module symdata1; % Data for symmetry package, part 1.
% Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>.
set!*elems!*group('z2,'(id sz2))$
set!*generators('z2,'(sz2))$
set!*relations('z2,'(((sz2 sz2) (id))))$
set!*grouptable('z2,'((grouptable id sz2) (id id sz2) (sz2 sz2 id)))$
set!*inverse('z2,'((id sz2) (id sz2)))$
set!*elemasgen('z2,'(((sz2) (sz2))))$
set!*group('z2,'((id) (sz2)))$
set!*representation('z2,'((id (((1 . 1)))) (sz2 (((1 . 1))))),'complex)$
set!*representation('z2,
'((id (((1 . 1)))) (sz2 (((-1 . 1))))),'complex)$
set!*representation('z2,
'(realtype (id (((1 . 1)))) (sz2 (((1 . 1))))),'real)$
set!*representation('z2,
'(realtype (id (((1 . 1)))) (sz2 (((-1 . 1))))),'real)$
set!*available 'z2$
set!*elems!*group('k4,'(id s1k4 s2k4 rk4))$
set!*generators('k4,'(s1k4 s2k4))$
set!*relations('k4,
'(((s1k4 s1k4) (id))
((s2k4 s2k4) (id))
((s1k4 s2k4) (s2k4 s1k4))))$
set!*grouptable('k4,
'((grouptable id s1k4 s2k4 rk4)
(id id s1k4 s2k4 rk4)
(s1k4 s1k4 id rk4 s2k4)
(s2k4 s2k4 rk4 id s1k4)
(rk4 rk4 s2k4 s1k4 id)))$
set!*inverse('k4,'((id s1k4 s2k4 rk4) (id s1k4 s2k4 rk4)))$
set!*elemasgen('k4,
'(((s1k4) (s1k4)) ((s2k4) (s2k4)) ((rk4) (s1k4 s2k4))))$
set!*group('k4,'((id) (s1k4) (s2k4) (rk4)))$
set!*representation('k4,
'((id (((1 . 1))))
(s1k4 (((1 . 1))))
(s2k4 (((1 . 1))))
(rk4 (((1 . 1))))),'complex)$
set!*representation('k4,
'((id (((1 . 1))))
(s1k4 (((-1 . 1))))
(s2k4 (((1 . 1))))
(rk4 (((-1 . 1))))),'complex)$
set!*representation('k4,
'((id (((1 . 1))))
(s1k4 (((1 . 1))))
(s2k4 (((-1 . 1))))
(rk4 (((-1 . 1))))),'complex)$
set!*representation('k4,
'((id (((1 . 1))))
(s1k4 (((-1 . 1))))
(s2k4 (((-1 . 1))))
(rk4 (((1 . 1))))),'complex)$
set!*representation('k4,
'(realtype
(id (((1 . 1))))
(s1k4 (((1 . 1))))
(s2k4 (((1 . 1))))
(rk4 (((1 . 1))))),'real)$
set!*representation('k4,
'(realtype
(id (((1 . 1))))
(s1k4 (((-1 . 1))))
(s2k4 (((1 . 1))))
(rk4 (((-1 . 1))))),'real)$
set!*representation('k4,
'(realtype
(id (((1 . 1))))
(s1k4 (((1 . 1))))
(s2k4 (((-1 . 1))))
(rk4 (((-1 . 1))))),'real)$
set!*representation('k4,
'(realtype
(id (((1 . 1))))
(s1k4 (((-1 . 1))))
(s2k4 (((-1 . 1))))
(rk4 (((1 . 1))))),'real)$
set!*available 'k4$
set!*elems!*group('d3,'(id rd3 rot2d3 sd3 srd3 sr2d3))$
set!*generators('d3,'(rd3 sd3))$
set!*relations('d3,
'(((sd3 sd3) (id))
((rd3 rd3 rd3) (id))
((sd3 rd3 sd3) (rd3 rd3))))$
set!*grouptable('d3,
'((grouptable id rd3 rot2d3 sd3 srd3 sr2d3)
(id id rd3 rot2d3 sd3 srd3 sr2d3)
(rd3 rd3 rot2d3 id sr2d3 sd3 srd3)
(rot2d3 rot2d3 id rd3 srd3 sr2d3 sd3)
(sd3 sd3 srd3 sr2d3 id rd3 rot2d3)
(srd3 srd3 sr2d3 sd3 rot2d3 id rd3)
(sr2d3 sr2d3 sd3 srd3 rd3 rot2d3 id)))$
set!*inverse('d3,
'((id rd3 rot2d3 sd3 srd3 sr2d3) (id rot2d3 rd3 sd3 srd3 sr2d3)))$
set!*elemasgen('d3,
'(((rd3) (rd3))
((rot2d3) (rd3 rd3))
((sd3) (sd3))
((srd3) (sd3 rd3))
((sr2d3) (sd3 rd3 rd3))))$
set!*group('d3,'((id) (rd3 rot2d3) (sr2d3 sd3 srd3)))$
set!*representation('d3,
'((id (((1 . 1))))
(rd3 (((1 . 1))))
(rot2d3 (((1 . 1))))
(sd3 (((1 . 1))))
(srd3 (((1 . 1))))
(sr2d3 (((1 . 1))))),'complex)$
set!*representation('d3,
'((id (((1 . 1))))
(rd3 (((1 . 1))))
(rot2d3 (((1 . 1))))
(sd3 (((-1 . 1))))
(srd3 (((-1 . 1))))
(sr2d3 (((-1 . 1))))),'complex)$
set!*representation('d3,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(rot2d3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr2d3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(1 . 2))))),'complex)$
set!*representation('d3,
