/* arith04.c Copyright (C) 1991-2007 Codemist Ltd */ /* * Arithmetic functions. * <, rationalize * */ /* * This code may be used and modified, and redistributed in binary * or source form, subject to the "CCL Public License", which should * accompany it. This license is a variant on the BSD license, and thus * permits use of code derived from this in either open and commercial * projects: but it does require that updates to this code be made * available back to the originators of the package. * Before merging other code in with this or linking this code * with other packages or libraries please check that the license terms * of the other material are compatible with those of this. */ /* Signature: 576eadbf 18-Jan-2007 */ #include "headers.h" #ifndef COMMON /* * In CSL mode I fudge make_ratio to be just cons, since it is ONLY * needed for (rational ...) */ #define make_ratio(a, b) cons(a, b) #endif Lisp_Object make_n_word_bignum(int32_t a1, uint32_t a2, uint32_t a3, int32_t n) /* * This make a bignum with n words of data and digits a1, a2, a3 and * then n zeros. Will only be called with n>=0 and a1, a2, a3 already * correctly structured to make a valid bignum. */ { int32_t i; Lisp_Object w = getvector(TAG_NUMBERS, TYPE_BIGNUM, CELL+4*n), nil; errexit(); for (i=0; i<n; i++) bignum_digits(w)[i] = 0; bignum_digits(w)[n] = a3; bignum_digits(w)[n+1] = a2; bignum_digits(w)[n+2] = a1; if ((n & 1) != 0) bignum_digits(w)[n+3] = 0; return w; } static Lisp_Object make_power_of_two(int32_t x) /* * Create the number 2^x where x is positive. Used to make the * denominator of a rational representation of a float. Endless fun * to cope with various small cases before I get to the general call * to make_n_word_bignum. */ { if (x < 27) return fixnum_of_int(((int32_t)1) << x); else if (x < 30) return make_one_word_bignum(((int32_t)1) << x); else if (x == 30) return make_two_word_bignum(0, 0x40000000); else if (x < 61) return make_two_word_bignum(((int32_t)1) << (x-31), 0); else if ((x % 31) == 30) return make_n_word_bignum(0, 0x40000000, 0, (x/31)-2); else return make_n_word_bignum(((int32_t)1) << (x % 31), 0, 0, (x/31)-3); } static Lisp_Object make_fix_or_big2(int32_t a1, uint32_t a2) { if ((a1==0 && (a2 & fix_mask)==0) || (a1==-1 && (a2 & 0x78000000)==0x78000000)) return fixnum_of_int(a2); else if (a1==0 && (a2 & 0x40000000)==0) return make_one_word_bignum(a2); else if (a1==-1 && (a2 & 0x40000000)!=0) return make_one_word_bignum(a2|~0x7fffffff); else return make_two_word_bignum(a1, a2); } Lisp_Object rationalf(double d) { int x; CSLbool negative = NO; int32_t a0, a1; uint32_t a2; Lisp_Object nil; if (d == 0.0) return fixnum_of_int(0); if (d < 0.0) d = -d, negative = YES; d = frexp(d, &x); /* 0.5 <= abs(d) < 1.0, x = the (binary) exponent */ /* * The next line is not logically needed, provided frexp() is implemented to * the relevant standard. However Zortech C release 3.0 used to get the output * range for frexp() marginally out and the following line works around the * resulting problem. I leave the code in (always) since its cost * implications are minor and other libraries may suffer the same way, and it * will be easier not to have to track the bug down from cold again! */ if (d == 1.0) d = 0.5, x++; d *= TWO_31; a1 = (int32_t)d; if (d < 0.0) a1--; d -= (double)a1; a2 = (uint32_t)(d * TWO_31); /* Now I have the mantissa of the floating value packed into a1 and a2 */ x -= 62; if (x < 0) { Lisp_Object w; /* * Here the value may have a denominator, or it may be that it will turn * out to be representable as an integer. */ while ((a2 & 1) == 0 && x < 0) { a2 = (a2 >> 1) | ((a1 & 1) << 30); a1 = a1 >> 1; #ifdef SIGNED_SHIFTS_ARE_LOGICAL if (a1 & 0x40000000) a1 |= ~0x7fffffff; #endif x++; if (x == 0) { if (negative) { if (a2 == 0) a1 = -a1; else { a2 = clear_top_bit(-(int32_t)a2); a1 = ~a1; } } return make_fix_or_big2(a1, a2); } } if (negative) { if (a2 == 0) a1 = -a1; else { a2 = clear_top_bit(-(int32_t)a2); a1 = ~a1; } } w = make_fix_or_big2(a1, a2); errexit(); x = -x; /* * Remember: in CSL mode make_ratio is just cons */ if (x < 27) return make_ratio(w, fixnum_of_int(((int32_t)1) << x)); else { Lisp_Object d, nil; push(w); d = make_power_of_two(x); pop(w); errexit(); return make_ratio(w, d); } } else { /* * here the floating point value is quite large, and I need to create * a multi-word bignum for it. */ int x1; if (negative) { if (a2 == 0) a1 = -a1; else { a2 = clear_top_bit(-(int32_t)a2); a1 = ~a1; } } if (a1 < 0) { a0 = -1; a1 = clear_top_bit(a1); } else a0 = 0; x1 = x / 31; x = x % 31; a0 = (a0 << x) | (a1 >> (31-x)); a1 = clear_top_bit(a1 << x) | (a2 >> (31-x)); a2 = clear_top_bit(a2 << x); return make_n_word_bignum(a0, a1, a2, x1); } } #ifdef COMMON static Lisp_Object rationalizef(double d) /* * This is expected to give a 'nice' rational approximation to the * floating point value d. */ { double dd; Lisp_Object p, q, nil; if (d == 0.0) return fixnum_of_int(0); else if (d < 0.0) dd = -d; else dd = d; p = rationalf(dd); errexit(); q = denominator(p); p = numerator(p); /* /* No cleaning up done, yet. Need to start to produce continued * fraction for p/q and truncate it at some suitable point to get * a sensible approximation. Since this is only needed in Common Lisp * mode, and seems a bit specialist even then I am not going to rush into * cobbling up the code (which I have done before and is basically OK, * save that the stopping criteria are pretty delicate). */ if (d < 0.0) { p = negate(p); errexit(); } return make_ratio(p, q); } #endif Lisp_Object rational(Lisp_Object a) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: return a; #ifdef COMMON case TAG_SFLOAT: { Float_union aa; aa.i = a - TAG_SFLOAT; return rationalf((double)aa.f); } #endif case TAG_NUMBERS: { int32_t ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: #ifdef COMMON case TYPE_RATNUM: #endif return a; default: return aerror1("bad arg for rational", a); } } case TAG_BOXFLOAT: return rationalf(float_of_number(a)); default: return aerror1("bad arg for rational", a); } } #ifdef COMMON Lisp_Object rationalize(Lisp_Object a) { switch (a & TAG_BITS) { case TAG_FIXNUM: return a; #ifdef COMMON case TAG_SFLOAT: { Float_union aa; aa.i = a - TAG_SFLOAT; return rationalizef((double)aa.f); } #endif case TAG_NUMBERS: { int32_t ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: #ifdef COMMON case TYPE_RATNUM: #endif return a; default: return aerror1("bad arg for rationalize", a); } } case TAG_BOXFLOAT: return rationalizef(float_of_number(a)); default: return aerror1("bad arg for rationalize", a); } } #endif /* * Arithmetic comparison: lessp */ #ifdef COMMON static CSLbool lesspis(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; /* * Any fixnum can be converted to a float without introducing any * error at all... */ return (double)int_of_fixnum(a) < (double)bb.f; } #endif CSLbool lesspib(Lisp_Object a, Lisp_Object b) /* * a fixnum and a bignum can never be equal, and the magnitude of * the bignum must be at least as great as that of the fixnum, hence * to do a comparison I just need to look at sign of the bignum. */ { int32_t len = bignum_length(b); int32_t msd = bignum_digits(b)[(len-CELL-4)/4]; CSL_IGNORE(a); return (msd >= 