Overview
Comment: | Added R and P arguments for LQ ppp |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
384a5981e45b1eb67f96e844fc7f30e4 |
User & Date: | gawthrop@users.sourceforge.net on 2002-12-11 12:38:25 |
Other Links: | branch diff | manifest | tags |
Context
2002-12-11
| ||
12:41:01 | Solves ARE for PPP check-in: ec6daeb9f2 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
12:38:25 | Added R and P arguments for LQ ppp check-in: 384a5981e4 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
12:36:12 | Added R and P arguments so that ppp_quad_lin can be used here check-in: a736355170 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_lin.m from [342b9867d7] to [db890617e0].
|
| | | | 1 2 3 4 5 6 7 8 9 | function [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,cond_uu] = ppp_lin(A,B,C,D,A_u,A_w,tau,Q,R,P,max_cond); ## usage: [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,y_u,cond_uu] = ppp_lin(A,B,C,D,A_u,A_w,tau,Q,R,P,max_cond) ## ## Linear PPP (Predictive pole-placement) computation ## INPUTS: ## A,B,C,D: system matrices ## A_u: composite system matrix for U* generation ## one square matrix (A_ui) row for each system input ## each A_ui generates U*' for ith system input. |
︙ | ︙ | |||
31 32 33 34 35 36 37 | ## Check some dimensions [n_x,n_u,n_y] = abcddim(A,B,C,D); if (n_x==-1) return endif | | | > > > > > > > > > > | 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ## Check some dimensions [n_x,n_u,n_y] = abcddim(A,B,C,D); if (n_x==-1) return endif ## Default Q (output weight) if nargin<8 Q = ones(n_y,1); endif ## Default R (input weight) if nargin<9 R = zeros(n_u,1); endif ## Default P (terminal weight) if nargin<10 P = zeros(n_x,n_x); endif ## Default condittion number if nargin<11 max_cond = 1e20; endif [n_U,m_U] = size(A_u); if (n_U != n_u*m_U)&&(n_U != m_U) error("A_u must be square or have N_u rows and N_u/n_u columns"); endif |
︙ | ︙ | |||
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | endif [n_t,m_t] = size(tau); if n_t != 1 error("tau must be a row vector"); endif [n_Q,m_Q] = size(Q); if ((m_Q != 1)&&(m_Q != m_t)) || (n_Q != n_y) error("Q must be a column vector with one row per system output"); endif if (m_Q == 1) # Convert to vector Q(i) Q = Q*ones(1,m_t); # Extend to cover full range of tau endif ##Set up initial states u_0 = ones(m_U,1); w_0 = ones(m_W,1); ## Find y_U - derivative of y* wrt U. i_U = 0; x_0 = zeros(n_x,1); # This is for x=0 y_u = []; # Initialise Us = []; # Initialise for i=1:n_U # Do for each input function U*_i dU = zeros(n_U,1); dU(++i_U) = 1; # Create dU/dU_i | > > | | > > | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | endif [n_t,m_t] = size(tau); if n_t != 1 error("tau must be a row vector"); endif dt = tau(2) - tau(1); # Sample interval [n_Q,m_Q] = size(Q); if ((m_Q != 1)&&(m_Q != m_t)) || (n_Q != n_y) error("Q must be a column vector with one row per system output"); endif if (m_Q == 1) # Convert to vector Q(i) Q = Q*ones(1,m_t); # Extend to cover full range of tau endif ##Set up initial states u_0 = ones(m_U,1); w_0 = ones(m_W,1); ## Find y_U - derivative of y* wrt U. i_U = 0; x_0 = zeros(n_x,1); # This is for x=0 y_u = []; # Initialise x_u_t = []; # Initialise Us = []; # Initialise for i=1:n_U # Do for each input function U*_i dU = zeros(n_U,1); dU(++i_U) = 1; # Create dU/dU_i [ys,us,xs] = ppp_ystar (A,B,C,D,x_0,A_u,dU,tau); # Find ystar and ustar y_u = [y_u ys']; # Save y_u (y for input u) with one row for each t. Us = [Us us']; # Save u (input) with one row for each # t. x_u_t = [x_u_t xs(:,m_t)]; # x_u at terminal time endfor Ws = []; # Initialise if n_W>0 ## Find w* i_W = 0; x_0 = zeros(n_x,1); # This is for x=0 |
︙ | ︙ | |||
136 137 138 139 140 141 142 | ## Add up cost derivatives for each output but weighted by Q. ## Scaled by time interval ## y_u,y_x and Ws should really be 3D matrices, but instead are stored ## with one row for each time and one vector (size n_y) column for ## each element of U ## Scale Q | | > > > > > > > > > > > > > > > > > > | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | ## Add up cost derivatives for each output but weighted by Q. ## Scaled by time interval ## y_u,y_x and Ws should really be 3D matrices, but instead are stored ## with one row for each time and one vector (size n_y) column for ## each element of U ## Scale Q Q = Q*dt; # Scale to give correct units ## Non-w bits for i = 1:n_y # For each output QQ = ones(n_U,1)*Q(i,:); # Resize Q J_uu = J_uu + (QQ .* y_u(:,i:n_y:n_yu)') * y_u(:,i:n_y:n_yu); J_ux = J_ux + (QQ .* y_u(:,i:n_y:n_yu)') * y_x(:,i:n_y:n_yx); QQ = ones(n_x,1)*Q(i,:); # Resize Q J_xx = J_xx + (QQ .* y_x(:,i:n_y:n_yx)') * y_x(:,i:n_y:n_yx); endfor ## Input weighting (scalar for the moment) if (n_u>1) warning("Sorry, cant do n_u>1 just now"); endif ## Scale R R = R*dt; # Scale to give correct units for i = 1:m_t Ust = Us(i,:); J_uu = J_uu + Ust'*R*Ust; endfor ## Exit if badly conditioned cond_uu = cond(J_uu); if cond_uu>max_cond error(sprintf("J_uu is badly conditioned. Condition number = 10^%i",log10(cond_uu))); endif ## Terminal constraint tau_last = tau(m_t); x_x_t = expm(A*tau_last); # deriv. of x*(tau_2) wrt x(0) J_ux = J_ux + x_u_t'*P*x_x_t; J_uu = J_uu + x_u_t'*P*x_u_t; ## w bits if n_W>0 for i = 1:n_y # For each output QQ = ones(n_U,1)*Q(i,:); # Resize Q J_uw = J_uw + (QQ .* y_u(:,i:n_y:n_yu)') * Ws (:,i:n_y:n_yw); QQ = ones(n_x,1)*Q(i,:); # Resize Q J_xw = J_xw + (QQ .* y_x(:,i:n_y:n_yx)') * Ws (:,i:n_y:n_yw); |
︙ | ︙ |