'(realtype
(id (((1 . 1))))
(rd3 (((1 . 1))))
(rot2d3 (((1 . 1))))
(sd3 (((1 . 1))))
(srd3 (((1 . 1))))
(sr2d3 (((1 . 1))))),'real)$
set!*representation('d3,
'(realtype
(id (((1 . 1))))
(rd3 (((1 . 1))))
(rot2d3 (((1 . 1))))
(sd3 (((-1 . 1))))
(srd3 (((-1 . 1))))
(sr2d3 (((-1 . 1))))),'real)$
set!*representation('d3,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(rot2d3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr2d3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(1 . 2))))),'real)$
set!*available 'd3$
set!*elems!*group('d4,'(id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4))$
set!*generators('d4,'(rd4 sd4))$
set!*relations('d4,
'(((sd4 sd4) (id))
((rd4 rd4 rd4 rd4) (id))
((sd4 rd4 sd4) (rd4 rd4 rd4))))$
set!*grouptable('d4,
'((grouptable id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
(id id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
(rd4 rd4 rot2d4 rot3d4 id sr3d4 sd4 srd4 sr2d4)
(rot2d4 rot2d4 rot3d4 id rd4 sr2d4 sr3d4 sd4 srd4)
(rot3d4 rot3d4 id rd4 rot2d4 srd4 sr2d4 sr3d4 sd4)
(sd4 sd4 srd4 sr2d4 sr3d4 id rd4 rot2d4 rot3d4)
(srd4 srd4 sr2d4 sr3d4 sd4 rot3d4 id rd4 rot2d4)
(sr2d4 sr2d4 sr3d4 sd4 srd4 rot2d4 rot3d4 id rd4)
(sr3d4 sr3d4 sd4 srd4 sr2d4 rd4 rot2d4 rot3d4 id)))$
set!*inverse('d4,
'((id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4)
(id rot3d4 rot2d4 rd4 sd4 srd4 sr2d4 sr3d4)))$
set!*elemasgen('d4,
'(((rd4) (rd4))
((rot2d4) (rd4 rd4))
((rot3d4) (rd4 rd4 rd4))
((sd4) (sd4))
((srd4) (sd4 rd4))
((sr2d4) (sd4 rd4 rd4))
((sr3d4) (sd4 rd4 rd4 rd4))))$
set!*group('d4,'((id) (rd4 rot3d4) (rot2d4) (sd4 sr2d4) (sr3d4 srd4)))$
set!*representation('d4,
'((id (((1 . 1))))
(rd4 (((1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((1 . 1))))
(sd4 (((1 . 1))))
(srd4 (((1 . 1))))
(sr2d4 (((1 . 1))))
(sr3d4 (((1 . 1))))),'complex)$
set!*representation('d4,
'((id (((1 . 1))))
(rd4 (((1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((1 . 1))))
(sd4 (((-1 . 1))))
(srd4 (((-1 . 1))))
(sr2d4 (((-1 . 1))))
(sr3d4 (((-1 . 1))))),'complex)$
set!*representation('d4,
'((id (((1 . 1))))
(rd4 (((-1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((-1 . 1))))
(sd4 (((1 . 1))))
(srd4 (((-1 . 1))))
(sr2d4 (((1 . 1))))
(sr3d4 (((-1 . 1))))),'complex)$
set!*representation('d4,
'((id (((1 . 1))))
(rd4 (((-1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((-1 . 1))))
(sd4 (((-1 . 1))))
(srd4 (((1 . 1))))
(sr2d4 (((-1 . 1))))
(sr3d4 (((1 . 1))))),'complex)$
set!*representation('d4,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
(rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
(sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
(sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
'complex)$
set!*representation('d4,
'(realtype
(id (((1 . 1))))
(rd4 (((1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((1 . 1))))
(sd4 (((1 . 1))))
(srd4 (((1 . 1))))
(sr2d4 (((1 . 1))))
(sr3d4 (((1 . 1))))),'real)$
set!*representation('d4,
'(realtype
(id (((1 . 1))))
(rd4 (((1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((1 . 1))))
(sd4 (((-1 . 1))))
(srd4 (((-1 . 1))))
(sr2d4 (((-1 . 1))))
(sr3d4 (((-1 . 1))))),'real)$
set!*representation('d4,
'(realtype
(id (((1 . 1))))
(rd4 (((-1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((-1 . 1))))
(sd4 (((1 . 1))))
(srd4 (((-1 . 1))))
(sr2d4 (((1 . 1))))
(sr3d4 (((-1 . 1))))),'real)$
set!*representation('d4,
'(realtype
(id (((1 . 1))))
(rd4 (((-1 . 1))))
