Artifact c0d631e090b51367f3e1dc95bc0e80fca9262a6f631650d0d56d1265afd9058d:
- Executable file
r37/packages/symmetry/symdata1.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 82199) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/symmetry/symdata1.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 82199) [annotate] [blame] [check-ins using]
module symdata1; % Data for symmetry package, part 1. % Author: Karin Gatermann <Gatermann@sc.ZIB-Berlin.de>. set!*elems!*group('z2,'(id sz2))$ set!*generators('z2,'(sz2))$ set!*relations('z2,'(((sz2 sz2) (id))))$ set!*grouptable('z2,'((grouptable id sz2) (id id sz2) (sz2 sz2 id)))$ set!*inverse('z2,'((id sz2) (id sz2)))$ set!*elemasgen('z2,'(((sz2) (sz2))))$ set!*group('z2,'((id) (sz2)))$ set!*representation('z2,'((id (((1 . 1)))) (sz2 (((1 . 1))))),'complex)$ set!*representation('z2, '((id (((1 . 1)))) (sz2 (((-1 . 1))))),'complex)$ set!*representation('z2, '(realtype (id (((1 . 1)))) (sz2 (((1 . 1))))),'real)$ set!*representation('z2, '(realtype (id (((1 . 1)))) (sz2 (((-1 . 1))))),'real)$ set!*available 'z2$ set!*elems!*group('k4,'(id s1k4 s2k4 rk4))$ set!*generators('k4,'(s1k4 s2k4))$ set!*relations('k4, '(((s1k4 s1k4) (id)) ((s2k4 s2k4) (id)) ((s1k4 s2k4) (s2k4 s1k4))))$ set!*grouptable('k4, '((grouptable id s1k4 s2k4 rk4) (id id s1k4 s2k4 rk4) (s1k4 s1k4 id rk4 s2k4) (s2k4 s2k4 rk4 id s1k4) (rk4 rk4 s2k4 s1k4 id)))$ set!*inverse('k4,'((id s1k4 s2k4 rk4) (id s1k4 s2k4 rk4)))$ set!*elemasgen('k4, '(((s1k4) (s1k4)) ((s2k4) (s2k4)) ((rk4) (s1k4 s2k4))))$ set!*group('k4,'((id) (s1k4) (s2k4) (rk4)))$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((-1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((-1 . 1))))),'complex)$ set!*representation('k4, '((id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((1 . 1))))),'complex)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((1 . 1)))) (rk4 (((-1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((-1 . 1))))),'real)$ set!*representation('k4, '(realtype (id (((1 . 1)))) (s1k4 (((-1 . 1)))) (s2k4 (((-1 . 1)))) (rk4 (((1 . 1))))),'real)$ set!*available 'k4$ set!*elems!*group('d3,'(id rd3 rot2d3 sd3 srd3 sr2d3))$ set!*generators('d3,'(rd3 sd3))$ set!*relations('d3, '(((sd3 sd3) (id)) ((rd3 rd3 rd3) (id)) ((sd3 rd3 sd3) (rd3 rd3))))$ set!*grouptable('d3, '((grouptable id rd3 rot2d3 sd3 srd3 sr2d3) (id id rd3 rot2d3 sd3 srd3 sr2d3) (rd3 rd3 rot2d3 id sr2d3 sd3 srd3) (rot2d3 rot2d3 id rd3 srd3 sr2d3 sd3) (sd3 sd3 srd3 sr2d3 id rd3 rot2d3) (srd3 srd3 sr2d3 sd3 rot2d3 id rd3) (sr2d3 sr2d3 sd3 srd3 rd3 rot2d3 id)))$ set!*inverse('d3, '((id rd3 rot2d3 sd3 srd3 sr2d3) (id rot2d3 rd3 sd3 srd3 sr2d3)))$ set!*elemasgen('d3, '(((rd3) (rd3)) ((rot2d3) (rd3 rd3)) ((sd3) (sd3)) ((srd3) (sd3 rd3)) ((sr2d3) (sd3 rd3 rd3))))$ set!*group('d3,'((id) (rd3 rot2d3) (sr2d3 sd3 srd3)))$ set!*representation('d3, '((id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((1 . 1)))) (srd3 (((1 . 1)))) (sr2d3 (((1 . 1))))),'complex)$ set!*representation('d3, '((id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((-1 . 1)))) (srd3 (((-1 . 1)))) (sr2d3 (((-1 . 1))))),'complex)$ set!*representation('d3, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (rot2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'complex)$ set!*representation('d3, '(realtype (id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((1 . 1)))) (srd3 (((1 . 1)))) (sr2d3 (((1 . 1))))),'real)$ set!