/* arith11.c Copyright (C) 1990-2002 Codemist Ltd */ /* * Arithmetic functions. * remainder, =, * minusp, plusp * */ /* * This code may be used and modified, and redistributed in binary * or source form, subject to the "CCL Public License", which should * accompany it. This license is a variant on the BSD license, and thus * permits use of code derived from this in either open and commercial * projects: but it does require that updates to this code be made * available back to the originators of the package. * Before merging other code in with this or linking this code * with other packages or libraries please check that the license terms * of the other material are compatible with those of this. */ /* Signature: 4439bf35 08-Apr-2002 */ #include <stdarg.h> #include <string.h> #include <ctype.h> #include <math.h> #include "machine.h" #include "tags.h" #include "cslerror.h" #include "externs.h" #include "arith.h" #ifdef TIMEOUT #include "timeout.h" #endif Lisp_Object rembi(Lisp_Object a, Lisp_Object b) { Lisp_Object nil; if (b == fixnum_of_int(0)) return aerror2("bad arg for remainder", a, b); else if (b == fixnum_of_int(1) || b == fixnum_of_int(-1)) return fixnum_of_int(0); quotbn1(a, int_of_fixnum(b)); /* * If the divisor was a fixnum then the remainder will be a fixnum too. */ errexit(); return fixnum_of_int(nwork); } Lisp_Object rembb(Lisp_Object a, Lisp_Object b) { Lisp_Object nil; quotbb(a, b); errexit(); return mv_2; } #ifdef COMMON static Lisp_Object remis(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remir(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remif(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remsi(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remsb(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remsr(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remsf(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object rembs(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object rembr(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object rembf(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remri(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remrs(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remrb(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remrr(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remrf(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remfi(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remfs(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remfb(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remfr(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } static Lisp_Object remff(Lisp_Object a, Lisp_Object b) { return aerror2("bad arg for remainder", a, b); } #endif /* COMMON */ Lisp_Object Cremainder(Lisp_Object a, Lisp_Object b) { int32 c; switch ((int)a & TAG_BITS) { case TAG_FIXNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: /* * This is where fixnum % fixnum arithmetic happens - the case I most want to * make efficient. */ if (b == fixnum_of_int(0)) return aerror2("bad arg for remainder", a, b); /* No overflow is possible in a remaindering operation */ { int32 aa = int_of_fixnum(a); int32 bb = int_of_fixnum(b); c = aa % bb; /* * C does not specify just what happens when % is used with negative * operands (except maybe if the division went exactly), so here I do * some adjusting, assuming that the quotient returned was one of the * integral values surrounding the exact result. */ if (aa < 0) { if (c > 0) c -= bb; } else if (c < 0) c += bb; return fixnum_of_int(c); } #ifdef COMMON /* * Common Lisp defines a meaning for the remainder function when applied * to floating point values - so there is a whole pile of mess here to * support that. Standard Lisp is only concerned with fixnums and * bignums. */ case TAG_SFLOAT: return remis(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: /* * When I divide a fixnum a by a bignum b