0); } #ifdef COMMON static CSLbool lesspir(Lisp_Object a, Lisp_Object b) { /* * compute a < p/q as a*q < p */ push(numerator(b)); a = times2(a, denominator(b)); pop(b); return lessp2(a, b); } #endif #define lesspif(a, b) ((double)int_of_fixnum(a) < float_of_number(b)) CSLbool lesspdb(double a, Lisp_Object b) /* * a is a floating point number and b a bignum. Compare them. */ { int32_t n = (bignum_length(b)-CELL-4)/4; int32_t bn = (int32_t)bignum_digits(b)[n]; /* * The value represented by b can not be in the range that fixnums * cover, so if a is in that range I need only inspect the sign of b. */ if ((double)(-0x08000000) <= a && a <= (double)(0x7fffffff)) return (bn >= 0); /* * If b is a one-word bignum I can convert it to floating point * with no loss of accuracy at all. */ if (n == 0) return a < (double)bn; /* * For two-digit bignums I first check if the float is so big that I can * tell that it dominames the bignum, and if not I subtract the top digit * of the bignum from both sides... in the critical case where the two * values are almost the same that subtraction will not lead to loss of * accuracy (at least provided that my floating point was implemented * with a guard bit..) */ if (n == 1) { if (1.0e19 < a) return NO; else if (a < -1.0e19) return YES; a -= TWO_31*(int32_t)bn; return a < (double)bignum_digits(b)[0]; } /* * If the two operands differ in their signs then all is easy. */ if (bn >= 0 && a < 0.0) return YES; if (bn < 0 && a >= 0.0) return NO; /* * Now I have a 3 or more digit bignum, so here I will (in effect) * convert the float to a bignum and then perform the comparison.. that * does the best I can to avoid error. I do not actually have to create * a datastructure for the bignum provided I can collect up the data that * would have to be stored in it. See lisp_fix (arith8.c) for related code. */ { int32_t a0, a1, a2; int x, x1; a = frexp(a, &x); /* 0.5 <= abs(a) < 1.0, x = (binary) exponent */ if (a == 1.0) a = 0.5, x++; /* For Zortech */ a *= TWO_31; a1 = (int32_t)a; /* 2^31 > |a| >= 2^30 */ if (a < 0.0) a1--; /* now maybe a1 is -2^31 */ a -= (double)a1; a2 = (uint32_t)(a * TWO_31); /* This conversion should be exact */ x -= 62; /* * If the float is smaller in absolute value than the bignum life is easy */ if (x < 0) return (bn >= 0); x1 = x/31 + 2; if (n != x1) { if (n < x1) return a < 0.0; else return (bn >= 0); } /* * Now the most jolly bit - the two numbers have the same sign and involve * the same number of digits. */ if (a1 < 0) { a0 = -1; a1 = clear_top_bit(a1); } else a0 = 0; x = x % 31; a0 = (a0 << x) | (a1 >> (31-x)); a1 = clear_top_bit(a1 << x) | (a2 >> (31-x)); a2 = clear_top_bit(a2 << x); if (a0 != bn) return a0 < bn; bn = bignum_digits(b)[n-1]; if (a1 != bn) return a1 < bn; return a2 < (int32_t)bignum_digits(b)[n-2]; } } CSLbool lesspbd(Lisp_Object b, double a) /* * Code as for lesspdb, but use '>' test instead of '<' */ { int32_t n = (bignum_length(b)-CELL-4)/4; int32_t bn = (int32_t)bignum_digits(b)[n]; /* * The value represented by b can not be in the range that fixnums * cover, so if a is in that range I need only inspect the sign of b. */ if ((double)(-0x08000000) <= a && a <= (double)(0x7fffffff)) return (bn < 0); /* * If b is a one-word bignum I can convert it to floating point * with no loss of accuracy at all. */ if (n == 0) return (double)bn < a; /* * For two-digit bignums I first check if the float is so big that I can * tell that it dominates the bignum, and if not I subtract the top digit * of the bignum from both sides... in the critical case where the two * values are almost the same that subtraction