(rot2d4 (((1 . 1))))
(rot3d4 (((-1 . 1))))
(sd4 (((-1 . 1))))
(srd4 (((1 . 1))))
(sr2d4 (((-1 . 1))))
(sr3d4 (((1 . 1))))),'real)$
set!*representation('d4,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))
(rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
(sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1))))
(sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))),
'real)$
set!*available 'd4$
set!*elems!*group('d5,
'(id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5))$
set!*generators('d5,'(rd5 sd5))$
set!*relations('d5,
'(((sd5 sd5) (id))
((rd5 rd5 rd5 rd5 rd5) (id))
((sd5 rd5 sd5) (rd5 rd5 rd5 rd5))))$
set!*grouptable('d5,
'((grouptable id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
(id id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
(rd5 rd5 r2d5 r3d5 r4d5 id sr4d5 sd5 srd5 sr2d5 sr3d5)
(r2d5 r2d5 r3d5 r4d5 id rd5 sr3d5 sr4d5 sd5 srd5 sr2d5)
(r3d5 r3d5 r4d5 id rd5 r2d5 sr2d5 sr3d5 sr4d5 sd5 srd5)
(r4d5 r4d5 id rd5 r2d5 r3d5 srd5 sr2d5 sr3d5 sr4d5 sd5)
(sd5 sd5 srd5 sr2d5 sr3d5 sr4d5 id rd5 r2d5 r3d5 r4d5)
(srd5 srd5 sr2d5 sr3d5 sr4d5 sd5 r4d5 id rd5 r2d5 r3d5)
(sr2d5 sr2d5 sr3d5 sr4d5 sd5 srd5 r3d5 r4d5 id rd5 r2d5)
(sr3d5 sr3d5 sr4d5 sd5 srd5 sr2d5 r2d5 r3d5 r4d5 id rd5)
(sr4d5 sr4d5 sd5 srd5 sr2d5 sr3d5 rd5 r2d5 r3d5 r4d5 id)))$
set!*inverse('d5,
'((id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5)
(id r4d5 r3d5 r2d5 rd5 sd5 srd5 sr2d5 sr3d5 sr4d5)))$
set!*elemasgen('d5,
'(((rd5) (rd5))
((r2d5) (rd5 rd5))
((r3d5) (rd5 rd5 rd5))
((r4d5) (rd5 rd5 rd5 rd5))
((sd5) (sd5))
((srd5) (sd5 rd5))
((sr2d5) (sd5 rd5 rd5))
((sr3d5) (sd5 rd5 rd5 rd5))
((sr4d5) (sd5 rd5 rd5 rd5 rd5))))$
set!*group('d5,
'((id) (rd5 r4d5) (r2d5 r3d5) (srd5 sr2d5 sd5 sr4d5 sr3d5)))$
set!*representation('d5,
'((id (((1 . 1))))
(rd5 (((1 . 1))))
(r2d5 (((1 . 1))))
(r3d5 (((1 . 1))))
(r4d5 (((1 . 1))))
(sd5 (((1 . 1))))
(srd5 (((1 . 1))))
(sr2d5 (((1 . 1))))
(sr3d5 (((1 . 1))))
(sr4d5 (((1 . 1))))),'complex)$
set!*representation('d5,
'((id (((1 . 1))))
(rd5 (((1 . 1))))
(r2d5 (((1 . 1))))
(r3d5 (((1 . 1))))
(r4d5 (((1 . 1))))
(sd5 (((-1 . 1))))
(srd5 (((-1 . 1))))
(sr2d5 (((-1 . 1))))
(sr3d5 (((-1 . 1))))
(sr4d5 (((-1 . 1))))),'complex)$
set!*representation('d5,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd5
(((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
(r2d5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1))))
(r3d5
(((((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1))))
(r4d5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . -4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1))))
(sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd5
(((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
(((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
(sr2d5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -1))
. 1))))
(sr3d5
(((((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . 3))
(((cos (quotient (times 2 pi) 5)) . 3) . -1))
. 1))))
(sr4d5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 4) . -1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . 6))
(((cos (quotient (times 2 pi) 5)) . 4) . -1))
. 1))))),'complex)$
set!*representation('d5,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd5
(((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
(r2d5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1))))
(r3d5
(((((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1))))
