function [par,Par,Error,Y,iterations] = ppp_optimise(system_name,x_0,u,t,par_0,free,y_0,extras); ## Usage: [par,Par,Error,Y,iterations] = ppp_optimise(system_name,x_0,u,t,par_0,free,y_0,weight,extras); ## system_name String containg system name ## y_s actual system output ## theta_0 initial parameter estimate ## free Indices of the free parameters within theta_0 ## weight Weighting function - same dimension as y_s ## extras.criterion convergence criterion ## extras.max_iterations limit to number of iterations ## extras.v Initial Levenberg-Marquardt parameter ## Copyright (C) 1999,2000 by Peter J. Gawthrop ## Extract indices i_t = free(:,1); # Parameters i_s = free(:,2)'; # Sensitivities if nargin<8 extras.criterion = 1e-5; extras.max_iterations = 10; extras.v = 1e-5; extras.verbose = 0; endif [n_y,n_data] = size(y_0); n_th = length(i_s); error_old = inf; error_old_old = inf; error = 1e50; reduction = 1e50; par = par_0; Par = par_0; step = ones(n_th,1); Error = []; Y = []; iterations = 0; v = extras.v; # Levenverg-Marquardt parameter. r = 1; # Step ratio while (abs(reduction)>extras.criterion)&&\ (abs(error)>extras.criterion)&&\ (iterations<extras.max_iterations) iterations = iterations + 1; # Increment iteration counter [y,y_par] = eval(sprintf("%s_sim(x_0,u,t,par,i_s)", system_name)); # Simulate ##Evaluate error, cost derivative J and cost second derivative JJ error = 0; J = zeros(n_th,1); JJ = zeros(n_th,n_th); for i = 1:n_y E = y(i,:) - y_0(i,:); # Error error = error + (E*E'); # Sum the error over outputs y_par_i = y_par(i:n_y:n_y*n_th,:); J = J + y_par_i*E'; # Jacobian JJ = JJ + y_par_i*y_par_i'; # Newton Euler approx Hessian (with LM # term endfor if iterations>1 # Adjust the Levenberg-Marquardt parameter reduction = error_old-error; predicted_reduction = 2*J'*step + step'*JJ*step; r = predicted_reduction/reduction; if (r<0.25)||(reduction<0) v = 4*v; elseif r>0.75 v = v/2; endif if extras.verbose printf("Iteration: %i\n", iterations); printf(" error: %g\n", error); printf(" reduction: %g\n", reduction); printf(" prediction: %g\n", predicted_reduction); printf(" ratio: %g\n", r); printf(" L-M param: %g\n", v); printf(" parameters: "); for i_th=1:n_th printf("%g ", par(i_t(i_th))); endfor printf("\n"); endif if reduction<0 # Its getting worse par(i_t) = par(i_t) + step; # rewind parameter error = error_old; # rewind error error_old = error_old_old; # rewind old error if extras.verbose printf(" Rewinding ....\n"); endif endif endif ## Compute step using pseudo inverse JJL = JJ + v*eye(n_th); # Levenberg-Marquardt term step = pinv(JJL)*J; # Step size par(i_t) = par(i_t) - step; # Increment parameters error_old_old = error_old; # Save old error error_old = error; # Save error ##Some diagnostics Error = [Error error]; # Save error Par = [Par par]; # Save parameters Y = [Y; y]; # Save output endwhile endfunction