Overview
Comment:Put in pythag routine to compute z = sqrt(y^2 + z^2) (as in book)
Save loop index l as ll when jumping from loop - using l itself is
undefined
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | origin/master | trunk
Files: files | file ages | folders
SHA3-256: 75f2ff6e3e4a0e5970103e4c6c3effdb43dce3b157304344507a3b248fbca586
User & Date: gawthrop@users.sourceforge.net on 1998-08-12 11:08:03
Other Links: branch diff | manifest | tags
Context
1998-08-12
11:09:02
Initial revision check-in: d9f0abbba3 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
11:08:03
Put in pythag routine to compute z = sqrt(y^2 + z^2) (as in book)
Save loop index l as ll when jumping from loop - using l itself is
undefined
check-in: 75f2ff6e3e user: gawthrop@users.sourceforge.net tags: origin/master, trunk
11:05:33
Taken from NR share library nrpas13 as SVDCMP.PAS
and renamed svdcmp.p
check-in: 1d4b2f5f80 user: gawthrop@users.sourceforge.net tags: origin/master, trunk
Changes

Modified mttroot/mtt/bin/trans/p/svdcmp.p from [98c452acd4] to [3f56cede4f].

1
2
3
4
5
6
7
8
9
10




11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

















31
32
33
34
35
36
37
38
PROCEDURE svdcmp(VAR a: glmpbynp; m,n,mp,np: integer;
		 VAR w: glnparray; VAR v: glnpbynp);


{
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % $Id$
% % $Log$




% % Revision 1.1  1998/08/12 11:03:57  peterg
% % Initial revision
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}


(* Programs using routine SVDCMP must define the types
TYPE
   glnparray = ARRAY [1..np] OF real;
   glmpbynp = ARRAY [1..mp,1..np] OF real;
   glnpbynp = ARRAY [1..np,1..np] OF real;
in the main routine. *)
LABEL 1,2,3;
CONST
   nmax=100;
VAR
   nm,l,k,j,jj,its,i: integer;
   z,y,x,scale,s,h,g,f,c,anorm: real;
   rv1: ARRAY [1..nmax] OF real;

















FUNCTION sign(a,b: real): real;
   BEGIN
      IF (b >= 0.0) THEN sign := abs(a) ELSE sign := -abs(a)
   END;
FUNCTION max(a,b: real): real;
   BEGIN
      IF (a > b) THEN max := a ELSE max := b
   END;










>
>
>
>

















|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
PROCEDURE svdcmp(VAR a: glmpbynp; m,n,mp,np: integer;
		 VAR w: glnparray; VAR v: glnpbynp);


{
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % $Id$
% % $Log$
% % Revision 1.2  1998/08/12 11:05:33  peterg
% % Taken from NR share library nrpas13 as SVDCMP.PAS
% % and renamed svdcmp.p
% %
% % Revision 1.1  1998/08/12 11:03:57  peterg
% % Initial revision
% %
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
}


(* Programs using routine SVDCMP must define the types
TYPE
   glnparray = ARRAY [1..np] OF real;
   glmpbynp = ARRAY [1..mp,1..np] OF real;
   glnpbynp = ARRAY [1..np,1..np] OF real;
in the main routine. *)
LABEL 1,2,3;
CONST
   nmax=100;
VAR
   nm,l,k,j,jj,its,i,ll	       : integer;
   z,y,x,scale,s,h,g,f,c,anorm : real;
   rv1			       : ARRAY [1..nmax] OF real;
			  
FUNCTION pythag(a,b : real): real;
VAR p,at,bt : REAL;
BEGIN
   at:=abs(a);
   bt:=abs(b);
   IF at>bt THEN
      p:= at*sqrt(1.0+sqr(bt/at))
   ELSE
      IF bt=0.0 THEN
	 p := 0.0
      ELSE
	 p := bt*sqrt(1.0+sqr(at/bt));
   pythag := p;
END{pythag};
			   
