(s4 + s9*s9) Number of operations after optimization is: Number of (+,-)-operations : 3 Number of (*)-operations : 7 Number of integer exponentiations : 0 Number of other operations : 3 Sumscheme : | 2 3 12 13| EC|Far ------------------------ 1| 1 | 1| 0 3| | 1| s2 5| 1 1| 1| s4 11| 1 | 1| 10 ------------------------ 2 : s4 3 : s6 12 : u 13 : d Productscheme : | 0 1 4 5 6 7 8 9 10 11| EC|Far ------------------------------------------ 0| 1| 1| s0 2| 2 | 1| 1 4| 2 | 1| 11 9| 1 1 | 1| s6 10| 1 | 1| 3 13| 1 1| 1| s8 14| 1 1 | 1| s9 ------------------------------------------ 0 : s9 1 : s8 4 : s6 5 : d 6 : s5=sin(s4) 7 : s3=cos(s4) 8 : x 9 : c 10 : s1=cos(u) 11 : v off exp$ optimize {a(k,j):=v*(v^2*cos(u)^2+u), a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s; 2 2 a(k,j) := v*(v *cos(u) + u) 2 2 a(1,1) := (cos(c*x + d) *sin(c*x + d) + c*x + d)*sin(c*x + d) Sumscheme : | 6 7| EC|Far ------------------ 1| 1 | 1| 0 4| 1| 1| 3 6| 1| 1| s4 ------------------ 6 : u 7 : d Productscheme : | 0 1 2 3 4 5| EC|Far ------------------------------ 0| 1| 1| s0 2| 2 2| 1| 1 3| 1 | 1| s2 5| 2 2 | 1| 4 7| 1 1 | 1| 6 8| 1 1 | 1| 4 ------------------------------ 0 : s5=sin(s4) 1 : s3=cos(s4) 2 : x 3 : c 4 : s1=cos(u) 5 : v Number of operations in the input is: Number of (+,-)-operations : 6 Number of (*)-operations : 8 Number of integer exponentiations : 4 Number of other operations : 4 s8 := cos(u)*v a(k,j) := v*(u + s8*s8) s4 := x*c + d s5 := sin(s4) s9 := s5*cos(s4) a(1,1) := s5*(s4 + s9*s9) Number of operations after optimization is: Number of (+,-)-operations : 3 Number of (*)-operations : 7 Number of integer exponentiations : 0 Number of other operations : 3 Sumscheme : | 2 3 11 12| EC|Far ------------------------ 1| 1 | 1| 0 4| 1 | 1| 3 6| 1 1| 1| s4 ------------------------ 2 : s4 3 : s6 11 : u 12 : d Productscheme : | 0 1 4 5 6 7 8 9 10| EC|Far --------------------------------------- 0| 1| 1| s0 2| 2 | 1| 1 3| 1 | 1| s2 5| 2 | 1| 4 9| 1 1 | 1| s6 11| 1 1| 1| s8 12| 1 1 | 1| s9 --------------------------------------- 0 : s9 1 : s8 4 : s6 5 : s5=sin(s4) 6 : s3=cos(s4) 7 : x 8 : c 9 : s1=cos(u) 10 : v off primat,acinfo,period$ on fort$ optimize z:=(6*a+18*b+9*c+3*d+6*e+18*f+6*g+5*h+5*k+3)^13 iname s; s0=5.0*(h+k)+3.0*(3.0*c+d+1.0+6.0*(b+f)+2.0*(a+exp(1.0)+g)) s3=s0*s0*s0 s2=s3*s3 z=s0*s2*s2 optimize {x:=3*a*p,y:=3*a*q,z:=6*a*r+2*b*p,u:=6*a*d+2*b*q, v:=9*a*c+4*b*d,w:=4*b} iname s; s2=3.0*a x=s2*p y=s2*q s1=2.0*b s3=6.0*a z=s1*p+s3*r u=s1*q+s3*d s0=4.0*b v=s0*d+9.0*c*a w=s0 off fort$ clear a$ matrix a(2,2)$ a(1,1):=x+y+z$ a(1,2):=x*y$ a(2,1):=(x+y)*x*y$ a(2,2):=(x+2*y+3)^3-x$ on acinfo$ optimize gstructr<<a; aa:=(x+y)^2;b:=(x+y)*(y+z);c:=(x+2*y)*(y+z)*(z+x)^2>> name v iname s; a(1,1) := x + y + z a(1,2) := x*y v2 := x + y a(2,1) := v2*x*y 3 a(2,2) := (x + 2*y + 3) - x 2 aa := v2 v5 := y + z b := v2*v5 2 c := (x + 2*y)*(x + z) *v5 Number of