the remainder is a except in * the case that a = 0xf8000000 and b = 0x08000000 in which case the * answer is zero. */ if (int_of_fixnum(a) == fix_mask && bignum_length(b) == 8 && bignum_digits(b)[0] == 0x08000000) return fixnum_of_int(0); else return a; #ifdef COMMON case TYPE_RATNUM: return remir(a, b); #endif default: return aerror1("Bad arg for remainder", b); } } #ifdef COMMON case TAG_BOXFLOAT: return remif(a, b); #else case TAG_BOXFLOAT: { double v = (double) int_of_fixnum(a); double u = float_of_number(b); v = v - (v/u)*u; return make_boxfloat(v, TYPE_DOUBLE_FLOAT); } #endif default: return aerror1("Bad arg for remainder", b); } #ifdef COMMON case TAG_SFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return remsi(a, b); case TAG_SFLOAT: { Float_union aa, bb; aa.i = a - TAG_SFLOAT; bb.i = b - TAG_SFLOAT; aa.f = (float) (aa.f + bb.f); return (aa.i & ~(int32)0xf) + TAG_SFLOAT; } case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return remsb(a, b); case TYPE_RATNUM: return remsr(a, b); default: return aerror1("Bad arg for remainder", b); } } case TAG_BOXFLOAT: return remsf(a, b); default: return aerror1("Bad arg for remainder", b); } #endif case TAG_NUMBERS: { int32 ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return rembi(a, b); #ifdef COMMON case TAG_SFLOAT: return rembs(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return rembb(a, b); #ifdef COMMON case TYPE_RATNUM: return rembr(a, b); #endif default: return aerror1("Bad arg for remainder", b); } } #ifdef COMMON case TAG_BOXFLOAT: return rembf(a, b); #endif default: return aerror1("Bad arg for remainder", b); } #ifdef COMMON case TYPE_RATNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return remri(a, b); case TAG_SFLOAT: return remrs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return remrb(a, b); case TYPE_RATNUM: return remrr(a, b); default: return aerror1("Bad arg for remainder", b); } } case TAG_BOXFLOAT: return remrf(a, b); default: return aerror1("Bad arg for remainder", b); } #endif default: return aerror1("Bad arg for remainder", a); } } case TAG_BOXFLOAT: switch ((int)b & TAG_BITS) { #ifndef COMMON case TAG_FIXNUM: { double u = (double) int_of_fixnum(b); double v = float_of_number(a); v = v - (v/u)*u; return make_boxfloat(v, TYPE_DOUBLE_FLOAT); } case TAG_BOXFLOAT: { double u = float_of_number(b); double v = float_of_number(a); v = v - (v/u)*u; return make_boxfloat(v, TYPE_DOUBLE_FLOAT); } default: return aerror1("Bad arg for remainder", b); #else case TAG_FIXNUM: return remfi(a, b); case TAG_SFLOAT: return remfs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return remfb(a, b); case TYPE_RATNUM: return remfr(a, b); default: return aerror1("Bad arg for remainder", b); } } case TAG_BOXFLOAT: return remff(a, b); default: return aerror1("Bad arg for remainder", b); #endif } default: return aerror1("Bad arg for remainder", a); } } /* * In the cases that I expect to be most speed-critical I will * implement "mod" directly. But in a load of other cases I will just * activate the existing "remainder" code and then make a few final * adjustments. This MAY lead to error messages (on modulus by zero) * mentioning remainder rather than mod.... * I will leave in the whole structure of separate functions for each * case since that will be useful if I ever need to come back here and * fine-tune more of the type-combinations. As a first pass I give * special treatment to (fixnum,fixnum) and (bignum,fixnum) */ static Lisp_Object mod_by_rem(Lisp_Object a, Lisp_Object b) { Lisp_Object nil; CSLbool sb = minusp(b); errexit(); a = Cremainder(a, b); /* Repeats dispatch on argument type. Sorry */ errexit(); if (sb) { if (plusp(a)) { errexit(); a = plus2(a, b); } } else if (minusp(a)) { errexit(); a = plus2(a, b); } return a; } static Lisp_Object modib(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modbi(Lisp_Object a, Lisp_Object b) { Lisp_Object nil = C_nil; int32 bb = int_of_fixnum(b); if (b == fixnum_of_int(0)) return aerror2("bad arg for mod", a, b); if (bb == 1 || bb == -1) nwork = 0; else quotbn1(a, bb); /* * If the divisor was a fixnum then the remainder will be a fixnum too. */ errexit(); if (bb < 0) { if (nwork > 0) nwork += bb; } else if (nwork < 0) nwork += bb; return fixnum_of_int(nwork); } static Lisp_Object modbb(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } #ifdef COMMON static Lisp_Object modis(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modir(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modif(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modsi(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modsb(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modsr(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modsf(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modbs(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modbr(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modbf(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modri(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modrs(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modrb(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modrr(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modrf(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modfi(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modfs(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modfb(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object modfr(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } static Lisp_Object ccl_modff(Lisp_Object a, Lisp_Object b) { return mod_by_rem(a, b); } #endif /* COMMON */ Lisp_Object modulus(Lisp_Object a, Lisp_Object b) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: /* * This is where fixnum % fixnum arithmetic happens - the case I most want to * make efficient. */ { int32 p = int_of_fixnum(a); int32 q = int_of_fixnum(b); if (q == 0) return aerror2("bad arg for mod", a, b); p = p % q; if (q < 0) { if (p > 0) p += q; } else if (p < 0) p += q; /* No overflow is possible in a modulus operation */ return fixnum_of_int(p); } #ifdef COMMON /* * Common Lisp defines a meaning for the modulus function when applied * to floating point values - so there is a whole pile of mess here to * support that. Standard Lisp is only concerned with fixnums and * bignums. */ case TAG_SFLOAT: return modis(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return modib(a, b); #ifdef COMMON case TYPE_RATNUM: return modir(a, b); #endif default: return aerror1("Bad arg for mod", b); } } #ifdef COMMON case TAG_BOXFLOAT: return modif(a, b); #endif default: return aerror1("Bad arg for mod", b); } #ifdef COMMON case TAG_SFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return modsi(a, b); case TAG_SFLOAT: { Float_union aa, bb; aa.i = a - TAG_SFLOAT; bb.i = b - TAG_SFLOAT; aa.f = (float) (aa.f + bb.f); return (aa.i & ~(int32)0xf) + TAG_SFLOAT; } case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return modsb(a, b); case TYPE_RATNUM: return modsr(a, b); default: return aerror1("Bad arg for mod", b); } } case TAG_BOXFLOAT: return modsf(a, b); default: return aerror1("Bad arg for mod", b); } #endif case TAG_NUMBERS: { int32 ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return modbi(a, b); #ifdef COMMON case TAG_SFLOAT: return modbs(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return modbb(a, b); #ifdef COMMON case TYPE_RATNUM: return modbr(a, b); #endif default: return aerror1("Bad arg for mod", b); } } #ifdef COMMON case TAG_BOXFLOAT: return modbf(a, b); #endif default: return aerror1("Bad arg for mod", b); } #ifdef COMMON case TYPE_RATNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return modri(a, b); case TAG_SFLOAT: return modrs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return modrb(a, b); case TYPE_RATNUM: return modrr(a, b); default: return