will not lead to loss of * accuracy (at least provided that my floating point was implemented * with a guard bit..) */ if (n == 1) { if (1.0e19 < a) return YES; else if (a < -1.0e19) return NO; a -= TWO_31 * (double)bn; return (double)bignum_digits(b)[0] < a; } /* * If the two operands differ in their signs then all is easy. */ if (bn >= 0 && a < 0.0) return NO; if (bn < 0 && a >= 0.0) return YES; /* * Now I have a 3 or more digit bignum, so here I will (in effect) * convert the float to a bignum and then perform the comparison.. that * does the best I can to avoid error. I do not actually have to create * a datastructure for the bignum provided I can collect up the data that * would have to be stored in it. See lisp_fix (arith8.c) for related code. */ { int32_t a0, a1, a2; int x, x1; a = frexp(a, &x); /* 0.5 <= abs(a) < 1.0, x = (binary) exponent */ if (a == 1.0) a = 0.5, x++; a *= TWO_31; a1 = (int32_t)a; /* 2^31 > |a| >= 2^30 */ if (a < 0.0) a1--; /* now maybe a1 is -2^31 */ a -= (double)a1; a2 = (uint32_t)(a * TWO_31); /* This conversion should be exact */ x -= 62; /* * If the float is smaller in absolute value than the bignum life is easy */ if (x < 0) return (bn < 0); x1 = x/31 + 2; if (n != x1) { if (n < x1) return a >= 0.0; else return (bn < 0); } /* * Now the most jolly bit - the two numbers have the same sign and involve * the same number of digits. */ if (a1 < 0) { a0 = -1; a1 = clear_top_bit(a1); } else a0 = 0; x = x % 31; a0 = (a0 << x) | (a1 >> (31-x)); a1 = clear_top_bit(a1 << x) | (a2 >> (31-x)); a2 = clear_top_bit(a2 << x); if (a0 != bn) return a0 > bn; bn = bignum_digits(b)[n-1]; if (a1 != bn) return a1 > bn; return a2 > (int32_t)bignum_digits(b)[n-2]; } } #ifdef COMMON static CSLbool lessprr(Lisp_Object a, Lisp_Object b) { Lisp_Object c; push2(a, b); c = times2(numerator(a), denominator(b)); pop2(b, a); push(c); b = times2(numerator(b), denominator(a)); pop(c); return lessp2(c, b); } CSLbool lesspdr(double a, Lisp_Object b) /* * Compare float with ratio... painfully expensive. */ { Lisp_Object a1 = rationalf(a), nil; errexit(); return lessprr(a1, b); } CSLbool lessprd(Lisp_Object a, double b) /* * Compare float with ratio. */ { Lisp_Object b1 = rationalf(b), nil; errexit(); return lessprr(a, b1); } static CSLbool lesspsi(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return (double)aa.f < (double)int_of_fixnum(b); } static CSLbool lesspsb(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return lesspdb((double)aa.f, b); } static CSLbool lesspsr(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return lesspdr((double)aa.f, b); } static CSLbool lesspsf(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return (double)aa.f < float_of_number(b); } #endif CSLbool lesspbi(Lisp_Object a, Lisp_Object b) { int32_t len = bignum_length(a); int32_t msd = bignum_digits(a)[(len-CELL-4)/4]; CSL_IGNORE(b); return (msd < 0); } #ifdef COMMON static CSLbool lesspbs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return lesspbd(a, (double)bb.f); } #endif static CSLbool lesspbb(Lisp_Object a, Lisp_Object b) { int32_t lena = bignum_length(a), lenb = bignum_length(b); if (lena > lenb) { int32_t msd = bignum_digits(a)[(lena-CELL-4)/4]; return (msd < 0); } else if (lenb > lena) { int32_t msd = bignum_digits(b)[(lenb-CELL-4)/4]; return (msd >= 0); } lena = (lena-CELL-4)/4; /* lenb == lena here */ { int32_t msa = bignum_digits(a)[lena], msb = bignum_digits(b)[lena]; if (msa < msb) return YES; else if (msa > msb) return NO; /* * Now the leading digits of the numbers agree, so in particular the numbers * have the same sign. */ while (--lena >= 0) { uint32_t da = bignum_digits(a)[lena], db = bignum_digits(b)[lena]; if (da == db) continue; return (da < db); } return NO; /* numbers are the same */ } } #define lesspbr(a, b) lesspir(a, b) #define lesspbf(a, b) lesspbd(a, float_of_number(b)) #ifdef COMMON static CSLbool lesspri(Lisp_Object a, Lisp_Object b) { push(numerator(a)); b = times2(b, denominator(a)); pop(a); return lessp2(a, b); } static CSLbool lessprs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return lessprd(a, (double)bb.f); } #define lessprb(a, b) lesspri(a, b) #define lessprf(a, b) lessprd(a, float_of_number(b)) #endif #define lesspfi(a, b) (float_of_number(a) < (double)int_of_fixnum(b)) #ifdef COMMON static CSLbool lesspfs(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return float_of_number(a) < (double)bb.f; } #endif #define lesspfb(a, b) lesspdb(float_of_number(a), b) #define lesspfr(a, b) lesspfb(a, b) #define lesspff(a, b) (float_of_number(a) < float_of_number(b)) CSLbool greaterp2(Lisp_Object a, Lisp_Object b) { return lessp2(b, a); } CSLbool lessp2(Lisp_Object a, Lisp_Object b) /* * Note that this type-dispatch does not permit complex numbers to * be compared - their presence will lead to an exception being raised. * This shortens the code (marginally). */ { Lisp_Object nil = C_nil; if (exception_pending()) return NO; switch ((int)a & TAG_BITS) { case TAG_FIXNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: /* For fixnums the comparison happens directly */ return ((int32_t)a < (int32_t)b); #ifdef COMMON case TAG_SFLOAT: return lesspis(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesspib(a, b); #ifdef COMMON case TYPE_RATNUM: return lesspir(a, b); #endif default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: return lesspif(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } #ifdef COMMON case TAG_SFLOAT: switch (b & TAG_BITS) { case TAG_FIXNUM: return lesspsi(a, b); case TAG_SFLOAT: { Float_union aa, bb; aa.i = a - TAG_SFLOAT; bb.i = b - TAG_SFLOAT; return (aa.f < bb.f); } case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesspsb(a, b); case TYPE_RATNUM: return lesspsr(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: return lesspsf(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } #endif case TAG_NUMBERS: { int32_t ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return lesspbi(a, b); #ifdef COMMON case TAG_SFLOAT: return lesspbs(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesspbb(a, b); #ifdef COMMON case TYPE_RATNUM: return lesspbr(a, b); #endif default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: return lesspbf(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } #ifdef COMMON case TYPE_RATNUM: switch (b & TAG_BITS) { case TAG_FIXNUM: return lesspri(a, b); case TAG_SFLOAT: return lessprs(a, b); case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lessprb(a, b); case TYPE_RATNUM: return lessprr(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: return lessprf(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } #endif default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return lesspfi(a, b); #ifdef COMMON case TAG_SFLOAT: return lesspfs(a, b); #endif case TAG_NUMBERS: { int32_t hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return lesspfb(a, b); #ifdef COMMON case TYPE_RATNUM: return lesspfr(a, b); #endif default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } case TAG_BOXFLOAT: return lesspff(a, b); default: return (CSLbool)aerror2("bad arg for lessp", a, b); } default: return (CSLbool)aerror2("bad arg for lessp", a, b); } } /* end of arith04.c */