1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.11 1998/08/25 12:28:31 peterg
## Move initila switch to after initial input
##
## Revision 1.10 1998/08/25 12:22:45 peterg
## Put _switch after update and also at initilisation
##
## Revision 1.9 1998/08/15 13:46:59 peterg
|
>
>
>
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.12 1998/08/27 08:55:18 peterg
## Mods to integration methods
##
## Revision 1.11 1998/08/25 12:28:31 peterg
## Move initila switch to after initial input
##
## Revision 1.10 1998/08/25 12:22:45 peterg
## Put _switch after update and also at initilisation
##
## Revision 1.9 1998/08/15 13:46:59 peterg
|
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
$1_numpar; # Read in parameters
MTTilast = round(mttlast/mttdt); # Total number of steps
#Initialise
MTTt = 0.0;
[MTTx] = $1_state; # Read in initial state
[MTTu] = $1_input(MTTx,MTTt); # Evaluate initial input
[MTTx] = $1_switch(MTTx); # Switches
[MTTy] = $1_odeo(MTTx,MTTu,MTTt); # Evaluate initial output
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny); # And write them
[mttAA] = zero_matrix($Nx); # Zero the A matrix
[mttAAx] = zero_vector($Nx); # Zero the AAx vector
if mttmethod==1 # Euler
MTTddt = mttdt/mttstepfactor; # The small sample interval
endif;
#Integration loop
for MTTit = 1:MTTilast
[MTTu] = $1_input(MTTx,MTTt); # Input
if mttmethod==1 # Euler
for MTTjt = 1:mttstepfactor
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[MTTx] = mtt_euler(MTTx,MTTdx,MTTddt,$Nx); # Euler update
MTTt = MTTt + MTTddt;
endfor;
endif;
if mttmethod==2 # Implicit
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[mttAA,mttAAx] = $1_smx(MTTx,MTTu,mttdt); # (I-Adt) and (I-Adt)x
[MTTx] = mtt_implicit(MTTx,MTTdx,mttAA,mttAAx,mttdt,$Nx); # Implicit update
MTTt = MTTt + mttdt;
endif;
[MTTx] = $1_switch(MTTx); # Switches
[MTTy] = $1_odeo(MTTx,MTTu,MTTt);
|
<
>
>
>
|
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
$1_numpar; # Read in parameters
MTTilast = round(mttlast/mttdt); # Total number of steps
#Initialise
MTTt = 0.0;
[MTTx] = $1_state; # Read in initial state
[MTTu] = $1_input(MTTx,MTTt); # Evaluate initial input
[MTTy] = $1_odeo(MTTx,MTTu,MTTt); # Evaluate initial output
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny); # And write them
[mttAA] = zero_matrix($Nx); # Zero the A matrix
[mttAAx] = zero_vector($Nx); # Zero the AAx vector
[MTTx] = $1_switch(MTTx); # Switches
if mttmethod==1 # Euler
MTTddt = mttdt/mttstepfactor; # The small sample interval
endif;
#Integration loop
for MTTit = 1:MTTilast
[MTTu] = $1_input(MTTx,MTTt); # Input
if mttmethod==1 # Euler
for MTTjt = 1:mttstepfactor
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[MTTx] = mtt_euler(MTTx,MTTdx,MTTddt,$Nx); # Euler update
MTTt = MTTt + MTTddt;
endfor;
endif;
if mttmethod==2 # Implicit
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[mttAA,mttAAx] = $1_smx(MTTx,MTTu,mttdt); # (I-Adt) and (I-Adt)x
[mttAA] = $1_switchA(mttAA,MTTx); # Switches
[MTTx] = mtt_implicit(MTTx,MTTdx,mttAA,mttAAx,mttdt,$Nx); # Implicit update
MTTt = MTTt + mttdt;
endif;
[MTTx] = $1_switch(MTTx); # Switches
[MTTy] = $1_odeo(MTTx,MTTu,MTTt);
|