*representation('d3, '(realtype (id (((1 . 1)))) (rd3 (((1 . 1)))) (rot2d3 (((1 . 1)))) (sd3 (((-1 . 1)))) (srd3 (((-1 . 1)))) (sr2d3 (((-1 . 1))))),'real)$ set!*representation('d3, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (rot2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd3 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'real)$ set!*available 'd3$ set!*elems!*group('d4,'(id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4))$ set!*generators('d4,'(rd4 sd4))$ set!*relations('d4, '(((sd4 sd4) (id)) ((rd4 rd4 rd4 rd4) (id)) ((sd4 rd4 sd4) (rd4 rd4 rd4))))$ set!*grouptable('d4, '((grouptable id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (id id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (rd4 rd4 rot2d4 rot3d4 id sr3d4 sd4 srd4 sr2d4) (rot2d4 rot2d4 rot3d4 id rd4 sr2d4 sr3d4 sd4 srd4) (rot3d4 rot3d4 id rd4 rot2d4 srd4 sr2d4 sr3d4 sd4) (sd4 sd4 srd4 sr2d4 sr3d4 id rd4 rot2d4 rot3d4) (srd4 srd4 sr2d4 sr3d4 sd4 rot3d4 id rd4 rot2d4) (sr2d4 sr2d4 sr3d4 sd4 srd4 rot2d4 rot3d4 id rd4) (sr3d4 sr3d4 sd4 srd4 sr2d4 rd4 rot2d4 rot3d4 id)))$ set!*inverse('d4, '((id rd4 rot2d4 rot3d4 sd4 srd4 sr2d4 sr3d4) (id rot3d4 rot2d4 rd4 sd4 srd4 sr2d4 sr3d4)))$ set!*elemasgen('d4, '(((rd4) (rd4)) ((rot2d4) (rd4 rd4)) ((rot3d4) (rd4 rd4 rd4)) ((sd4) (sd4)) ((srd4) (sd4 rd4)) ((sr2d4) (sd4 rd4 rd4)) ((sr3d4) (sd4 rd4 rd4 rd4))))$ set!*group('d4,'((id) (rd4 rot3d4) (rot2d4) (sd4 sr2d4) (sr3d4 srd4)))$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((-1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((-1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((1 . 1))))),'complex)$ set!*representation('d4, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1)))) (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1)))) (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))), 'complex)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((-1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((1 . 1)))) (srd4 (((-1 . 1)))) (sr2d4 (((1 . 1)))) (sr3d4 (((-1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1)))) (rd4 (((-1 . 1)))) (rot2d4 (((1 . 1)))) (rot3d4 (((-1 . 1)))) (sd4 (((-1 . 1)))) (srd4 (((1 . 1)))) (sr2d4 (((-1 . 1)))) (sr3d4 (((1 . 1))))),'real)$ set!*representation('d4, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1)))) (rot2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (rot3d4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (sd4 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd4 (((nil . 1) (1 . 1)) ((1 . 1) (nil . 1)))) (sr2d4 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr3d4 (((nil . 1) (-1 . 1)) ((-1 . 1) (nil . 1))))), 'real)$ set!*available 'd4$ set!*elems!*group('d5, '(id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5))$ set!*generators('d5,'(rd5 sd5))$ set!*relations('d5, '(((sd5 sd5) (id)) ((rd5 rd5 rd5 rd5 rd5) (id)) ((sd5 rd5 sd5) (rd5 rd5 rd5 rd5))))$ set!*grouptable('d5, '((grouptable id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (id id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (rd5 rd5 r2d5 r3d5 r4d5 id sr4d5 sd5 srd5 sr2d5 sr3d5) (r2d5 r2d5 r3d5 r4d5 id rd5 sr3d5 sr4d5 sd5 srd5 sr2d5) (r3d5 r3d5 r4d5 id rd5 r2d5 sr2d5 sr3d5 sr4d5 sd5 srd5) (r4d5 r4d5 id rd5 r2d5 r3d5 srd5 sr2d5 sr3d5 sr4d5 sd5) (sd5 sd5 srd5 sr2d5 sr3d5 sr4d5 id rd5 r2d5 r3d5 r4d5) (srd5 srd5 sr2d5 sr3d5 sr4d5 sd5 r4d5 id rd5 r2d5 r3d5) (sr2d5 sr2d5 sr3d5 sr4d5 sd5 srd5 r3d5 r4d5 id rd5 r2d5) (sr3d5 sr3d5 sr4d5 sd5 srd5 sr2d5 r2d5 r3d5 r4d5 id rd5) (sr4d5 sr4d5 sd5 srd5 sr2d5 sr3d5 rd5 r2d5 r3d5 r4d5 id)))$ set!