   
FUNCTION sign(a,b : real): real;
   BEGIN
      IF (b >= 0.0) THEN sign := abs(a) ELSE sign := -abs(a)
   END;
FUNCTION max(a,b: real): real;
   BEGIN
      IF (a > b) THEN max := a ELSE max := b
   END;
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      END;
      anorm := max(anorm,(abs(w[i])+abs(rv1[i])));
   END;
   FOR i := n DOWNTO 1 DO BEGIN
      IF (i < n) THEN BEGIN
         IF (g <> 0.0) THEN BEGIN
            FOR j := l TO n DO BEGIN
               v[j,i] := (a[i,j]/a[i,l])/g
            END;
            FOR j := l TO n DO BEGIN
               s := 0.0;
               FOR k := l TO n DO BEGIN
                  s := s+a[i,k]*v[k,j]
               END;
               FOR k := l TO n DO BEGIN
                  v[k,j] := v[k,j]+s*v[k,i]







|
|







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
      END;
      anorm := max(anorm,(abs(w[i])+abs(rv1[i])));
   END;
   FOR i := n DOWNTO 1 DO BEGIN
      IF (i < n) THEN BEGIN
         IF (g <> 0.0) THEN BEGIN
            FOR j := l TO n DO BEGIN
	       v[j,i] := (a[i,j]/a[i,l])/g;
	    END;
            FOR j := l TO n DO BEGIN
               s := 0.0;
               FOR k := l TO n DO BEGIN
                  s := s+a[i,k]*v[k,j]
               END;
               FOR k := l TO n DO BEGIN
                  v[k,j] := v[k,j]+s*v[k,i]
173
174
175
176
177
178
179
180




181
182




183
184
185
186
187
188
189
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
      END;
      a[i,i] := a[i,i]+1.0
   END;
   FOR k := n DOWNTO 1 DO BEGIN
      FOR its := 1 TO 30 DO BEGIN
         FOR l := k DOWNTO 1 DO BEGIN
            nm := l-1;
            IF ((abs(rv1[l])+anorm) = anorm) THEN GOTO 2;




	    IF nm>0 THEN {* Put in by me - see book *}
	       IF ((abs(w[nm])+anorm) = anorm) THEN GOTO 1




         END;
1:         c := 0.0;
         s := 1.0;
         FOR i := l TO k DO BEGIN
            f := s*rv1[i];
            IF ((abs(f)+anorm) <> anorm) THEN BEGIN
	       g := w[i];
               h := sqrt(f*f+g*g);

               w[i] := h;
               h := 1.0/h;
               c := (g*h);
               s := -(f*h);
               FOR j := 1 TO m DO BEGIN
                  y := a[j,nm];
                  z := a[j,i];
                  a[j,nm] := (y*c)+(z*s);
                  a[j,i] := -(y*s)+(z*c)
               END
            END
         END;
2:         z := w[k];
         IF (l = k) THEN BEGIN
            IF (z < 0.0) THEN BEGIN
               w[k] := -z;
               FOR j := 1 TO n DO BEGIN
               v[j,k] := -v[j,k]
            END
         END;
         GOTO 3
         END;
         IF (its = 30) THEN BEGIN
            writeln ('no convergence in 30 SVDCMP iterations'); readln
         END;
         x := w[l];
         nm := k-1;
         y := w[nm];
         g := rv1[nm];
         h := rv1[k];
         f := ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
         g := sqrt(f*f+1.0);

         f := ((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x;
         c := 1.0;
         s := 1.0;
         FOR j := l TO nm DO BEGIN
            i := j+1;
            g := rv1[i];
            y := w[i];
            h := s*g;
            g := c*g;
            z := sqrt(f*f+h*h);

            rv1[j] := z;
            c := f/z;
            s := h/z;
            f := (x*c)+(g*s);
            g := -(x*s)+(g*c);
            h := y*s;
            y := y*c;
            FOR jj := 1 TO n DO BEGIN
               x := v[jj,j];
               z := v[jj,i];
               v[jj,j] := (x*c)+(z*s);
               v[jj,i] := -(x*s)+(z*c)
            END;
            z := sqrt(f*f+h*h);

