Overview
Comment: | Use exact solution - slow but accurate |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
287b797f1099ec8a037c97629aa54890 |
User & Date: | gawthrop@users.sourceforge.net on 2005-03-04 09:19:53 |
Other Links: | branch diff | manifest | tags |
Context
2005-03-15
| ||
12:04:15 | New labg.fig rep - pretty LaTeX figures. check-in: 8d9e741121 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
2005-03-04
| ||
09:19:53 | Use exact solution - slow but accurate check-in: 287b797f10 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
2005-02-21
| ||
17:39:25 | Fixed vector junctions. check-in: 34a1be3dea user: geraint@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/bin/trans/m/sm2ir.m from [cdcd279f9b] to [4fd52f72ba].
1 | function [Y,X] = sm2ir(A,B,C,D,T,u0,x0); | | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | function [Y,X] = sm2ir(A,B,C,D,T,u0,x0); % sm2ir - state matrix to impulse response. % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %%%%% Model Transformation Tools %%%%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Matlab function sm2ir % [Y,X] = sm2ir(A,B,C,D,T,u0,x0); % A,B,C,D,E - (constrained) state matrices % T vector of time points % u0 input gain vector: u = u0*unit impulse. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% Version control history % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % %% $Id$ % %% $Log$ % %% Revision 1.3 1996/12/05 10:17:34 peterg % %% Put in version control history. % %% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% [Ny,Nu] = size(D); [Ny,Nx] = size(C); if max(max(abs(D)))~=0 |
︙ | ︙ | |||
46 47 48 49 50 51 52 | one = eye(Nx); Y = zeros(N,Ny); X = zeros(N,Nx); dt = T(2)-T(1);% Assumes fixed interval | | | | | > | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | one = eye(Nx); Y = zeros(N,Ny); X = zeros(N,Nx); dt = T(2)-T(1);% Assumes fixed interval ##expAdt = expm(A*dt); % Compute matrix exponential ##expAt = one; i = 0; x = (B*u0+x0); for t = T' i=i+1; if Nx>0 ##expAt = expm(A*t); ##x = expAdt*x; x = expm(A*t)*(B*u0+x0); X(i,:) = x'; if Ny>0 y = C*x; Y(i,:) = y'; end; end; end; |