(r4d5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . -4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1))))
(sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd5
(((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
(((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
(sr2d5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -1))
. 1))))
(sr3d5
(((((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . 3))
(((cos (quotient (times 4 pi) 5)) . 3) . -1))
. 1))))
(sr4d5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 4) . -1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . 6))
(((cos (quotient (times 4 pi) 5)) . 4) . -1))
. 1))))),'complex)$
set!*representation('d5,
'(realtype
(id (((1 . 1))))
(rd5 (((1 . 1))))
(r2d5 (((1 . 1))))
(r3d5 (((1 . 1))))
(r4d5 (((1 . 1))))
(sd5 (((1 . 1))))
(srd5 (((1 . 1))))
(sr2d5 (((1 . 1))))
(sr3d5 (((1 . 1))))
(sr4d5 (((1 . 1))))),'real)$
set!*representation('d5,
'(realtype
(id (((1 . 1))))
(rd5 (((1 . 1))))
(r2d5 (((1 . 1))))
(r3d5 (((1 . 1))))
(r4d5 (((1 . 1))))
(sd5 (((-1 . 1))))
(srd5 (((-1 . 1))))
(sr2d5 (((-1 . 1))))
(sr3d5 (((-1 . 1))))
(sr4d5 (((-1 . 1))))),'real)$
set!*representation('d5,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd5
(((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
(r2d5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1))))
(r3d5
(((((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1))))
(r4d5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . -4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1))))
(sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd5
(((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)
(((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1))))
(sr2d5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -1))
. 1))))
(sr3d5
(((((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . 3))
(((cos (quotient (times 2 pi) 5)) . 3) . -1))
. 1))))
(sr4d5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 4) . -1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . 6))
(((cos (quotient (times 2 pi) 5)) . 4) . -1))
. 1))))),'real)$
set!*representation('d5,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd5
(((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
(r2d5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1))))
(r3d5
(((((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1))))
(r4d5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . -4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1))))
(sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd5
(((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)
(((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1))))
(sr2d5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -1))
. 1))))
(sr3d5
(((((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . 3))
(((cos (quotient (times 4 pi) 5)) . 3) . -1))
. 1))))
(sr4d5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 4) . -1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . 6))
(((cos (quotient (times 4 pi) 5)) . 4) . -1))
. 1))))),'real)$
set!*available 'd5$
set!*elems!*group('d6,
'(id
rd6
r2d6
r3d6
r4d6
r5d6
sd6
srd6
sr2d6
sr3d6
sr4d6
sr5d6))$
set!*generators('d6,'(rd6 sd6))$
set!*relations('d6,
'(((sd6 sd6) (id))
((rd6 rd6 rd6 rd6 rd6 rd6) (id))
((sd6 rd6 sd6) (rd6 rd6 rd6 rd6 rd6))))$
set!*grouptable('d6,
'((grouptable
id
rd6
r2d6
r3d6
r4d6
r5d6
sd6
srd6
sr2d6
sr3d6
sr4d6
sr5d6)
(id
id
rd6
r2d6
r3d6