*inverse('d5, '((id rd5 r2d5 r3d5 r4d5 sd5 srd5 sr2d5 sr3d5 sr4d5) (id r4d5 r3d5 r2d5 rd5 sd5 srd5 sr2d5 sr3d5 sr4d5)))$ set!*elemasgen('d5, '(((rd5) (rd5)) ((r2d5) (rd5 rd5)) ((r3d5) (rd5 rd5 rd5)) ((r4d5) (rd5 rd5 rd5 rd5)) ((sd5) (sd5)) ((srd5) (sd5 rd5)) ((sr2d5) (sd5 rd5 rd5)) ((sr3d5) (sd5 rd5 rd5 rd5)) ((sr4d5) (sd5 rd5 rd5 rd5 rd5))))$ set!*group('d5, '((id) (rd5 r4d5) (r2d5 r3d5) (srd5 sr2d5 sd5 sr4d5 sr3d5)))$ set!*representation('d5, '((id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((1 . 1)))) (srd5 (((1 . 1)))) (sr2d5 (((1 . 1)))) (sr3d5 (((1 . 1)))) (sr4d5 (((1 . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((-1 . 1)))) (srd5 (((-1 . 1)))) (sr2d5 (((-1 . 1)))) (sr3d5 (((-1 . 1)))) (sr4d5 (((-1 . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . 3)) (((cos (quotient (times 2 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . -1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . 6)) (((cos (quotient (times 2 pi) 5)) . 4) . -1)) . 1))))),'complex)$ set!*representation('d5, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . 3)) (((cos (quotient (times 4 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . -1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . 6)) (((cos (quotient (times 4 pi) 5)) . 4) . -1)) . 1))))),'complex)$ set!*representation('d5, '(realtype (id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((1 . 1)))) (srd5 (((1 . 1)))) (sr2d5 (((1 . 1)))) (sr3d5 (((1 . 1)))) (sr4d5 (((1 . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1)))) (rd5 (((1 . 1)))) (r2d5 (((1 . 1)))) (r3d5 (((1 . 1)))) (r4d5 (((1 . 1)))) (sd5 (((-1 . 1)))) (srd5 (((-1 . 1)))) (sr2d5 (((-1 . 1)))) (sr3d5 (((-1 . 1)))) (sr4d5 (((-1 . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . 3)) (((cos (quotient (times 2 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . -1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . 6)) (((cos (quotient (times 2 pi) 5)) . 4) . -1)) . 1))))),'real)$ set!*representation('d5, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1)))) (sd5 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . -1)) . 1)))) (sr2d5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -1)) . 1)))) (sr3d5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . 3)) (((cos (quotient (times 4 pi) 5)) . 3) . -1)) . 1)))) (sr4d5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . -1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . 6)) (((cos (quotient (times 4 pi) 5)) . 4) . -1)) . 1))))),'real)$ set!*available 'd5$ set!*elems!*group('d6, '(id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6))$ set!*generators('d6,'(rd6 sd6))$ set!*relations('d6, '(((sd6 sd6) (id)) ((rd6 rd6 rd6 rd6 rd6 rd6) (id)) ((sd6 rd6 sd6) (rd6 rd6 rd6 rd6 rd6))))$ set!*grouptable('d6, '((grouptable id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (id id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (rd6 rd6 r2d6 r3d6 r4d6 r5d6 id sr5d6 sd6 srd6 sr2d6 sr3d6 sr4d6) (r2d6 r2d6 r3d6 r4d6 r5d6 id rd6 sr4d6 sr5d6 sd6 srd6 sr2d6 sr3d6) (r3d6 r3d6 r4d6 r5d6 id rd6 r2d6 sr3d6 sr4d6 sr5d6 sd6 srd6 sr2d6) (r4d6 r4d6 r5d6 id rd6 r2d6 r3d6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 srd6) (r5d6 r5d6 id rd6 r2d6 r3d6 r4d6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 sd6) (sd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 id rd6 r2d6 r3d6 r4d6 r5d6) (srd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 r5d6 id rd6 r2d6 r3d6 r4d6) (sr2d6 sr2d6 sr3d6 sr4d6 sr5d6 sd6 srd6 r4d6 r5d6 id rd6 r2d6 r3d6) (sr3d6 sr3d6 sr4d6 sr5d6 sd6 srd6 sr2d6 r3d6 r4d6 r5d6 id rd6 r2d6) (sr4d6 sr4d6 sr5d6 sd6 srd6 sr2d6 sr3d6 r2d6 r3d6 r4d6 r5d6 id rd6) (sr5d6 sr5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 rd6 r2d6 r3d6 r4d6 r5d6 id)))$ set!