aerror1("Bad arg for mod", b); } } case TAG_BOXFLOAT: return modrf(a, b); default: return aerror1("Bad arg for mod", b); } #endif default: return aerror1("Bad arg for mod", a); } } #ifdef COMMON case TAG_BOXFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return modfi(a, b); case TAG_SFLOAT: return modfs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return modfb(a, b); case TYPE_RATNUM: return modfr(a, b); default: return aerror1("Bad arg for mod", b); } } case TAG_BOXFLOAT: return ccl_modff(a, b); default: return aerror1("Bad arg for mod", b); } #endif default: return aerror1("Bad arg for mod", a); } } CSLbool zerop(Lisp_Object a) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: return (a == fixnum_of_int(0)); #ifdef COMMON case TAG_NUMBERS: /* #C(r i) must satisfy zerop is r and i both do */ if (is_complex(a) && zerop(real_part(a))) return zerop(imag_part(a)); else return NO; case TAG_SFLOAT: /* * The code here assumes that the the floating point number zero * is represented by a zero bit-pattern... see onep() for a more * cautious way of coding things. */ return ((a & 0x7ffffff8) == 0); /* Strip sign bit as well as tags */ #endif case TAG_BOXFLOAT: return (float_of_number(a) == 0.0); default: return NO; } } CSLbool onep(Lisp_Object a) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: return (a == fixnum_of_int(1)); #ifdef COMMON case TAG_NUMBERS: /* #C(r i) must satisfy onep(r) and zerop(i) */ if (is_complex(a) && onep(real_part(a))) return zerop(imag_part(a)); else return NO; case TAG_SFLOAT: { Float_union w; w.f = (float)1.0; return (a == (w.i & ~(int32)0xf) + TAG_SFLOAT); } #endif case TAG_BOXFLOAT: return (float_of_number(a) == 1.0); default: return NO; } } /* * sign testing */ CSLbool minusp(Lisp_Object a) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: return ((int32)a < 0); #ifdef COMMON case TAG_SFLOAT: { Float_union aa; aa.i = a - TAG_SFLOAT; return (aa.f < 0.0); } #endif case TAG_NUMBERS: { int32 ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: { int32 l = (bignum_length(a)-CELL-4)/4; return ((int32)bignum_digits(a)[l] < (int32)0); } #ifdef COMMON case TYPE_RATNUM: return minusp(numerator(a)); #endif default: aerror1("Bad arg for minusp", a); return 0; } } case TAG_BOXFLOAT: { double d = float_of_number(a); return (d < 0.0); } default: aerror1("Bad arg for minusp", a); return 0; } } CSLbool plusp(Lisp_Object a) { switch ((int)a & TAG_BITS) { case TAG_FIXNUM: return (a > fixnum_of_int(0)); #ifdef COMMON case TAG_SFLOAT: { Float_union aa; aa.i = a - TAG_SFLOAT; return (aa.f > 0.0); } #endif case TAG_NUMBERS: { int32 ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: { int32 l = (bignum_length(a)-CELL-4)/4; /* This is OK because a bignum can never have the value zero */ return ((int32)bignum_digits(a)[l] >= (int32)0); } #ifdef COMMON case TYPE_RATNUM: return plusp(numerator(a)); #endif default: aerror1("Bad arg for plusp", a); return 0; } } case TAG_BOXFLOAT: { double d = float_of_number(a); return (d > 0.0); } default: aerror1("Bad arg for plusp", a); return 0; } } /* * Numeric equality - note that comparisons involving non-numbers * are errors here (unlike the position in eql, equal, equalp). Also * this must be coded so that it never provokes garbage collection. */ #ifdef COMMON static CSLbool numeqis(Lisp_Object a, Lisp_Object b) { Float_union bb; bb.i = b - TAG_SFLOAT; return ((double)int_of_fixnum(a) == (double)bb.f); } static CSLbool numeqic(Lisp_Object a, Lisp_Object b) { if (!zerop(imag_part(b))) return NO; else return numeq2(a, real_part(b)); } #endif #define numeqif(a,b) ((double)int_of_fixnum(a) == float_of_number(b)) #ifdef COMMON #define numeqsi(a, b) numeqis(b, a) #endif static CSLbool numeqsb(Lisp_Object a, Lisp_Object b) /* * This is coded to allow comparison of any floating type * with a bignum */ { double d = float_of_number(a), d1; int x; int32 w, len; unsigned32 u; if (-1.0e8 < d && d < 1.0e8) return