r4d6
r5d6
sd6
srd6
sr2d6
sr3d6
sr4d6
sr5d6)
(rd6
rd6
r2d6
r3d6
r4d6
r5d6
id
sr5d6
sd6
srd6
sr2d6
sr3d6
sr4d6)
(r2d6
r2d6
r3d6
r4d6
r5d6
id
rd6
sr4d6
sr5d6
sd6
srd6
sr2d6
sr3d6)
(r3d6
r3d6
r4d6
r5d6
id
rd6
r2d6
sr3d6
sr4d6
sr5d6
sd6
srd6
sr2d6)
(r4d6
r4d6
r5d6
id
rd6
r2d6
r3d6
sr2d6
sr3d6
sr4d6
sr5d6
sd6
srd6)
(r5d6
r5d6
id
rd6
r2d6
r3d6
r4d6
srd6
sr2d6
sr3d6
sr4d6
sr5d6
sd6)
(sd6
sd6
srd6
sr2d6
sr3d6
sr4d6
sr5d6
id
rd6
r2d6
r3d6
r4d6
r5d6)
(srd6
srd6
sr2d6
sr3d6
sr4d6
sr5d6
sd6
r5d6
id
rd6
r2d6
r3d6
r4d6)
(sr2d6
sr2d6
sr3d6
sr4d6
sr5d6
sd6
srd6
r4d6
r5d6
id
rd6
r2d6
r3d6)
(sr3d6
sr3d6
sr4d6
sr5d6
sd6
srd6
sr2d6
r3d6
r4d6
r5d6
id
rd6
r2d6)
(sr4d6
sr4d6
sr5d6
sd6
srd6
sr2d6
sr3d6
r2d6
r3d6
r4d6
r5d6
id
rd6)
(sr5d6
sr5d6
sd6
srd6
sr2d6
sr3d6
sr4d6
rd6
r2d6
r3d6
r4d6
r5d6
id)))$
set!*inverse('d6,
'((id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)
(id r5d6 r4d6 r3d6 r2d6 rd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)))$
set!*elemasgen('d6,
'(((rd6) (rd6))
((r2d6) (rd6 rd6))
((r3d6) (rd6 rd6 rd6))
((r4d6) (rd6 rd6 rd6 rd6))
((r5d6) (rd6 rd6 rd6 rd6 rd6))
((sd6) (sd6))
((srd6) (sd6 rd6))
((sr2d6) (sd6 rd6 rd6))
((sr3d6) (sd6 rd6 rd6 rd6))
((sr4d6) (sd6 rd6 rd6 rd6 rd6))
((sr5d6) (sd6 rd6 rd6 rd6 rd6 rd6))))$
set!*group('d6,
'((id)
(rd6 r5d6)
(r2d6 r4d6)
(r3d6)
(sr2d6 sd6 sr4d6)
(srd6 sr5d6 sr3d6)))$
set!*representation('d6,
'((id (((1 . 1))))
(rd6 (((1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((1 . 1))))
(sd6 (((1 . 1))))
(srd6 (((1 . 1))))
(sr2d6 (((1 . 1))))
(sr3d6 (((1 . 1))))
(sr4d6 (((1 . 1))))
(sr5d6 (((1 . 1))))),'complex)$
set!*representation('d6,
'((id (((1 . 1))))
(rd6 (((1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((1 . 1))))
(sd6 (((-1 . 1))))
(srd6 (((-1 . 1))))
(sr2d6 (((-1 . 1))))
(sr3d6 (((-1 . 1))))
(sr4d6 (((-1 . 1))))
(sr5d6 (((-1 . 1))))),'complex)$
set!*representation('d6,
'((id (((1 . 1))))
(rd6 (((-1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((-1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((-1 . 1))))
(sd6 (((1 . 1))))
(srd6 (((-1 . 1))))
(sr2d6 (((1 . 1))))
(sr3d6 (((-1 . 1))))
(sr4d6 (((1 . 1))))
(sr5d6 (((-1 . 1))))),'complex)$
set!*representation('d6,
'((id (((1 . 1))))
(rd6 (((-1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((-1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((-1 . 1))))
(sd6 (((-1 . 1))))
(srd6 (((1 . 1))))
(sr2d6 (((-1 . 1))))
(sr3d6 (((1 . 1))))
(sr4d6 (((-1 . 1))))
(sr5d6 (((1 . 1))))),'complex)$
set!*representation('d6,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(r2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(r4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(r5d6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sr2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(sr4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(sr5d6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))),'complex)$
set!*representation('d6,
'((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(r4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r5d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(sr4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr5d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(1 . 2))))),'complex)$
set!*representation('d6,
'(realtype
(id (((1 . 1))))
(rd6 (((1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((1 . 1))))
(sd6 (((1 . 1))))
(srd6 (((1 . 1))))
(sr2d6 (((1 . 1))))
(sr3d6 (((1 . 1))))
(sr4d6 (((1 . 1))))