*inverse('d6, '((id rd6 r2d6 r3d6 r4d6 r5d6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6) (id r5d6 r4d6 r3d6 r2d6 rd6 sd6 srd6 sr2d6 sr3d6 sr4d6 sr5d6)))$ set!*elemasgen('d6, '(((rd6) (rd6)) ((r2d6) (rd6 rd6)) ((r3d6) (rd6 rd6 rd6)) ((r4d6) (rd6 rd6 rd6 rd6)) ((r5d6) (rd6 rd6 rd6 rd6 rd6)) ((sd6) (sd6)) ((srd6) (sd6 rd6)) ((sr2d6) (sd6 rd6 rd6)) ((sr3d6) (sd6 rd6 rd6 rd6)) ((sr4d6) (sd6 rd6 rd6 rd6 rd6)) ((sr5d6) (sd6 rd6 rd6 rd6 rd6 rd6))))$ set!*group('d6, '((id) (rd6 r5d6) (r2d6 r4d6) (r3d6) (sr2d6 sd6 sr4d6) (srd6 sr5d6 sr3d6)))$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((-1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((-1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((1 . 1))))),'complex)$ set!*representation('d6, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'complex)$ set!*representation('d6, '((id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'complex)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((-1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((1 . 1)))) (srd6 (((-1 . 1)))) (sr2d6 (((1 . 1)))) (sr3d6 (((-1 . 1)))) (sr4d6 (((1 . 1)))) (sr5d6 (((-1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1)))) (rd6 (((-1 . 1)))) (r2d6 (((1 . 1)))) (r3d6 (((-1 . 1)))) (r4d6 (((1 . 1)))) (r5d6 (((-1 . 1)))) (sd6 (((-1 . 1)))) (srd6 (((1 . 1)))) (sr2d6 (((-1 . 1)))) (sr3d6 (((1 . 1)))) (sr4d6 (((-1 . 1)))) (sr5d6 (((1 . 1))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr3d6 (((-1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr5d6 (((1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'real)$ set!*representation('d6, '(realtype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r3d6 (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (r4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2)))) (r5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (sd6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (srd6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr2d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2)))) (sr3d6 (((1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (sr4d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (1 . 2)))) (sr5d6 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (1 . 2))))),'real)$ set!*available 'd6$ set!*elems!*group('c3,'(id rc3 r2c3))$ set!*generators('c3,'(rc3))$ set!*relations('c3,'(((rc3 rc3 rc3) (id))))$ set!*grouptable('c3, '((grouptable id rc3 r2c3) (id id rc3 r2c3) (rc3 rc3 r2c3 id) (r2c3 r2c3 id rc3)))$ set!*inverse('c3,'((id rc3 r2c3) (id r2c3 rc3)))$ set!*elemasgen('c3,'(((rc3) (rc3)) ((r2c3) (rc3 rc3))))$ set!*group('c3,'((id) (rc3) (r2c3)))$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))), 'complex)$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2)))) (r2c3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2))))),'complex)$ set!*representation('c3, '((id (((1 . 1)))) (rc3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . -1)) . -1) . 2)))) (r2c3 (((((((expt 3 (quotient 1 2)) . 1) ((i . 1) . 