Check-in [c62581c2a6]
Overview
Comment:Removed the compressor alias type from predictor, use ioutil.WriterFunc
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:c62581c2a644cab7abdb5e728c73cd013f9fd454
User & Date: spaskalev on 2014-12-23 09:32:00
Other Links: manifest | tags
Context
2014-12-23
10:38
Added MinReader to ioutils, CC at 100% check-in: 47b221d5b4 user: spaskalev tags: trunk
09:32
Removed the compressor alias type from predictor, use ioutil.WriterFunc check-in: c62581c2a6 user: spaskalev tags: trunk
08:15
Removed the decompressor alias type from predictor, use ioutil.ReaderFunc check-in: 2b049247ed user: spaskalev tags: trunk
Changes

Modified src/0dev.org/predictor/predictor.go from [4bb1d52139] to [7a1990432a].

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val byte) {
	ctx.hash = (ctx.hash << 4) ^ uint16(val)
}

type compressor func([]byte) error

func (w compressor) Write(data []byte) (int, error) {
	return len(data), w(data)
}

// Returns an io.Writer implementation that wraps the provided io.Writer
// and compresses data according to the predictor algorithm
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) io.Writer {
	var ctx context
	ctx.input = make([]byte, 0, 8)

	// Forward declaration as it is required for recursion
	var write compressor

	write = func(data []byte) error {
		var (
			blockSize    int = 8
			bufferLength int = len(ctx.input)

		)

		// Force a flush if we are called with no data to write
		if len(data) == 0 {
			// Nothing to flush if the buffer is empty though
			if len(ctx.input) == 0 {
				return nil
			}
			// We can't have more than 7 bytes in the buffer so this is safe
			data, blockSize, bufferLength = ctx.input, len(ctx.input), 0

		}

		// Check if there are pending bytes in the buffer
		if len(data) < blockSize || bufferLength > 0 {

			// If the current buffer + new data can fit into a block
			if (len(data) + bufferLength) <= blockSize {
				ctx.input = append(ctx.input, data...)

				// Flush the block if the buffer fills it
				if len(ctx.input) == blockSize {
					return write(nil)
				}
				// ... otherwise just return
				return nil
			}

			// The current buffer + new data overflow the block size
			// Complete the block, flush it ...
			ctx.input = append(ctx.input, data[:blockSize-bufferLength]...)
			if err := write(nil); err != nil {
				return err
			}
			// ... and stage the rest of the data in the buffer
			ctx.input = append(ctx.input, data[blockSize-bufferLength:]...)
			return nil
		}

		var buf []byte = make([]byte, 1, blockSize+1)
		for block := 0; block < len(data)/blockSize; block++ {
			for i := 0; i < blockSize; i++ {
				var current byte = data[(block*blockSize)+i]
				if ctx.table[ctx.hash] == current {
					// Guess was right - don't output
					buf[0] |= 1 << uint(i)
				} else {
					// Guess was wrong, output char
					ctx.table[ctx.hash] = current
					buf = append(buf, current)
				}
				ctx.update(current)
			}

			if _, err := writer.Write(buf); err != nil {
				return err
			}

			// Reset the flags and buffer for the next iteration
			buf, buf[0] = buf[:1], 0
		}

		if remaining := len(data) % blockSize; remaining > 0 {
			ctx.input = ctx.input[:remaining]
			copy(ctx.input, data[len(data)-remaining:])
		} else {
			ctx.input = ctx.input[:0]
		}

		return nil
	}

	return write
}

// Returns an io.Reader implementation that wraps the provided io.Reader
// and decompresses data according to the predictor algorithm







<
<
<
<
<
<










|

|



>



|


|


|
>



|


|







|





|
|



|



|













|
|






|

|




|







19
20
21
22
23
24
25






26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val byte) {
	ctx.hash = (ctx.hash << 4) ^ uint16(val)
}







// Returns an io.Writer implementation that wraps the provided io.Writer
// and compresses data according to the predictor algorithm
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) io.Writer {
	var ctx context
	ctx.input = make([]byte, 0, 8)

	// Forward declaration as it is required for recursion
	var write iou.WriterFunc

	write = func(data []byte) (int, error) {
		var (
			blockSize    int = 8
			bufferLength int = len(ctx.input)
			datalength   int = len(data)
		)

		// Force a flush if we are called with no data to write
		if datalength == 0 {
			// Nothing to flush if the buffer is empty though
			if len(ctx.input) == 0 {
				return 0, nil
			}
			// We can't have more than 7 bytes in the buffer so this is safe
			data, datalength = ctx.input, len(ctx.input)
			blockSize, bufferLength = datalength, 0
		}

		// Check if there are pending bytes in the buffer
		if datalength < blockSize || bufferLength > 0 {

			// If the current buffer + new data can fit into a block
			if (datalength + bufferLength) <= blockSize {
				ctx.input = append(ctx.input, data...)

				// Flush the block if the buffer fills it
				if len(ctx.input) == blockSize {
					return write(nil)
				}
				// ... otherwise just return
				return datalength, nil
			}

			// The current buffer + new data overflow the block size
			// Complete the block, flush it ...
			ctx.input = append(ctx.input, data[:blockSize-bufferLength]...)
			if c, err := write(nil); err != nil {
				return c, err
			}
			// ... and stage the rest of the data in the buffer
			ctx.input = append(ctx.input, data[blockSize-bufferLength:]...)
			return datalength, nil
		}

		var buf []byte = make([]byte, 1, blockSize+1)
		for block := 0; block < datalength/blockSize; block++ {
			for i := 0; i < blockSize; i++ {
				var current byte = data[(block*blockSize)+i]
				if ctx.table[ctx.hash] == current {
					// Guess was right - don't output
					buf[0] |= 1 << uint(i)
				} else {
					// Guess was wrong, output char
					ctx.table[ctx.hash] = current
					buf = append(buf, current)
				}
				ctx.update(current)
			}

			if c, err := writer.Write(buf); err != nil {
				return (block * blockSize) + c, err
			}

			// Reset the flags and buffer for the next iteration
			buf, buf[0] = buf[:1], 0
		}

		if remaining := datalength % blockSize; remaining > 0 {
			ctx.input = ctx.input[:remaining]
			copy(ctx.input, data[datalength-remaining:])
		} else {
			ctx.input = ctx.input[:0]
		}

		return datalength, nil
	}

	return write
}

// Returns an io.Reader implementation that wraps the provided io.Reader
// and decompresses data according to the predictor algorithm