(sr5d6 (((1 . 1))))),'real)$
set!*representation('d6,
'(realtype
(id (((1 . 1))))
(rd6 (((1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((1 . 1))))
(sd6 (((-1 . 1))))
(srd6 (((-1 . 1))))
(sr2d6 (((-1 . 1))))
(sr3d6 (((-1 . 1))))
(sr4d6 (((-1 . 1))))
(sr5d6 (((-1 . 1))))),'real)$
set!*representation('d6,
'(realtype
(id (((1 . 1))))
(rd6 (((-1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((-1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((-1 . 1))))
(sd6 (((1 . 1))))
(srd6 (((-1 . 1))))
(sr2d6 (((1 . 1))))
(sr3d6 (((-1 . 1))))
(sr4d6 (((1 . 1))))
(sr5d6 (((-1 . 1))))),'real)$
set!*representation('d6,
'(realtype
(id (((1 . 1))))
(rd6 (((-1 . 1))))
(r2d6 (((1 . 1))))
(r3d6 (((-1 . 1))))
(r4d6 (((1 . 1))))
(r5d6 (((-1 . 1))))
(sd6 (((-1 . 1))))
(srd6 (((1 . 1))))
(sr2d6 (((-1 . 1))))
(sr3d6 (((1 . 1))))
(sr4d6 (((-1 . 1))))
(sr5d6 (((1 . 1))))),'real)$
set!*representation('d6,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(r2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(r4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(r5d6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sr2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(sr4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(sr5d6
(((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))),'real)$
set!*representation('d6,
'(realtype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rd6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(r4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))
(r5d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(srd6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr2d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))
(sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(sr4d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2))))
(sr5d6
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(1 . 2))))),'real)$
set!*available 'd6$
set!*elems!*group('c3,'(id rc3 r2c3))$
set!*generators('c3,'(rc3))$
set!*relations('c3,'(((rc3 rc3 rc3) (id))))$
set!*grouptable('c3,
'((grouptable id rc3 r2c3)
(id id rc3 r2c3)
(rc3 rc3 r2c3 id)
(r2c3 r2c3 id rc3)))$
set!*inverse('c3,'((id rc3 r2c3) (id r2c3 rc3)))$
set!*elemasgen('c3,'(((rc3) (rc3)) ((r2c3) (rc3 rc3))))$
set!*group('c3,'((id) (rc3) (r2c3)))$
set!*representation('c3,
'((id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))),
'complex)$
set!*representation('c3,
'((id (((1 . 1))))
(rc3
(((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
. 2))))
(r2c3
(((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
. 2))))),'complex)$
set!*representation('c3,
'((id (((1 . 1))))
(rc3
(((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1)
. 2))))
(r2c3
(((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1)
. 2))))),'complex)$
set!*representation('c3,
'(realtype
(id (((1 . 1))))
(rc3 (((1 . 1))))
(r2c3 (((1 . 1))))),'real)$
set!*representation('c3,
'(complextype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rc3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2))))
(r2c3
(((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2))
((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)
(-1 . 2))))),'real)$
set!*available 'c3$
set!*elems!*group('c4,'(id rc4 r2c4 r3c4))$
set!*generators('c4,'(rc4))$
set!*relations('c4,'(((rc4 rc4 rc4 rc4) (id))))$
set!*grouptable('c4,
'((grouptable id rc4 r2c4 r3c4)
(id id rc4 r2c4 r3c4)
(rc4 rc4 r2c4 r3c4 id)
(r2c4 r2c4 r3c4 id rc4)
