/* arith05.c Copyright (C) 1990-2007 Codemist Ltd */ /* * Arithmetic functions. * low-level 64/32 bit arithmetic, <=, print_bignum */ /* * This code may be used and modified, and redistributed in binary * or source form, subject to the "CCL Public License", which should * accompany it. This license is a variant on the BSD license, and thus * permits use of code derived from this in either open and commercial * projects: but it does require that updates to this code be made * available back to the originators of the package. * Before merging other code in with this or linking this code * with other packages or libraries please check that the license terms * of the other material are compatible with those of this. */ /* Signature: 29490e54 02-Jan-2008 */ #include "headers.h" /* * I provide symbols IMULTIPLY and IDIVIDE which can be asserted if the * corresponding routines have been provided elsewhere (e.g. in machine * code for extra speed) */ #ifndef IDIVIDE #ifdef HAVE_UINT64_T uint32_t Idiv10_9(uint32_t *qp, uint32_t high, uint32_t low) /* * Same behaviour as Idivide(qp, high, low, 1000000000U). * Used for printing only - i.e. only in this file */ { uint64_t p = ((uint64_t)high << 31) | (uint64_t)low; *qp = (uint32_t)(p / (uint64_t)1000000000U); return (uint32_t)(p % (uint64_t)1000000000U); } #else uint32_t Idiv10_9(uint32_t *qp, uint32_t high, uint32_t low) /* * Same behaviour as Idivide(qp, high, low, 1000000000U). * If Idivide is coded in assembler then this will probably be * easy and sensible to implement as an alternative entrypoint. * The code given here is intended for use on computers where * division is a slow operation - it works by a sort of long * division, forming guessed for the partial quotients my * multiplying by a (binary scaled) reciprocal of 1000000000. * * Used for printing only - i.e. only in this file */ { #define RECIP_10_9 70368U /* 2^46/10^9 */ #define TEN_9_16H 15258U #define TEN_9_16L 51712U /* 10^9 in 2 chunks, base 2^16 */ #define TEN_9_15H 30517U #define TEN_9_15L 18944U /* 10^9 in 2 chunks, base 2^15 */ uint32_t w = ((high >> 14) * RECIP_10_9) >> 16; /* * The above line sets w to the first partial quotient. Multiply * it back up by 10^9 (working base 2^16 while so doing) and subtract * that off from the original number to get a residue. */ uint32_t w1 = w * TEN_9_16L, w2, w3, w4, w5; w2 = w1 >> 16; high -= (w * TEN_9_16H + w2); low -= ((w1 << 15) & 0x7fffffff); if ((int32_t)low < 0) { high--; low &= 0x7fffffff; } /* * Now do the same sort of operation again to get the next * part of the quotient. */ w3 = (high * RECIP_10_9) >> 15; /* * when I multiply back up by 10^9 and subtract off I need to use * all the bits that there are in my 32-bit words, and it seems to * turn out that working base 2^15 rather than 2^16 here is best. */ w4 = w3 * TEN_9_15H; w5 = w4 >> 16; high -= w5; w4 -= (w5 << 16); low -= (w3 * TEN_9_15L); if ((int32_t)low < 0) { high--; /* propage a borrow */ low &= 0x7fffffff; } low -= (w4 << 15); if ((int32_t)low < 0) { high--; /* propagate another borrow */ low &= 0x7fffffff; } /* * The quotient that I compute here is almost correct - I will * adjust it by 1, 2, 3 or 4.. */ w = (w << 15) + w3; /* * If high was nonzero I subtract (2*high*10^9) from low, and need not * consider high again. */ if (high != 0) { low -= (2000000000U + 0x80000000U); w += 2; if (high != 1) { low -= (2000000000U + 0x80000000U); w += 2; } } /* * final adjustment.. */ if (low >= 1000000000U) { low -= 1000000000U; w += 1; if (low >= 1000000000U) { low -= 1000000000U; w += 1; } } *qp = w; return low; } #endif #endif /* IDIVIDE */ /* * Arithmetic comparison: lesseq * Note that for floating point values on a system which supports * IEEE arithmetic (and in particular Nans) it may not be the case * that (a < b) = !