            w[j] := z;
            IF (z <> 0.0) THEN BEGIN
               z := 1.0/z;
               c := f*z;
               s := h*z
            END;
            f := (c*g)+(s*y);







|
>
>
>
>

|
>
>
>
>



|



|
>













|










|






|
>



|





|
>













|
>







194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
      END;
      a[i,i] := a[i,i]+1.0
   END;
   FOR k := n DOWNTO 1 DO BEGIN
      FOR its := 1 TO 30 DO BEGIN
         FOR l := k DOWNTO 1 DO BEGIN
            nm := l-1;
            IF ((abs(rv1[l])+anorm) = anorm) THEN
	       BEGIN
		  ll:=l;
		  GOTO 2;
	       END;
	    IF nm>0 THEN {* Put in by me - see book *}
	       IF ((abs(w[nm])+anorm) = anorm) THEN
		  BEGIN
		     ll:=l;
		     GOTO 1
		  END;
         END;
1:         c := 0.0;
         s := 1.0;
         FOR i := ll TO k DO BEGIN
            f := s*rv1[i];
            IF ((abs(f)+anorm) <> anorm) THEN BEGIN
	       g := w[i];
	       {**h := sqrt(f*f+g*g);**}
	       h := pythag(f,g);
               w[i] := h;
               h := 1.0/h;
               c := (g*h);
               s := -(f*h);
               FOR j := 1 TO m DO BEGIN
                  y := a[j,nm];
                  z := a[j,i];
                  a[j,nm] := (y*c)+(z*s);
                  a[j,i] := -(y*s)+(z*c)
               END
            END
         END;
2:         z := w[k];
         IF (ll = k) THEN BEGIN
            IF (z < 0.0) THEN BEGIN
               w[k] := -z;
               FOR j := 1 TO n DO BEGIN
               v[j,k] := -v[j,k]
            END
         END;
         GOTO 3
         END;
         IF (its = 30) THEN BEGIN
            writeln ('no convergence in 30 SVDCMP iterations'); readln
	 END;
         x := w[l];
         nm := k-1;
         y := w[nm];
         g := rv1[nm];
         h := rv1[k];
         f := ((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
	 {***g := sqrt(f*f+1.0); writeln(g);***}
	 g := pythag(f,1.0);
         f := ((x-z)*(x+z)+h*((y/(f+sign(g,f)))-h))/x;
         c := 1.0;
         s := 1.0;
         FOR j := ll TO nm DO BEGIN
            i := j+1;
            g := rv1[i];
            y := w[i];
            h := s*g;
            g := c*g;
            {**z := sqrt(f*f+h*h);**}
	    z := pythag(f,h);
            rv1[j] := z;
            c := f/z;
            s := h/z;
            f := (x*c)+(g*s);
            g := -(x*s)+(g*c);
            h := y*s;
            y := y*c;
            FOR jj := 1 TO n DO BEGIN
               x := v[jj,j];
               z := v[jj,i];
               v[jj,j] := (x*c)+(z*s);
               v[jj,i] := -(x*s)+(z*c)
            END;
            {**z := sqrt(f*f+h*h);**}
	    z := pythag(f,h);
            w[j] := z;
            IF (z <> 0.0) THEN BEGIN
               z := 1.0/z;
               c := f*z;
               s := h*z
            END;
            f := (c*g)+(s*y);
261
262
263
264
265
266
267

         END;
         rv1[l] := 0.0;
         rv1[k] := f;
         w[k] := x
      END;
3:   END
END;








>
294
295
296
297
298
299
300
301
         END;
         rv1[l] := 0.0;
         rv1[k] := f;
         w[k] := x
      END;
3:   END
END;


MTT: Model Transformation Tools
GitHub | SourceHut | Sourceforge | Fossil RSS ]