(r3c4 r3c4 id rc4 r2c4)))$
set!*inverse('c4,'((id rc4 r2c4 r3c4) (id r3c4 r2c4 rc4)))$
set!*elemasgen('c4,
'(((rc4) (rc4)) ((r2c4) (rc4 rc4)) ((r3c4) (rc4 rc4 rc4))))$
set!*group('c4,'((id) (rc4) (r2c4) (r3c4)))$
set!*representation('c4,
'((id (((1 . 1))))
(rc4 (((1 . 1))))
(r2c4 (((1 . 1))))
(r3c4 (((1 . 1))))),'complex)$
set!*representation('c4,
'((id (((1 . 1))))
(rc4 (((-1 . 1))))
(r2c4 (((1 . 1))))
(r3c4 (((-1 . 1))))),'complex)$
set!*representation('c4,
'((id (((1 . 1))))
(rc4 ((((((i . 1) . 1)) . 1))))
(r2c4 (((-1 . 1))))
(r3c4 ((((((i . 1) . -1)) . 1))))),'complex)$
set!*representation('c4,
'((id (((1 . 1))))
(rc4 ((((((i . 1) . -1)) . 1))))
(r2c4 (((-1 . 1))))
(r3c4 ((((((i . 1) . 1)) . 1))))),'complex)$
set!*representation('c4,
'(realtype
(id (((1 . 1))))
(rc4 (((1 . 1))))
(r2c4 (((1 . 1))))
(r3c4 (((1 . 1))))),'real)$
set!*representation('c4,
'(realtype
(id (((1 . 1))))
(rc4 (((-1 . 1))))
(r2c4 (((1 . 1))))
(r3c4 (((-1 . 1))))),'real)$
set!*representation('c4,
'(complextype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rc4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1))))
(r2c4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1))))
(r3c4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))),'real)$
set!*available 'c4$
set!*elems!*group('c5,'(id rc5 r2c5 r3c5 r4c5))$
set!*generators('c5,'(rc5))$
set!*relations('c5,'(((rc5 rc5 rc5 rc5 rc5) (id))))$
set!*grouptable('c5,
'((grouptable id rc5 r2c5 r3c5 r4c5)
(id id rc5 r2c5 r3c5 r4c5)
(rc5 rc5 r2c5 r3c5 r4c5 id)
(r2c5 r2c5 r3c5 r4c5 id rc5)
(r3c5 r3c5 r4c5 id rc5 r2c5)
(r4c5 r4c5 id rc5 r2c5 r3c5)))$
set!*inverse('c5,'((id rc5 r2c5 r3c5 r4c5) (id r4c5 r3c5 r2c5 rc5)))$
set!*elemasgen('c5,
'(((rc5) (rc5))
((r2c5) (rc5 rc5))
((r3c5) (rc5 rc5 rc5))
((r4c5) (rc5 rc5 rc5 rc5))))$
set!*group('c5,'((id) (rc5) (r2c5) (r3c5) (r4c5)))$
set!*representation('c5,
'((id (((1 . 1))))
(rc5 (((1 . 1))))
(r2c5 (((1 . 1))))
(r3c5 (((1 . 1))))
(r4c5 (((1 . 1))))),'complex)$
set!*representation('c5,
'((id (((1 . 1))))
(rc5
(((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . 1))
(((cos (quotient (times 2 pi) 5)) . 1) . 1))
. 1))))
(r2c5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1)
((i . 1) . 2)))
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 2 pi) 5)) . 3)
((i . 1) . -1))
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2)
((i . 1) . 3)))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1)
((i . 1) . -4)))
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3)
((i . 1) . 4)))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1))))),'complex)$
set!*representation('c5,
'((id (((1 . 1))))
(rc5
(((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . 1))
(((cos (quotient (times 4 pi) 5)) . 1) . 1))
. 1))))
(r2c5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1)
((i . 1) . 2)))
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 4 pi) 5)) . 3)
((i . 1) . -1))
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2)
((i . 1) . 3)))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1)
((i . 1) . -4)))
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3)
((i . 1) . 4)))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1))))),'complex)$
set!*representation('c5,
'((id (((1 . 1))))
(rc5
(((((((sin (quotient (times 4 pi) 5)) . 1)
((i . 1) . -1))
(((cos (quotient (times 4 pi) 5)) . 1) . 1))
. 1))))
(r2c5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1)
((i . 1) . -2)))
