Overview
Comment: | New example for ident representation |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
d2a6e75b564edb89034de7071a265b3b |
User & Date: | gawthrop@users.sourceforge.net on 2002-09-23 11:16:27 |
Other Links: | branch diff | manifest | tags |
Context
2002-09-23
| ||
11:42:14 | Example uses simulated data from idRC_ident_data check-in: 53e4d8adaf user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
11:16:27 | New example for ident representation check-in: d2a6e75b56 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
11:14:11 | Replacing by new versions check-in: d4d695aba1 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
Changes
Added mttroot/mtt/lib/examples/Identification/idRC/create_data.m version [0dc531b79c].
> > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 | ## Create some data c = 1; r = 5; tau = r*c; t = [0:0.1:10]'; # time one = ones(size(t)); u = one; # Step input y = one - exp(-t/tau); # Exact step response save idRC_ident_data.dat y u t |
Added mttroot/mtt/lib/examples/Identification/idRC/idRC_abg.fig version [d7e806eb37].
> > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | #FIG 3.2 Portrait Center Metric A4 100.00 Single -2 1200 2 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 2250 2475 3600 2475 3375 2700 2 1 0 2 0 7 100 0 -1 0.000 0 0 -1 0 0 3 4500 2475 5850 2475 5625 2700 2 4 0 2 31 7 101 0 -1 0.000 0 0 7 0 0 5 6975 3600 1125 3600 1125 1800 6975 1800 6975 3600 4 1 0 100 0 18 18 0.0000 4 210 600 1800 2565 Se:u\001 4 1 0 100 0 18 18 0.0000 4 210 750 4050 2565 RC:rc\001 4 1 0 100 0 18 18 0.0000 4 270 600 6345 2565 De:y\001 |
Modified mttroot/mtt/lib/examples/Identification/idRC/idRC_desc.tex from [a29ed1a75e] to [aa8ef3738d].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | % -*-latex-*- Put EMACS into LaTeX-mode % Verbal description for system idRC (idRC_desc.tex) % Generated by MTT on Thu Apr 5 11:04:33 BST 2001. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% Version control history % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% $Id$ % %% $Log$ % %% Revision 1.1 2000/12/28 09:13:38 peterg % %% Initial revision % %% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The acausal bond graph of system \textbf{idRC} is displayed in Figure \Ref{fig:idRC_abg.ps} and its label | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | % -*-latex-*- Put EMACS into LaTeX-mode % Verbal description for system idRC (idRC_desc.tex) % Generated by MTT on Thu Apr 5 11:04:33 BST 2001. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% Version control history % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% $Id$ % %% $Log$ % %% Revision 1.1 2001/04/05 11:57:29 gawthrop % %% Identification example % %% % %% Revision 1.1 2000/12/28 09:13:38 peterg % %% Initial revision % %% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The acausal bond graph of system \textbf{idRC} is displayed in Figure \Ref{fig:idRC_abg.ps} and its label |
︙ | ︙ | |||
24 25 26 27 28 29 30 | pp 907--922}. The system is a simple RC circuit with zero initial condition; the method identifies the resitance $r$. To see the results, type: \begin{verbatim} | | > > | 27 28 29 30 31 32 33 34 35 36 37 38 | pp 907--922}. The system is a simple RC circuit with zero initial condition; the method identifies the resitance $r$. To see the results, type: \begin{verbatim} mtt -oct -i euler idRC ident view \end{verbatim} \paragraph{NB} All sensitivity coefficients in idRC_simpar.txt must be set to zero. |
Added mttroot/mtt/lib/examples/Identification/idRC/idRC_ident_data.dat version [aec1f1998e].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | # Created by Octave 2.0.16.92, Mon Sep 23 10:31:48 2002 <peterg@tiree> # name: y # type: matrix # rows: 101 # columns: 1 0 0.0198013266932447 0.0392105608476768 0.0582354664157513 0.0768836536133642 0.0951625819640405 0.113079563282843 0.130641764601194 0.147856211033789 0.164729788588728 0.181269246922018 0.197481202037522 0.213372138933447 0.228948414196434 0.244216258544275 0.259181779318282 0.273850962926309 0.28822967723739 0.302323673928969 0.316138590787644 0.329679953964361 0.342953180184943 0.355963578916859 0.368716354493074 0.381216608193859 0.393469340287367 0.405479452029806 0.41725174762601 0.428790936151185 0.440101633434598 0.451188363905974 0.462055562405326 0.472707575956951 0.483148665508301 0.49338300763441 0.50341469620859 0.513247744040028 0.522886084478966 0.532333572990091 0.541593988694776 0.550671035882778 0.559568345494001 0.56828947657092 0.576837917682251 0.585217088318419 0.593430340259401 0.601480958915486 0.609372164641479 0.617107114024888 0.624688901148601 0.632120558828558 0.639405059826922 0.64654531804122 0.653544189669943 0.660404474355061 0.667128916301921 0.673720205376961 0.680180978183696 0.686513819117395 0.692721261398869 0.698805788087798 0.704769833075986 0.710615782060949 0.71634597350023 0.721962699546806 0.727468206965987 0.73286469803415 0.738154331419674 0.743339223046444 0.748421446940243 0.753403036058394 0.758285983102964 0.763072241317878 0.767763725270241 0.772362311616187 0.77686983985157 0.781288113047785 0.785618898573022 0.789863928799235 0.794024901795117 0.798103482005345 0.802101300916385 0.806019957709108 0.809861019898479 0.81362602396059 0.817316475947265 0.820933852088507 0.824479599383003 0.827955136176949 0.831361852731405 0.834701111778413 0.837974249066119 0.841182573893079 0.844327369632003 0.847409894243116 0.850431380777365 0.85339303786965 0.856296050222297 0.859141579078955 0.861930762689107 0.864664716763387 # name: u # type: matrix # rows: 101 # columns: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # name: t # type: matrix # rows: 101 # columns: 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 |