Overview
Comment: | Revised to work with LQ on alnalogue circuit example with integration |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | origin/master | trunk |
Files: | files | file ages | folders |
SHA3-256: |
19c0c38ddef0f75491646728bf880b82 |
User & Date: | gawthrop@users.sourceforge.net on 2003-10-21 09:30:24 |
Other Links: | branch diff | manifest | tags |
Context
2003-10-21
| ||
09:55:02 | Make time horizon tau part of p_c struct check-in: fb3311a46f user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
09:30:24 | Revised to work with LQ on alnalogue circuit example with integration check-in: 19c0c38dde user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
2003-10-20
| ||
17:10:31 | Link ancestry of version-0-1 to it's source branch check-in: c318408021 user: gawthrop@users.sourceforge.net tags: origin/master, trunk | |
Changes
Modified mttroot/mtt/lib/control/PPP/ppp_lin_quad.m from [2ba9cc3698] to [b791777adb].
1 | function [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] = \ | | < < < < < | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | function [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] = \ ppp_lin_quad (A,B,C,D,tau,Q,R) ## usage:[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] = ## ppp_lin_quad (A,B,C,D,tau,Q,R) ## ## ## Steady-state Linear Quadratic solution ## using Algebraic Riccati equation (ARE) [P,A_u,A_w] = ppp_are (A,B,C,D,Q,R); ## PPP solution [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] = \ ppp_lin(A,B,C,D,A_u,A_w,tau,Q,R,P); endfunction |
Modified mttroot/mtt/lib/control/PPP/ppp_lin_run.m from [96369350d9] to [fdb48937ab].
︙ | ︙ | |||
52 53 54 55 56 57 58 | endif if !struct_contains(p_c,"delta_ol") p_c.delta_ol = 0.5; # OL sample interval endif if !struct_contains(p_c,"T") | | | > > > > > > > > > > > > > > > > > | | | | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | endif if !struct_contains(p_c,"delta_ol") p_c.delta_ol = 0.5; # OL sample interval endif if !struct_contains(p_c,"T") p_c.T = 10; # Last time point. endif if !struct_contains(p_c,"augment") p_c.augment = 0; # Augment basis funs with constant endif if !struct_contains(p_c,"integrate") p_c.integrate = 0; # Augment basis funs with constant endif if !struct_contains(p_c,"Tau_u") p_c.Tau_u = []; p_c.Min_u = []; p_c.Max_u = []; endif if !struct_contains(p_c,"Tau_y") p_c.Tau_y = []; p_c.Min_y = []; p_c.Max_y = []; endif if !struct_contains(p_c,"Method") p_c.Method = "lq"; endif if struct_contains(p_c,"Method") if strcmp(p_c.Method,"lq") p_c.Q = eye(n_y); p_c.R = (0.1^2)*eye(n_u); p_c.n_U = n_x; elseif strcmp(p_c.Method,"original"); if !struct_contains(p_c,"A_w") p_c.A_w = 0; endif if !struct_contains(p_c,"A_u") p_c.n_U = n_x; |
︙ | ︙ | |||
115 116 117 118 119 120 121 | if ControlType==0 # Step input I = 1; # 1 large sample p_c.delta_ol = p_c.T # I K_w = zeros(p_c.n_U,n_y); K_w(1,1) = 1; K_w(2,1) = -1; K_x = zeros(p_c.n_U,n_x); | < > | | | < > > > > | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | if ControlType==0 # Step input I = 1; # 1 large sample p_c.delta_ol = p_c.T # I K_w = zeros(p_c.n_U,n_y); K_w(1,1) = 1; K_w(2,1) = -1; K_x = zeros(p_c.n_U,n_x); else I = ceil(p_c.T/p_c.delta_ol) # Number of large samples if strcmp(p_c.Method, "original") tau = [10:0.1:11]*(2/a_u); # Time horizons [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] =\ ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design elseif strcmp(p_c.Method, "lq") # LQ design tau = [0:0.1:2]; # Time horizons [k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] \ = ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R); p_c.A_u = A_u; else error(sprintf("Control method %s not recognised", p_c.Method)); endif ##Sanity check A_u [p_c.n_U,M_u] = size(p_c.A_u); if (p_c.n_U!=M_u) error("A_u must be square"); endif ## Checks [ol_zeros, ol_poles] = sys2zp(sys) cl_poles = eig(A - B*k_x) endif ## Initial control U U = zeros(p_c.n_U,1); ## Short sample interval dt = p_c.delta_ol/p_c.N; ## Observer design G = eye(n_x); # State noise gain sigma_x = eye(n_x); # State noise variance |
︙ | ︙ | |||
176 177 178 179 180 181 182 | endif ## Display the poles obs_poles ## Write the include file for the real-time function ## Use double length to allow for overuns | < | > > > > > > > | | | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | endif ## Display the poles obs_poles ## Write the include file for the real-time function ## Use double length to allow for overuns overrun = 2; Ustar = ppp_ustar (p_c.A_u, n_u, [0:dt:overrun*p_c.delta_ol], 0,0); if p_c.integrate # Integrate Ustar disp("Integrating Ustar"); Ustar = cumsum(Ustar)*dt; endif disp("Writing Ustar.h"); ppp_ustar2h(Ustar); ## Control loop y = []; u = []; t = []; y_e = []; t_e = []; e_e = []; tick = time; i=0; for j=1:4 for k=1:I tim=time; # Timing i++; if Simulate # Exact simulation t_sim = [1:p_c.N]*dt; # Simulation time points [yi,ui,xsi] = ppp_ystar(A,B,C,D,x,p_c.A_u,U,t_sim); # Simulate x = xsi(:,p_c.N); # Current state (for next time) ti = [(i-1)*p_c.N:i*p_c.N-1]*dt; y_i = yi(1); # Current output t_i = ti(1); |
︙ | ︙ | |||
221 222 223 224 225 226 227 | Ui = A_ud'*Ui; y_e = [y_e; y_new']; e_e = [e_e; e_est']; endfor endif ##Control | > | > > > > > > > > > > > > > > > > > | | | > > < | 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | Ui = A_ud'*Ui; y_e = [y_e; y_new']; e_e = [e_e; e_est']; endfor endif ##Control if ( (p_c.Tau_u==[])&&(p_c.Tau_y==[]) ) U = K_w*w - K_x*x_est; else ## Input constraints [Gamma_u, gamma_u] = \ ppp_input_constraints(p_c.A_u,p_c.Tau_u,p_c.Min_u,p_c.Max_u); ## Output constraints [Gamma_y,gamma_y] = \ ppp_output_constraints(A,B,C,D,x_est,p_c.A_u,\ p_c.Tau_y,p_c.Min_y,p_c.Max_y); ## Composite constraints - t=0 Gamma = [Gamma_u; Gamma_y]; gamma = [gamma_u; gamma_y]; [u_qp,U] = ppp_qp (x_est,w,J_uu,J_ux,J_uw,Us0,Gamma,gamma,1e-6,1); endif ## Save data if Simulate t = [t;ti']; y = [y;yi']; u = [u;ui']; else t = [t;t_i]; y = [y;y_i']; u = [u;u_i']; endif if strcmp(p_o.method, "intermittent") y_e = [y_e; y_new']; e_e = [e_e; e_est']; t_e = [t_e; t_i]; endif if !Simulate delta_comp = time-tim; usleep(floor(1e6*(p_c.delta_ol-delta_comp-0.01))); endif endfor # Main loop w = -w; endfor # Outer loop if !Simulate ppp_put_get(0*U); # Reset to zero endif if strcmp(p_o.method, "continuous") t_e = t; |
︙ | ︙ |