module kredelw;% Kredel Weispfenning algorithm .
% Author: H . Melenk(ZIB Berlin).
symbolic procedure gdimension_eval u;
begin integer n,m;
for each s in cdr gindependent_seteval u
do if(m:=length cdr s) > n then n:=m;
return n end;
put('gdimension,'psopfn,'gdimension_eval);
symbolic procedure gindependent_seteval pars;
% Independent set algorithm(Kredel/Weispfenning).
% Parameters:
% 1 Groebner basis
% 2 optional: list of variables.
begin scalar a,u,v,vars,w,oldorder,!*factor,!*exp,!*gsugar,!*groebopt;!*exp:=t;
u:=reval car pars;
v:=if cdr pars then reval cadr pars else nil;
w:=for each j in groerevlist u collect if eqexpr j then !*eqn2a j else j;
if null w then rerror(groebnr2,3,"empty list");
a:=if global!-dipvars!* and cdr global!-dipvars!* then cdr global!-dipvars!*
else gvarlis w;
vars:=if null v then for each j in a collect !*a2k j else groerevlist v;
if not vars then return'(list);
oldorder:=vdpinit vars;
w:=for each j in w collect vdpevlmon a2vdp j;
vars:=for each y in vars collect y.vdpevlmon a2vdp y;
w:=groebkwprec(vars,nil,w,nil);
return 'list.for each s in w collect
'list.reversip for each x in s collect car x end;
put('gindependent_sets,'psopfn,'gindependent_seteval);
symbolic procedure groebkwprec(vars,s,lt,m);
% Recursive Kredel Weispfennig algorithm.
% vars: unprocessed variables,
% s: current subset of s,
% lt: leading term basis,
% m: collection of independent sets so far.
% Returns : updated m .
begin scalar x,s1,bool;
s1:=for each y in s collect cdr y;
while vars do
<<x:=car vars;vars:= cdr vars;
if groebkwprec1(cdr x.s1,lt) then m:=groebkwprec(vars,x.s,lt,m)>>;
bool:=t;
for each y in m do % bool and not subsetp(s,y);
bool:=bool and not(length s=length intersection(s,y));
return if bool then s.m else m end;
symbolic procedure groebkwprec1(s,lt);
% t if intersection of T(s) and lt is empty.
if null lt then t else groebkwprec2(s,car lt)and groebkwprec1(s,cdr lt);
symbolic procedure groebkwprec2(s,mon);
% t if monomial not in T(s).
<<for each m in s do mon:=vevcan0(m,mon);not vevzero!? mon>>;
symbolic procedure vevcan0(m,mon);
% Divide multiples of m1 out of mon.
if vevzero!? m then mon else
if vevzero!? mon then nil else
(if car m neq 0 then 0 else car mon).vevcan0(cdr m,cdr mon);
endmodule;;end;