1)) . -1) . 2))))),'complex)$ set!*representation('c3, '(realtype (id (((1 . 1)))) (rc3 (((1 . 1)))) (r2c3 (((1 . 1))))),'real)$ set!*representation('c3, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . -1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . 1)) . 2) (-1 . 2)))) (r2c3 (((-1 . 2) (((((expt 3 (quotient 1 2)) . 1) . 1)) . 2)) ((((((expt 3 (quotient 1 2)) . 1) . -1)) . 2) (-1 . 2))))),'real)$ set!*available 'c3$ set!*elems!*group('c4,'(id rc4 r2c4 r3c4))$ set!*generators('c4,'(rc4))$ set!*relations('c4,'(((rc4 rc4 rc4 rc4) (id))))$ set!*grouptable('c4, '((grouptable id rc4 r2c4 r3c4) (id id rc4 r2c4 r3c4) (rc4 rc4 r2c4 r3c4 id) (r2c4 r2c4 r3c4 id rc4) (r3c4 r3c4 id rc4 r2c4)))$ set!*inverse('c4,'((id rc4 r2c4 r3c4) (id r3c4 r2c4 rc4)))$ set!*elemasgen('c4, '(((rc4) (rc4)) ((r2c4) (rc4 rc4)) ((r3c4) (rc4 rc4 rc4))))$ set!*group('c4,'((id) (rc4) (r2c4) (r3c4)))$ set!*representation('c4, '((id (((1 . 1)))) (rc4 (((1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((1 . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 (((-1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((-1 . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 ((((((i . 1) . 1)) . 1)))) (r2c4 (((-1 . 1)))) (r3c4 ((((((i . 1) . -1)) . 1))))),'complex)$ set!*representation('c4, '((id (((1 . 1)))) (rc4 ((((((i . 1) . -1)) . 1)))) (r2c4 (((-1 . 1)))) (r3c4 ((((((i . 1) . 1)) . 1))))),'complex)$ set!*representation('c4, '(realtype (id (((1 . 1)))) (rc4 (((1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((1 . 1))))),'real)$ set!*representation('c4, '(realtype (id (((1 . 1)))) (rc4 (((-1 . 1)))) (r2c4 (((1 . 1)))) (r3c4 (((-1 . 1))))),'real)$ set!*representation('c4, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc4 (((nil . 1) (-1 . 1)) ((1 . 1) (nil . 1)))) (r2c4 (((-1 . 1) (nil . 1)) ((nil . 1) (-1 . 1)))) (r3c4 (((nil . 1) (1 . 1)) ((-1 . 1) (nil . 1))))),'real)$ set!*available 'c4$ set!*elems!*group('c5,'(id rc5 r2c5 r3c5 r4c5))$ set!*generators('c5,'(rc5))$ set!*relations('c5,'(((rc5 rc5 rc5 rc5 rc5) (id))))$ set!*grouptable('c5, '((grouptable id rc5 r2c5 r3c5 r4c5) (id id rc5 r2c5 r3c5 r4c5) (rc5 rc5 r2c5 r3c5 r4c5 id) (r2c5 r2c5 r3c5 r4c5 id rc5) (r3c5 r3c5 r4c5 id rc5 r2c5) (r4c5 r4c5 id rc5 r2c5 r3c5)))$ set!*inverse('c5,'((id rc5 r2c5 r3c5 r4c5) (id r4c5 r3c5 r2c5 rc5)))$ set!*elemasgen('c5, '(((rc5) (rc5)) ((r2c5) (rc5 rc5)) ((r3c5) (rc5 rc5 rc5)) ((r4c5) (rc5 rc5 rc5 rc5))))$ set!*group('c5,'((id) (rc5) (r2c5) (r3c5) (r4c5)))$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((1 . 1)))) (r2c5 (((1 . 1)))) (r3c5 (((1 . 1)))) (r4c5 (((1 . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . 1)) (((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . 2))) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . -1)) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) ((i . 1) . 3))) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . -4))) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) ((i . 1) . 4))) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . 1)) (((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . 2))) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . -1)) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) ((i . 1) . 3))) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . -4))) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) ((i . 1) . 4))) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 4 pi) 5)) . 1) ((i . 