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . 1))
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2)
((i . 1) . -3)))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1)
((i . 1) . 4)))
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3)
((i . 1) . -4)))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1))))),'complex)$
set!*representation('c5,
'((id (((1 . 1))))
(rc5
(((((((sin (quotient (times 2 pi) 5)) . 1)
((i . 1) . -1))
(((cos (quotient (times 2 pi) 5)) . 1) . 1))
. 1))))
(r2c5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1)
((i . 1) . -2)))
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . 1))
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2)
((i . 1) . -3)))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1)
((i . 1) . 4)))
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3)
((i . 1) . -4)))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1))))),'complex)$
set!*representation('c5,
'(realtype
(id (((1 . 1))))
(rc5 (((1 . 1))))
(r2c5 (((1 . 1))))
(r3c5 (((1 . 1))))
(r4c5 (((1 . 1))))),'real)$
set!*representation('c5,
'(complextype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rc5
(((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1))))
(r2c5
(((((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2) . -1)
(((cos (quotient (times 2 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3) . 1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3) . -1)
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 1) . -3))
(((cos (quotient (times 2 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . 4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 2 pi) 5)) . 3)
(((cos (quotient (times 2 pi) 5)) . 1) . -4))
(((sin (quotient (times 2 pi) 5)) . 1)
(((cos (quotient (times 2 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 2 pi) 5)) . 4) . 1)
(((sin (quotient (times 2 pi) 5)) . 2)
(((cos (quotient (times 2 pi) 5)) . 2) . -6))
(((cos (quotient (times 2 pi) 5)) . 4) . 1))
. 1))))),'real)$
set!*representation('c5,
'(complextype
(id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1))))
(rc5
(((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1))
((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1)
(((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1))))
(r2c5
(((((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . -2)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 1) . 2)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2) . -1)
(((cos (quotient (times 4 pi) 5)) . 2) . 1))
. 1))))
(r3c5
(((((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3) . 1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . -3)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3) . -1)
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 2) . 3)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 1) . -3))
(((cos (quotient (times 4 pi) 5)) . 3) . 1))
. 1))))
(r4c5
(((((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . 4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . -4)))
. 1))
((((((sin (quotient (times 4 pi) 5)) . 3)
(((cos (quotient (times 4 pi) 5)) . 1) . -4))
(((sin (quotient (times 4 pi) 5)) . 1)
(((cos (quotient (times 4 pi) 5)) . 3) . 4)))
. 1)
(((((sin (quotient (times 4 pi) 5)) . 4) . 1)
(((sin (quotient (times 4 pi) 5)) . 2)
(((cos (quotient (times 4 pi) 5)) . 2) . -6))
(((cos (quotient (times 4 pi) 5)) . 4) . 1))
. 1))))),'real)$
set!*available 'c5$
endmodule;
end;