1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
#include <octave/oct.h>
#include "useful-functions.hh"
#include <octave/xdiv.h>
static inline int
result_ok (int info, double rcond, int warn = 1)
{
assert (info != -1);
if (info == -2)
{
if (warn)
warning ("matrix singular to machine precision, rcond = %g", rcond);
else
error ("matrix singular to machine precision, rcond = %g", rcond);
return 0;
}
else
return 1;
}
bool
mx_leftdiv_conform (const Matrix& a, const ColumnVector& b)
{
int a_nr = a.rows ();
int b_nr = b.length ();
if (a_nr != b_nr)
{
int a_nc = a.cols ();
int b_nc = 1;
gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc);
return false;
}
return true;
}
// need to update xdiv.cc ?
inline ColumnVector
ldiv (const Matrix &a, const ColumnVector &b)
{
if (! mx_leftdiv_conform (a, b))
return ColumnVector ();
int info;
if (a.rows () == a.columns ())
{
double rcond = 0.0;
ColumnVector result = a.solve (b, info, rcond);
if (result_ok (info, rcond))
return result;
}
int rank;
return a.lssolve (b, info, rank);
}
#ifdef STANDALONE
ColumnVector Fmtt_implicit ( ColumnVector &x,
const ColumnVector &dx,
const Matrix &AA,
const ColumnVector &AAx,
const double &t,
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
1
2
3
4
5
6
7
8
9
|
#include <octave/oct.h>
#include <octave/xdiv.h>
#ifdef STANDALONE
ColumnVector Fmtt_implicit ( ColumnVector &x,
const ColumnVector &dx,
const Matrix &AA,
const ColumnVector &AAx,
const double &t,
|
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
{
if (0 != openx (i))
{
n--;
}
}
static ColumnVector tmp_dx (n);
static ColumnVector tmp_x (n);
static ColumnVector tmp_AAx (n);
static Matrix tmp_AA (n, n);
for (row_new = row_old = 0; row_old < Nx; row_old++)
{
if (0 == openx (row_old))
{
tmp_dx (row_new) = dx (row_old);
tmp_AAx (row_new) = AAx (row_old);
for (col_new = col_old = 0; col_old < Nx; col_old++)
{
if (0 == openx (col_old))
{
// xxx: this can be improved by symmetry
tmp_AA (row_new,col_new) = AA (row_old,col_old);
col_new++;
}
}
row_new++;
}
}
// can't get ldiv to work - doesn't like ColVector
// tmp_x = tmp_AA.pseudo_inverse () * tmp_AAx + t * tmp_dx;
tmp_x = ldiv (tmp_AA, (tmp_AAx + t * tmp_dx));
row_new = 0;
for (row_old = 0; row_old < Nx; row_old++)
{
if (0 == openx (row_old))
{
x (row_old) = tmp_x (row_new);
row_new++;
}
else
{
x (row_old) = 0.0;
}
}
|
|
|
|
|
|
|
<
<
|
|
|
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
{
if (0 != openx (i))
{
n--;
}
}
static Matrix tmp_dx (n,1);
static Matrix tmp_x (n,1);
static Matrix tmp_AAx (n,1);
static Matrix tmp_AA (n,n);
for (row_new = row_old = 0; row_old < Nx; row_old++)
{
if (0 == openx (row_old))
{
tmp_dx (row_new,0) = dx (row_old);
tmp_AAx (row_new,0) = AAx (row_old);
for (col_new = col_old = 0; col_old < Nx; col_old++)
{
if (0 == openx (col_old))
{
// xxx: this can be improved by symmetry
tmp_AA (row_new,col_new) = AA (row_old,col_old);
col_new++;
}
}
row_new++;
}
}
tmp_x = xleftdiv (tmp_AA, (tmp_AAx + tmp_dx * t));
row_new = 0;
for (row_old = 0; row_old < Nx; row_old++)
{
if (0 == openx (row_old))
{
x (row_old) = tmp_x (row_new,0);
row_new++;
}
else
{
x (row_old) = 0.0;
}
}
|