1) . -1)) (((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . -2))) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 3) ((i . 1) . 1)) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) ((i . 1) . -3))) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) ((i . 1) . 4))) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) ((i . 1) . -4))) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '((id (((1 . 1)))) (rc5 (((((((sin (quotient (times 2 pi) 5)) . 1) ((i . 1) . -1)) (((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . -2))) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 3) ((i . 1) . 1)) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) ((i . 1) . -3))) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) ((i . 1) . 4))) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) ((i . 1) . -4))) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'complex)$ set!*representation('c5, '(realtype (id (((1 . 1)))) (rc5 (((1 . 1)))) (r2c5 (((1 . 1)))) (r3c5 (((1 . 1)))) (r4c5 (((1 . 1))))),'real)$ set!*representation('c5, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc5 (((((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 2 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) . -1) (((cos (quotient (times 2 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) . 1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) . -1) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 1) . -3)) (((cos (quotient (times 2 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . 4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 2 pi) 5)) . 3) (((cos (quotient (times 2 pi) 5)) . 1) . -4)) (((sin (quotient (times 2 pi) 5)) . 1) (((cos (quotient (times 2 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 2 pi) 5)) . 4) . 1) (((sin (quotient (times 2 pi) 5)) . 2) (((cos (quotient (times 2 pi) 5)) . 2) . -6)) (((cos (quotient (times 2 pi) 5)) . 4) . 1)) . 1))))),'real)$ set!*representation('c5, '(complextype (id (((1 . 1) (nil . 1)) ((nil . 1) (1 . 1)))) (rc5 (((((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) . -1)) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) . 1)) . 1) (((((cos (quotient (times 4 pi) 5)) . 1) . 1)) . 1)))) (r2c5 (((((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . -2))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 1) . 2))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) . -1) (((cos (quotient (times 4 pi) 5)) . 2) . 1)) . 1)))) (r3c5 (((((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) . 1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . -3))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) . -1) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 2) . 3))) . 1) (((((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 1) . -3)) (((cos (quotient (times 4 pi) 5)) . 3) . 1)) . 1)))) (r4c5 (((((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1) (((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . 4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . -4))) . 1)) ((((((sin (quotient (times 4 pi) 5)) . 3) (((cos (quotient (times 4 pi) 5)) . 1) . -4)) (((sin (quotient (times 4 pi) 5)) . 1) (((cos (quotient (times 4 pi) 5)) . 3) . 4))) . 1) (((((sin (quotient (times 4 pi) 5)) . 4) . 1) (((sin (quotient (times 4 pi) 5)) . 2) (((cos (quotient (times 4 pi) 5)) . 2) . -6)) (((cos (quotient (times 4 pi) 5)) . 4) . 1)) . 1))))),'real)$ set!*available 'c5$ endmodule; end;