operations in the input is: Number of (+,-)-operations : 9 Number of (*)-operations : 8 Number of integer exponentiations : 3 Number of other operations : 0 s5 := x + z a(1,1) := s5 + y s8 := y*x a(1,2) := s8 v2 := x + y a(2,1) := s8*v2 s6 := x + 2*y s4 := s6 + 3 a(2,2) := s4*s4*s4 - x aa := v2*v2 v5 := y + z b := v5*v2 c := s6*s5*s5*v5 Number of operations after optimization is: Number of (+,-)-operations : 7 Number of (*)-operations : 10 Number of integer exponentiations : 0 Number of other operations : 0 clear a$ off fort; on priall$ optimize z:=:for j:=2:6 sum a^(1/j) iname s; 1/3 1/4 1/5 1/6 z := (((a + sqrt(a)) + a ) + a ) + a Sumscheme : || EC|Far ------------ 0|| 1| z ------------ Productscheme : | 0| EC|Far --------------- 1| 20| 1| 0 2| 30| 1| 0 3| 15| 1| 0 4| 12| 1| 0 5| 10| 1| 0 --------------- 0 : a Number of operations in the input is: Number of (+,-)-operations : 4 Number of (*)-operations : 0 Number of integer exponentiations : 0 Number of other operations : 5 1/60 a := a s7 := a*a s6 := s7*a s4 := s7*s6 s2 := s4*s4 s1 := s7*s2 s0 := s6*s1 s3 := s4*s0 z := s2 + s1 + s0 + s3 + s3*s2 Number of operations after optimization is: Number of (+,-)-operations : 4 Number of (*)-operations : 8 Number of integer exponentiations : 0 Number of other operations : 1 Sumscheme : | 3 4 5 6| EC|Far ------------------------ 0| 1 1 1 1| 1| z ------------------------ 3 : s2 4 : s1 5 : s0 6 : s3 Productscheme : | 9 10 12 13 14 15 16 22| EC|Far ------------------------------------ 2| 1 1 | 1| 0 6| 1 1 | 1| s0 7| 1 1 | 1| s1 8| 2 | 1| s2 9| 1 1 | 1| s3 10| 1 1 | 1| s4 12| 1 1| 1| s6 13| 2| 1| s7 ------------------------------------ 9 : s7 10 : s6 12 : s4 13 : s3 14 : s2 15 : s1 16 : s0 22 : a off acinfo,priall$ on optdecs$ optlang!*:='fortran$ optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s declare <<x(4),a(4,4),y(5):real;b(5):integer>>; integer b(5),i,s1,s2 real a(4,4),s4,x(4),y(5) s1=i+1.0 s2=i-1.0 s4=b(i) x(s1,s2)=a(s1,s2)+s4 y(s2)=a(s2,s1)-s4 optlang!*:='c$ optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s declare <<x(4),a(4,4),y(5):real;b(5):integer>>; int b[6],i,s1,s2; float a[5][5],s4,x[5],y[6]; { s1=i+1.0; s2=i-1.0; s4=b[i]; x[s1][s2]=a[s1][s2]+s4; y[s2]=a[s2][s1]-s4; } optlang!*:= 'pascal$ optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s declare <<x(4),a(4,4),y(5):real;b(5):integer>>; var s2,s1,i: integer; b: array[0..5] of integer; s4: real; y: array[0..5] of real; x: array[0..4] of real; a: array[0..4,0..4] of real; begin s1:=i+1.0; s2:=i-1.0; s4:=b[i]; x[s1,s2]:=a[s1,s2]+s4; y[s2]:=a[s2,s1]-s4 end; optlang!*:='ratfor$ optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s declare <<x(4),a(4,4),y(5):real;b(5):integer>>; integer b(5),i,s1,s2 real a(4,4),s4,x(4),y(5) { s1=i+1.0 s2=i-1.0 s4=b(i) x(s1,s2)=a(s1,s2)+s4 y(s2)=a(s2,s1)-s4 } end; (TIME: scope 1283 1333) End of Lisp run after 1.31+0.91 seconds