#! /bin/sh
######################################
##### Model Transformation Tools #####
######################################
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.12 1998/08/27 08:55:18 peterg
## Mods to integration methods
##
## Revision 1.11 1998/08/25 12:28:31 peterg
## Move initila switch to after initial input
##
## Revision 1.10 1998/08/25 12:22:45 peterg
## Put _switch after update and also at initilisation
##
## Revision 1.9 1998/08/15 13:46:59 peterg
## New versions of integration routines
##
## Revision 1.8 1998/08/11 13:28:03 peterg
## Lowercase mttLAST etc
##
## Revision 1.7 1998/07/30 11:29:54 peterg
## Added implicit integration stuff
##
## Revision 1.6 1998/07/30 10:44:37 peterg
## INcluded othe integration methods.
##
## Revision 1.5 1998/07/26 11:02:20 peterg
## Put mtt or MTT in front of variable names to avoid clashes with
## globals
##
## Revision 1.4 1998/07/25 20:14:00 peterg
## update code added for flexibility and octave efficiency
##
###############################################################
# Bourne shell script: make_ode2odes
# Copyright (c) P.J.Gawthrop July 1998.
# Tell user
echo Creating $1_ode2odes.m
Sys=$1
# Find system constants
Nx=`grep "MTTNx " <$Sys\_def.r | awk '{print $3}' | sed 's/;//'`
Nu=`grep "MTTNu " <$Sys\_def.r | awk '{print $3}' | sed 's/;//'`
Ny=`grep "MTTNy " <$Sys\_def.r | awk '{print $3}' | sed 's/;//'`
cat << EOF > $1_ode2odes.m
# Program $1_ode2odes
EOF
# Do the globals
sympar2global_txt2m $1 >> $1_ode2odes.m
# The rest of the program
cat << EOF >> $1_ode2odes.m
$1_simpar; # Read in simulation parameters
$1_numpar; # Read in parameters
MTTilast = round(mttlast/mttdt); # Total number of steps
#Initialise
MTTt = 0.0;
[MTTx] = $1_state; # Read in initial state
[MTTu] = $1_input(MTTx,MTTt); # Evaluate initial input
[MTTy] = $1_odeo(MTTx,MTTu,MTTt); # Evaluate initial output
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny); # And write them
[mttAA] = zero_matrix($Nx); # Zero the A matrix
[mttAAx] = zero_vector($Nx); # Zero the AAx vector
[MTTx] = $1_switch(MTTx); # Switches
if mttmethod==1 # Euler
MTTddt = mttdt/mttstepfactor; # The small sample interval
endif;
#Integration loop
for MTTit = 1:MTTilast
[MTTu] = $1_input(MTTx,MTTt); # Input
if mttmethod==1 # Euler
for MTTjt = 1:mttstepfactor
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[MTTx] = mtt_euler(MTTx,MTTdx,MTTddt,$Nx); # Euler update
MTTt = MTTt + MTTddt;
endfor;
endif;
if mttmethod==2 # Implicit
[MTTdx] = $1_ode(MTTx,MTTu,MTTt); # State derivative
[mttAA,mttAAx] = $1_smx(MTTx,MTTu,mttdt); # (I-Adt) and (I-Adt)x
[mttAA] = $1_switchA(mttAA,MTTx); # Switches
[MTTx] = mtt_implicit(MTTx,MTTdx,mttAA,mttAAx,mttdt,$Nx); # Implicit update
MTTt = MTTt + mttdt;
endif;
[MTTx] = $1_switch(MTTx); # Switches
[MTTy] = $1_odeo(MTTx,MTTu,MTTt);
mtt_write(MTTt,MTTx,MTTy,$Nx,$Ny);
endfor; # Integration loop
EOF