52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
-
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
+
-
+
|
endif
if !struct_contains(p_c,"delta_ol")
p_c.delta_ol = 0.5; # OL sample interval
endif
if !struct_contains(p_c,"T")
p_c.T = 2.5; # Last time point.
p_c.T = 10; # Last time point.
endif
if !struct_contains(p_c,"augment")
p_c.augment = 1; # Augment basis funs with contand
p_c.augment = 0; # Augment basis funs with constant
endif
if !struct_contains(p_c,"integrate")
p_c.integrate = 0; # Augment basis funs with constant
endif
if !struct_contains(p_c,"Tau_u")
p_c.Tau_u = [];
p_c.Min_u = [];
p_c.Max_u = [];
endif
if !struct_contains(p_c,"Tau_y")
p_c.Tau_y = [];
p_c.Min_y = [];
p_c.Max_y = [];
endif
if !struct_contains(p_c,"Method")
p_c.Method = "original";
p_c.Method = "lq";
endif
if struct_contains(p_c,"Method")
if strcmp(p_c.Method,"lq")
if strcmp(p_c.Method,"lq")
p_c.Q = eye(n_y);
p_c.R = (0.25^2)*eye(n_u);
p_c.R = (0.1^2)*eye(n_u);
p_c.n_U = n_x;
elseif strcmp(p_c.Method,"original");
if !struct_contains(p_c,"A_w")
p_c.A_w = 0;
endif
if !struct_contains(p_c,"A_u")
p_c.n_U = n_x;
|
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
-
+
-
+
-
+
-
+
-
+
+
+
+
|
if ControlType==0 # Step input
I = 1; # 1 large sample
p_c.delta_ol = p_c.T # I
K_w = zeros(p_c.n_U,n_y);
K_w(1,1) = 1;
K_w(2,1) = -1;
K_x = zeros(p_c.n_U,n_x);
U = K_w*w; # Initial control U
else
I = ceil(p_c.T/p_c.delta_ol) # Number of large samples
if strcmp(p_c.Method, "original")
tau = [10:0.1:11]*(2/a_u); # Time horizons
[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww] =\
[k_x,k_w,K_x,K_w] = ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
ppp_lin(A,B,C,D,p_c.A_u,p_c.A_w,tau); # Design
elseif strcmp(p_c.Method, "lq") # LQ design
tau = [0:0.1:2.0]*1; # Time horizons
tau = [0:0.1:2]; # Time horizons
[k_x,k_w,K_x,K_w,Us0,J_uu,J_ux,J_uw,J_xx,J_xw,J_ww,A_u] \
= ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R,p_c.augment);
= ppp_lin_quad (A,B,C,D,tau,p_c.Q,p_c.R);
p_c.A_u = A_u;
else
error(sprintf("Control method %s not recognised", p_c.Method));
endif
##Sanity check A_u
[p_c.n_U,M_u] = size(p_c.A_u);
if (p_c.n_U!=M_u)
error("A_u must be square");
endif
U = K_w*w; # Initial control U
## Checks
[ol_zeros, ol_poles] = sys2zp(sys)
cl_poles = eig(A - B*k_x)
endif
## Initial control U
U = zeros(p_c.n_U,1);
## Short sample interval
dt = p_c.delta_ol/p_c.N;
## Observer design
G = eye(n_x); # State noise gain
sigma_x = eye(n_x); # State noise variance
|
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
-
-
+
+
+
+
+
+
+
+
-
+
-
+
|
endif
## Display the poles
obs_poles
## Write the include file for the real-time function
## Use double length to allow for overuns
disp("Writing Ustar.h");
overrun = 2;
ppp_ustar2h(ppp_ustar (p_c.A_u, n_u, [0:dt:overrun*p_c.delta_ol], 0,0));
Ustar = ppp_ustar (p_c.A_u, n_u, [0:dt:overrun*p_c.delta_ol], 0,0);
if p_c.integrate # Integrate Ustar
disp("Integrating Ustar");
Ustar = cumsum(Ustar)*dt;
endif
disp("Writing Ustar.h");
ppp_ustar2h(Ustar);
## Control loop
y = [];
u = [];
t = [];
y_e = [];
t_e = [];
e_e = [];
tick = time;
i=0;
for j=1:10
for j=1:4
for k=1:I
tim=time; # Timing
i++
i++;
if Simulate # Exact simulation
t_sim = [1:p_c.N]*dt; # Simulation time points
[yi,ui,xsi] = ppp_ystar(A,B,C,D,x,p_c.A_u,U,t_sim); # Simulate
x = xsi(:,p_c.N); # Current state (for next time)
ti = [(i-1)*p_c.N:i*p_c.N-1]*dt;
y_i = yi(1); # Current output
t_i = ti(1);
|
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
+
+
-
|
Ui = A_ud'*Ui;
y_e = [y_e; y_new'];
e_e = [e_e; e_est'];
endfor
endif
##Control
if ( (p_c.Tau_u==[])&&(p_c.Tau_y==[]) )
U = K_w*w - K_x*x_est;
U = K_w*w - K_x*x_est;
else
## Input constraints
[Gamma_u, gamma_u] = \
ppp_input_constraints(p_c.A_u,p_c.Tau_u,p_c.Min_u,p_c.Max_u);
## Output constraints
[Gamma_y,gamma_y] = \
ppp_output_constraints(A,B,C,D,x_est,p_c.A_u,\
p_c.Tau_y,p_c.Min_y,p_c.Max_y);
## Composite constraints - t=0
Gamma = [Gamma_u; Gamma_y];
gamma = [gamma_u; gamma_y];
[u_qp,U] = ppp_qp (x_est,w,J_uu,J_ux,J_uw,Us0,Gamma,gamma,1e-6,1);
endif
## Save data
if Simulate
t = [t;ti'];
y = [y;yi'];
u = [u;ui'];
else
t = [t;t_i];
y = [y;y_i'];
u = [u;u_i'];
endif
if strcmp(p_o.method, "intermittent")
y_e = [y_e; y_new'];
e_e = [e_e; e_est'];
t_e = [t_e; t_i];
endif
delta_comp = time-tim;
usleep(floor(1e6*(p_c.delta_ol-delta_comp-0.01)));
if !Simulate
delta_comp = time-tim;
usleep(floor(1e6*(p_c.delta_ol-delta_comp-0.01)));
endif
endfor # Main loop
w = -w;
endfor # Outer loop
if !Simulate
ppp_put_get(0*U); # Reset to zero
endif
if strcmp(p_o.method, "continuous")
t_e = t;
|