(b <= a). Note also Common Lisp requires that * floating point values get widened to ratios in many cases here, * despite the vast cost thereof. */ #ifdef COMMON static CSLbool lesseqis(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return (double)int_of_fixnum(a) <= (double)bb.f; } #endif #define lesseqib(a, b) lesspib(a, b) #ifdef COMMON static CSLbool lesseqir(Lisp_Object a, Lisp_Object b) { /* * compute a <= p/q as a*q <= p */ push(numerator(b)); a = times2(a, denominator(b)); pop(b); return lesseq2(a, b); } #endif #define lesseqif(a, b) ((double)int_of_fixnum(a) <= float_of_number(b)) #ifdef COMMON static CSLbool lesseqsi(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return (double)aa.f <= (double)int_of_fixnum(b); } static CSLbool lesseqsb(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return !lesspbd(b, (double)aa.f); } static CSLbool lesseqsr(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return !lessprd(b, (double)aa.f); } static CSLbool lesseqsf(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return (double)aa.f <= float_of_number(b); } #endif #define lesseqbi(a, b) lesspbi(a, b) #ifdef COMMON static CSLbool lesseqbs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return !lesspdb((double)bb.f, a); } #endif static CSLbool lesseqbb(Lisp_Object a, Lisp_Object b) { int32_t lena = bignum_length(a), lenb = bignum_length(b); if (lena > lenb) { int32_t msd = bignum_digits(a)[(lena-CELL-4)/4]; return (msd < 0); } else if (lenb > lena) { int32_t msd = bignum_digits(b)[(lenb-CELL-4)/4]; return (msd >= 0); } lena = (lena-CELL-4)/4; /* lenb == lena here */ { int32_t msa = bignum_digits(a)[lena], msb = bignum_digits(b)[lena]; if (msa < msb) return YES; else if (msa > msb) return NO; /* * Now the leading digits of the numbers agree, so in particular the numbers * have the same sign. */ while (--lena >= 0) { uint32_t da = bignum_digits(a)[lena], db = bignum_digits(b)[lena]; if (da == db) continue; return (da < db); } return YES; /* numbers are the same */ } } #define lesseqbr(a, b) lesseqir(a, b) #define lesseqbf(a, b) (!lesspdb(float_of_number(b), a)) #ifdef COMMON static CSLbool lesseqri(Lisp_Object a, Lisp_Object b) { push(numerator(a)); b = times2(b, denominator(a)); pop(a); return lesseq2(a, b); } static CSLbool lesseqrs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return !lesspdr((double)bb.f, a); } #define lesseqrb(a, b) lesseqri(a, b) static CSLbool lesseqrr(Lisp_Object a, Lisp_Object b) { Lisp_Object c; push2(a, b); c = times2(numerator(a), denominator(b)); pop2(b, a); push(c); b = times2(numerator(b), denominator(a)); pop(c); return lesseq2(c, b); } #define lesseqrf(a, b) (!lesspdr(float_of_number(b), a)) #endif #define lesseqfi(a, b) (float_of_number(a) <= (double)int_of_fixnum(b)) #ifdef COMMON static CSLbool lesseqfs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return float_of_number(a) <= (double)bb.f; } #endif #define lesseqfb(a, b) (!lesspbd(b, float_of_number(a))) #define lesseqfr(a, b) (!lessprd(b, float_of_number(a))) #define lesseqff(a, b) (float_of_number(a) <= float_of_number(b)) CSLbool geq2(Lisp_Object a, Lisp_Object b) { return lesseq2(b, a); } CSLbool lesseq2(Lisp_Object a, Lisp_Object b) { Lisp_Object nil = C_nil; if (exception_pending()) return NO; switch ((int)a & TAG_BITS) { case TAG_FIXNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: /* For fixnums the comparison can be done directly */ return ((int32_t)a <= (int32_t)b); #ifdef COMMON case TAG_SFLOAT: return lesseqis(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesseqib(a, b); #ifdef COMMON case TYPE_RATNUM: return lesseqir(a, b); #endif default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: return lesseqif(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } #ifdef COMMON case TAG_SFLOAT: switch (b & TAG_BITS) { case TAG_FIXNUM: return lesseqsi(a, b); case TAG_SFLOAT: { Float_union aa, bb; aa.i = a - TAG_SFLOAT; bb.i = b - TAG_SFLOAT; return (aa.f <= bb.f); } case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesseqsb(a, b); case TYPE_RATNUM: return lesseqsr(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: return lesseqsf(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } #endif case TAG_NUMBERS: { int32_t ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return lesseqbi(a, b); #ifdef COMMON case TAG_SFLOAT: return lesseqbs(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesseqbb(a, b); #ifdef COMMON case TYPE_RATNUM: return lesseqbr(a, b); #endif default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: return lesseqbf(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } #ifdef COMMON case TYPE_RATNUM: switch (b & TAG_BITS) { case TAG_FIXNUM: return lesseqri(a, b); case TAG_SFLOAT: return lesseqrs(a, b); case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesseqrb(a, b); case TYPE_RATNUM: return lesseqrr(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: return lesseqrf(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } #endif default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return lesseqfi(a, b); #ifdef COMMON case TAG_SFLOAT: return lesseqfs(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesseqfb(a, b); #ifdef COMMON case TYPE_RATNUM: return lesseqfr(a, b); #endif default: return (CSLbool)aerror2("bad arg for leq", a, b); } } case TAG_BOXFLOAT: return lesseqff(a, b); default: return (CSLbool)aerror2("bad arg for leq", a, b); } default: return (CSLbool)aerror2("bad arg for leq", a, b); } } void print_bignum(Lisp_Object u, CSLbool blankp, int nobreak) { int32_t len = length_of_header(numhdr(u))-CELL; int32_t i, len1; Lisp_Object w, nil = C_nil; char my_buff[24]; /* Big enough for 2-word bignum value */ int line_length = other_write_action(WRITE_GET_INFO+WRITE_GET_LINE_LENGTH, active_stream); int column = other_write_action(WRITE_GET_INFO+WRITE_GET_COLUMN, active_stream); #ifdef NEED_TO_CHECK_BIGNUM_FORMAT /* The next few lines are to help me track down bugs... */ { int32_t d1 = bignum_digits(u)[(len-4)/4]; if (len == 4) { int32_t m = d1 & fix_mask; if (m == 0 || m == fix_mask) printf("[%.8lx should be fixnum]", (long)d1); if (signed_overflow(d1)) printf("[%.8lx needs 2 words]", (long)d1); } else { int32_t d0 = bignum_digits(u)[(len-8)/4]; if (signed_overflow(d1)) printf("[needs more words]"); else if (d1 == 0 && (d0 & 0x40000000) == 0) printf("[shrink]"); else if (d1 == -1 &&(d0 & 0x40000000) != 0) printf("[shrink]"); } } /* end of temp code */ #endif switch (len) { case 4: /* one word bignum - especially easy! */ { int32_t dig0 = bignum_digits(u)[0]; uint32_t dig = dig0; int i = 0; if (dig0 < 0) dig = -dig0; /* * I do all my conversion from binary to decimal by hand in this code, * where once I used sprintf - but sprintf is somewhat more powerful * than I need, and thus I expect it to be somewhat more costly. */ do { int32_t nxt = dig % 10; dig = dig / 10; my_buff[i++] = (char)(nxt + '0'); } while (dig != 0); if (dig0 < 0) my_buff[i++] = '-'; if (blankp) { if (nobreak==0 && column+i >= line_length) { if (column != 0) putc_stream('\n', active_stream); } else putc_stream(' ', active_stream); } else if (nobreak==0 && column != 0 && column+i > line_length) putc_stream('\n', active_stream); while (--i >= 0) putc_stream(my_buff[i], active_stream); } return; case 8: /* two word bignum */ { uint32_t d0 = bignum_digits(u)[0], d1 = bignum_digits(u)[1]; uint32_t d0high, d0low, w; uint32_t p0, p1, p2; CSLbool negativep = NO; int i, j; if (((int32_t)d1) < 0) { negativep = YES; d0 = clear_top_bit(-(int32_t)d0); if (d0 == 0) d1 = -(int32_t)d1; else d1 = ~d1; } d0high = ((uint32_t)d0)>>16; d0low = d0 - (d0high << 16); /* Adjust for the fact that I packed just 31 bits into each word.. */ if ((d1 & 1) != 0) d0high |= 0x8000U; w = d1 >> 1; /* d1 is at most 0x40000000 here, so no problem wrt sign */ d1 = w / 10000; w = d0high + ((w % 10000) << 16); d0high = w / 10000; w = d0low + ((w % 10000) << 16); d0low = w / 10000; p0 = w % 10000; /* last 4 digits of value */ w = d1; d1 = w / 10000; w = d0high + ((w % 10000) << 16); d0high = w / 10000; w = d0low + ((w % 10000) << 16); d0low = w / 10000; p1 = w % 10000; /* 4 more digits of value */ /* By now d1 is certainly less then 10000 */ w = d0high + (d1 << 16); d0high = w / 10000; w = d0low + ((w % 10000) << 16); d0 = (w / 10000) + (d0high << 16); p2 = w % 10000; i = 0; for (j=0; j<4; j++) my_buff[i++] = (char)((p0 % 10) + '0'), p0 = p0/10; for (j=0; j<4; j++) my_buff[i++] = (char)((p1 % 10) + '0'), p1 = p1/10; /* * Because the value used 2 words it must have more than 8 digits in it, * but it may not have more than 12. Therefore I am not certain whether * all 4 digits of p2 are needed. */ if (d0 == 0) { while (p2 != 0) my_buff[i++] = (char)((p2 % 10) + '0'), p2 = p2/10; } else { for (j=0; j<4; j++) my_buff[i++] = (char)((p2 % 10) + '0'), p2 = p2/10; while (d0 != 0) my_buff[i++] = (char)((d0 % 10) + '0'), d0 = d0/10; } if (negativep) my_buff[i++] = '-'; if (blankp) { if (nobreak==0 && column+i >= line_length) { if (column != 0) putc_stream('\n', active_stream); } else putc_stream(' ', active_stream); } else if (nobreak==0 && column != 0 && column+i > line_length) putc_stream('\n', active_stream); while (--i >= 0) putc_stream(my_buff[i], active_stream); return; } default: break; /* general big case */ } push(u); len1 = CELL+4+(11*len)/10; /* * To print a general big number I will convert it from radix 2^31 to * radix 10^9. This can involve increasing the number of digits by a factor * of about 1.037, so the 10% expansion I allow for in len1 above should * keep me safe. */ len1 = (intptr_t)doubleword_align_up(len1); w = getvector(TAG_NUMBERS, TYPE_BIGNUM, len1); pop(u); nil = C_nil; if (!exception_pending()) { CSLbool sign = NO; int32_t len2; len = len/4; len1 = (len1-CELL)/4; if (((int32_t)bignum_digits(u)[len-1]) >= 0) for (i=0; i<len; i++) bignum_digits(w)[i] = bignum_digits(u)[i]; else { int32_t carry = -1; sign = YES; for (i=0; i<len; i++) /* negate the number so I am working with a +ve value */ { carry = clear_top_bit(~bignum_digits(u)[i]) + top_bit(carry); bignum_digits(w)[i] = clear_top_bit(carry); } } len2 = len1; while (len > 1) { int32_t k; int32_t carry = 0; /* * This stack-check is so that I can respond to interrupts */ if (stack >= stacklimit) { w = reclaim(w, "stack", GC_STACK, 0); errexitv(); } /* divide by 10^9 to obtain remainder */ for (k=len-1; k>=0; k--) Ddiv10_9(carry, bignum_digits(w)[k], carry, bignum_digits(w)[k]); if (bignum_digits(w)[len-1] == 0) len--; bignum_digits(w)[--len2] = carry; /* 9 digits in decimal format */ } push(w); { uint32_t dig; int i; int32_t len; if (bignum_digits(w)[0] == 0) dig = bignum_digits(w)[len2++]; else dig = bignum_digits(w)[0]; i = 0; do { int32_t nxt = dig % 10; dig = dig / 10; my_buff[i++] = (char)(nxt + '0'); } while (dig != 0); if (sign) my_buff[i++] = '-'; len = i + 9*(len1-len2); if (blankp) { if (nobreak==0 && column+len >= line_length) { if (column != 0) putc_stream('\n', active_stream); } else putc_stream(' ', active_stream); } else if (nobreak==0 && column != 0 && column+len > line_length) putc_stream('\n', active_stream); while (--i >= 0) putc_stream(my_buff[i], active_stream); } pop(w); while (len2 < len1) { uint32_t dig = bignum_digits(w)[len2++]; int i; push(w); for (i=8; i>=0; i--) { int32_t nxt = dig % 10; dig = dig / 10; my_buff[i] = (char)(nxt + '0'); } for (i=0; i<=8; i++) putc_stream(my_buff[i], active_stream); pop(w); errexitv(); if (stack >= stacklimit) { w = reclaim(w, "stack", GC_STACK, 0); errexitv(); } } } } void print_bighexoctbin(Lisp_Object u, int radix, int width, CSLbool blankp, int nobreak) /* * This prints a bignum in base 16, 8 or 2. The main misery about this is * that internally bignums are stored in chunks of 31 bits, so I have * to collect digits for printing in a way that can span across word * boundaries. There is also potential fun with regard to the display * of negative values - here I will print a "~" mark in front but will * then show them revealing the 2s complement representation used. * The width specifier is intended to specify a minimum width to be * used in the sense that printf uses the word "precision", so numbers * will be padded with leading zeros (of f/7/1 if negative) if necessary. * Well actually I have not implemented support for width specification * yet. It will be wanted so that (prinhex 1 8) comes out as 00000001, * for instance. So at present some C compilers will give me a warning about * width being ignored - they are RIGHT! */ { int32_t n = (bignum_length(u)-CELL-4)/4; uint32_t a=0, b=0; int32_t len = 31*(n+1); int flag = 0, bits; CSLbool sign = NO, started = NO; nil_as_base int line_length = other_write_action(WRITE_GET_INFO+WRITE_GET_LINE_LENGTH, active_stream); int column = other_write_action(WRITE_GET_INFO+WRITE_GET_COLUMN, active_stream); if (radix == 16) { bits = len % 4; len = len / 4; if (bits != 0) len++, bits = 4 - bits; } else if (radix == 8) { bits = len % 3; len = len / 3; if (bits != 0) len++, bits = 3 - bits; } else { bits = 0; } /* * As I work down the bignum, b holds the next chunk of digits to be printed, * and bits tells me how many valid bits are present in it. I start off * with bits non-zero to (in effect) adjoin a few bits from an implicit * extra leading digit so as to make up to an integral multiple of 3 or 4 * bits in all when I am printing base 8 or 16. The variable (len) now tells * me how many digits remain to be printed. */ push(u); if ((int32_t)bignum_digits(u)[n] < 0) { sign = YES; len+=2; /* Allow extra length for sign marker and initial f/7/1 */ if (radix == 16) flag = 0xf; else if (radix == 8) flag = 0x7; else flag = 0x1; /* * Set the buffer b to have a few '1' bits at its top. */ if (bits != 0) b = ((int32_t)-1) << (32-bits); } /* * I kill leading zeros - and since this is a real bignum there MUST be * at least one nonzero digit somewhere, so I do not have to worry about the * total supression of the value 0. I will do something with leading 'f' or * '7' digits for negative numbers. */ while (n >= 0 || bits > 0) { if (radix == 16) { a = (b >> 28); /* Grab the next 4 bits of the number */ b = b << 4; /* shift buffer to position the next four */ bits -= 4; } else if (radix == 8) { a = (b >> 29); /* 3 bits */ b = b << 3; bits -= 3; } else { a = (b >> 31); /* just 1 bit */ b = b << 1; bits -= 1; } if (bits < 0) /* there had not been enough buffered bits */ { u = stack[0]; b = bignum_digits(u)[n] << 1; n--; a |= b >> (32+bits); b = b << (-bits); bits += 31; } if ((int)a != flag) /* leading '0' or 'f' (or '7') supression code */ { if (!started) { if (blankp) { if (nobreak==0 && column+len >= line_length) { if (column != 0) putc_stream('\n', active_stream); } else putc_stream(' ', active_stream); } else if (nobreak==0 && column != 0 && column+len > line_length) putc_stream('\n', active_stream); if (sign) putc_stream('~', active_stream); started = YES; if (flag > 0) putc_stream(radix == 16 ? 'f' : radix == 8 ? '7' : '1', active_stream); flag = -1; } } len--; if (flag >= 0) continue; /* lose leading zeros (or F digits) */ if (a < 10) a += '0'; else a += ('a' - 10); putc_stream((int)a, active_stream); } popv(1); } /* end of arith05.c */