function [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha,View) ## Usage: [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha) ## system_name String containg system name ## y_s actual system output ## theta_0 initial parameter estimate ## free Indices of the free parameters within theta_0 ## weight Weighting function - same dimension as y_s ## method "time" or "freq" ## criterion convergence criterion ## max_iterations limit to number of iterations ## alpha Optimisation gain parameter ## Copyright (C) 1999 by Peter J. Gawthrop if nargin<4 method="time"; endif N = length(theta_0); if nargin<5 free = [1:N]; endif if nargin<6 weight = ones(size(y_s)); endif if nargin<7 criterion = 1e-7; endif if nargin <8 max_iterations = 25; endif if nargin<9 alpha = 0.1; endif if nargin<10 View = 0; endif if (!strcmp(method,"time"))&&(!strcmp(method,"freq")) error("method must be either time or freq") endif [n_data,n_y] = size(y_s); n_th = length(free); error_old = inf; error=1e50; theta = theta_0; Theta = []; Error = []; Y = []; iterations = 0; while (abs(error_old-error)>criterion)&&(abs(error)>criterion)&&(iterations<max_iterations) iterations = iterations + 1; error_old_old = error_old; error_old = error; eval(sprintf("[t,y,y_theta] = \ mtt_s%s(system_name,theta,free);",method)); # Simulate system if View xlabel(""); title(sprintf("mtt_optimise: Weighted actual and estimated Interation %i", iterations)); plot(t,y.*weight,t,y_s.*weight); endif error = 0; J = zeros(n_th,1); JJ = zeros(n_th,n_th); for i = 1:n_y E = weight(:,i).*(y(:,i) - y_s(:,i)); # Weighted error error = error + (E'*E); # Sum the error Weight = weight(:,i)*ones(1,n_th); # Sensitivity weight y_theta_w = Weight.*y_theta(:,i:n_y:n_y*n_th); # Weighted sensitivity J = J + real(y_theta_w'*E); # Jacobian JJ = JJ + real(y_theta_w'*y_theta_w); # Newton Euler approx Hessian endfor error if error<(error_old+criterion) # Save some diagnostics Error = [Error error]; # Save error Theta = [Theta theta]; # Save parameters Y = [Y y]; # Save output endif ## Update the estimate if we are not done yet. if (abs(error_old-error)>criterion)&&(abs(error)>criterion)&&(iterations<max_iterations) if error>(error_old+criterion) # Reduce step size and try again factor = 10; disp(sprintf("%2.2f*step",alpha)); error = error_old; # Go back to previous error value error_old = inf; # Don't let it think its converged theta(free) = theta(free) + step; # Reverse step step = alpha*step; # new stepsize else # Recompute step size tol = 1e-5; step = pinv(JJ,tol)*J; # Step size #step = pinv(JJ)*J; # Step size (built in tol) endif theta(free) = theta(free) - step; # Increment parameters endif ## theta endwhile endfunction