function [Gamma,gamma] = ppp_input_constraint (A_u,Tau,Min,Max,Order,i_u,n_u) ## usage: [Gamma,gamma] = ppp_input_constraint (A_u,Tau,Min,Max,Order,i_u,n_u) ## ## Derives the input constraint matrices Gamma and gamma ## For Constraints Min and max at times Tau ## Order=0 - input constraints ## Order=1 - input derivative constraints ## etc ## i_u: Integer index of the input to be constrained ## n_u: Number of inputs ## NOTE You can stack up Gamma and gamma matrices for create ## multi-input constraints. ## Limits at inf and -inf are discarded ## Copyright (C) 1999 by Peter J. Gawthrop ## $Id$ ## Sizes [n_U,m_U] = size(A_u); # Number of basis functions [n,N_t] = size(Tau); # Number of constraint times ## Defaults if nargin<5 Order = zeros(1,N_t); endif if nargin<6 i_u = 1; n_u = 1; endif if N_t==0 # Nothing to be done Gamma = []; gamma = []; return endif if n != 1 error("Tau must be a row vector"); endif n = length(Min); m = length(Max); o = length(Order); if (n != N_t)||(m != N_t)||(o != N_t) error("Tau, Min, Max and Order must be the same length"); endif ## Extract the A_i matrix for this input A_i = ppp_extract(A_u,i_u); ## Create the constraints in the form: Gamma*U < gamma Gamma = []; gamma = []; one = ones(m_U,1); i=0; zero_l = zeros(1,(i_u-1)*m_U); # Pad left-hand zero_r = zeros(1,(n_u-i_u)*m_U); # Pad right-hand for tau = Tau # Stack constraints for each tau i++; Gamma_tau = ( A_i^Order(i) * expm(A_i*tau) * one )'; Gamma_tau = [ zero_l Gamma_tau zero_r ]; # Only for i_uth input if Max(i)<inf Gamma = [Gamma; Gamma_tau]; gamma = [gamma; Max(i)]; endif if Min(i)>-inf Gamma = [Gamma; -Gamma_tau]; gamma = [gamma; -Min(i)]; endif endfor endfunction