NO; /* fixnum range (approx) */ len = (bignum_length(b)-CELL-4)/4; if (len == 0) /* One word bignums can be treated specially */ { int32 v = bignum_digits(b)[0]; return (d == (double)v); } d1 = frexp(d, &x); /* separate exponent from mantissa */ if (d1 == 1.0) d1 = 0.5, x++; /* For Zortech */ /* The exponent x must be positive here, hence the % operation is defined */ d1 = ldexp(d1, x % 31); /* * At most 3 words in the bignum may contain nonzero data - I subtract * the (double) value of those bits off and check that (a) the floating * result left is zero and (b) there are no more bits left. */ x = x / 31; if (x != len) return NO; w = bignum_digits(b)[len]; d1 = (d1 - (double)w) * TWO_31; u = bignum_digits(b)[--len]; d1 = (d1 - (double)u) * TWO_31; if (len > 0) { u = bignum_digits(b)[--len]; d1 = d1 - (double)u; } if (d1 != 0.0) return NO; while (--len >= 0) if (bignum_digits(b)[len] != 0) return NO; return YES; } #ifdef COMMON static CSLbool numeqsr(Lisp_Object a, Lisp_Object b) /* * Here I will rely somewhat on the use of IEEE floating point values * (an in particular the weaker supposition that I have floating point * with a binary radix). Then for equality the denominator of b must * be a power of 2, which I can test for and then account for. */ { Lisp_Object nb = numerator(b), db = denominator(b); double d = float_of_number(a), d1; int x; int32 dx, w, len; unsigned32 u, bit; /* * first I will check that db (which will be positive) is a power of 2, * and set dx to indicate what power of two it is. * Note that db != 0 and that one of the top two words of a bignum * must be nonzero (for normalisation) so I end up with a nonzero * value in the variable 'bit' */ if (is_fixnum(db)) { bit = int_of_fixnum(db); w = bit; if (w != (w & (-w))) return NO; /* not a power of 2 */ dx = 0; } else if (is_numbers(db) && is_bignum(db)) { int32 lenb = (bignum_length(db)-CELL-4)/4; bit = bignum_digits(db)[lenb]; /* * I need to cope with bignums where the leading digits is zero because * the 0x80000000 bit of the next word down is 1. To do this I treat * the number as having one fewer digits. */ if (bit == 0) bit = bignum_digits(db)[--lenb]; w = bit; if (w != (w & (-w))) return NO; /* not a power of 2 */ dx = 31*lenb; while (--lenb >= 0) /* check that the rest of db is zero */ if (bignum_digits(db)[lenb] != 0) return NO; } else return NO; /* Odd - what type IS db here? Maybe error. */ if ((bit & 0xffffU) == 0) dx += 16, bit = bit >> 16; if ((bit & 0xff) == 0) dx += 8, bit = bit >> 8; if ((bit & 0xf) == 0) dx += 4, bit = bit >> 4; if ((bit & 0x3) == 0) dx += 2, bit = bit >> 2; if ((bit & 0x1) == 0) dx += 1; if (is_fixnum(nb)) { double d1 = (double)int_of_fixnum(nb); /* * The ldexp on the next line could potentially underflow. In that case C * defines that the result 0.0 be returned. To avoid trouble I put in a * special test the relies on that fact that a value represented as a rational * would not have been zero. */ if (dx > 10000) return NO; /* Avoid gross underflow */ d1 = ldexp(d1, (int)-dx); return (d == d1 && d != 0.0); } len = (bignum_length(nb)-CELL-4)/4; if (len == 0) /* One word bignums can be treated specially */ { int32 v = bignum_digits(nb)[0]; double d1; if (dx > 10000) return NO; /* Avoid gross underflow */ d1 = ldexp((double)v, (int)-dx); return (d == d1 && d != 0.0); } d1 = frexp(d, &x); /* separate exponent from mantissa */ if (d1 == 1.0) d1 = 0.5, x++; /* For Zortech */ dx += x; /* adjust to allow for the denominator */ d1 = ldexp(d1, (int)(dx % 31)); /* can neither underflow nor overflow here */ /* * At most 3 words in the bignum may contain nonzero data - I subtract * the (double) value of those bits off and check that (a) the floating * result left is zero and (b) there are no more bits left. */ dx = dx / 31; if (dx != len) return NO; w = bignum_digits(nb)[len]; d1 = (d1 - (double)w) * TWO_31; u = bignum_digits(nb)[--len]; d1 = (d1 - (double)u) * TWO_31; if (len > 0) { u = bignum_digits(nb)[--len]; d1 = d1 - (double)u; } if (d1 != 0.0) return NO; while (--len >= 0) if (bignum_digits(nb)[len] != 0) return NO; return YES; } #define numeqsc(a, b) numeqic(a, b) static CSLbool numeqsf(Lisp_Object a, Lisp_Object b) { Float_union aa; aa.i = a - TAG_SFLOAT; return ((double)aa.f == float_of_number(b)); } #define numeqbs(a, b) numeqsb(b, a) #endif static CSLbool numeqbb(Lisp_Object a, Lisp_Object b) { int32 la = bignum_length(a); if (la != (int32)bignum_length(b)) return NO; la = (la-CELL-4)/4; while (la >= 0) { if (bignum_digits(a)[la] != bignum_digits(b)[la]) return NO; else la--; } return YES; } #ifdef COMMON #define numeqbc(a, b) numeqic(a, b) #endif #define numeqbf(a, b) numeqsb(b, a) #ifdef COMMON #define numeqrs(a, b) numeqsr(b, a) static CSLbool numeqrr(Lisp_Object a, Lisp_Object b) { return numeq2(numerator(a), numerator(b)) && numeq2(denominator(a), denominator(b)); } #define numeqrc(a, b) numeqic(a, b) #define numeqrf(a, b) numeqsr(b, a) #define numeqci(a, b) numeqic(b, a) #define numeqcs(a, b) numeqic(b, a) #define numeqcb(a, b) numeqic(b, a) #define numeqcr(a, b) numeqic(b, a) static CSLbool numeqcc(Lisp_Object a, Lisp_Object b) { return numeq2(real_part(a), real_part(b)) && numeq2(imag_part(a), imag_part(b)); } #define numeqcf(a, b) numeqic(b, a) #endif #define numeqfi(a, b) numeqif(b, a) #ifdef COMMON #define numeqfs(a, b) numeqsf(b, a) #endif #define numeqfb(a, b) numeqbf(b, a) #ifdef COMMON #define numeqfr(a, b) numeqrf(b, a) #define numeqfc(a, b) numeqic(a, b) #endif static CSLbool numeqff(Lisp_Object a, Lisp_Object b) { return (float_of_number(a) == float_of_number(b)); } /* * This comparison must signal an error on non-numeric operands in * Common Lisp mode, but behave as EQ in CSL mode. */ #ifdef COMMON # define differenta aerror1("Bad arg for =", a); return 0 # define differentb aerror1("Bad arg for =", b); return 0 #else # define differenta return NO # define differentb return NO #endif CSLbool numeq2(Lisp_Object a, Lisp_Object b) { #ifndef COMMON if (a == b) return YES; #endif switch ((int)a & TAG_BITS) { case TAG_FIXNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: #ifdef COMMON return (a == b); #else return NO; #endif #ifdef COMMON case TAG_SFLOAT: return numeqis(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return 0; #ifdef COMMON case TYPE_RATNUM: return 0; case TYPE_COMPLEX_NUM: return numeqic(a, b); /* (= 2 #C(2.0 0.0))? Yuk */ #endif default: differentb; } } case TAG_BOXFLOAT: return numeqif(a, b); default: differentb; } #ifdef COMMON case TAG_SFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return numeqsi(a, b); case TAG_SFLOAT: return (a == b) || (a == TAG_SFLOAT && b == TAG_SFLOAT|0x80000000) || (a == TAG_SFLOAT|0x80000000 && b == TAG_SFLOAT); /* !!! */ case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return numeqsb(a, b); case TYPE_RATNUM: return numeqsr(a, b); case TYPE_COMPLEX_NUM: return numeqsc(a, b); default: differentb; } } case TAG_BOXFLOAT: return numeqsf(a, b); default: differentb; } #endif case TAG_NUMBERS: { int32 ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return 0; #ifdef COMMON case TAG_SFLOAT: return numeqbs(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return numeqbb(a, b); #ifdef COMMON case TYPE_RATNUM: return 0; case TYPE_COMPLEX_NUM: return numeqbc(a, b); #endif default: differentb; } } case TAG_BOXFLOAT: return numeqbf(a, b); default: differentb; } #ifdef COMMON case TYPE_RATNUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return 0; case TAG_SFLOAT: return numeqrs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return 0; case TYPE_RATNUM: return numeqrr(a, b); case TYPE_COMPLEX_NUM: return numeqrc(a, b); default: differentb; } } case TAG_BOXFLOAT: return numeqrf(a, b); default: differentb; } case TYPE_COMPLEX_NUM: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return numeqci(a, b); case TAG_SFLOAT: return numeqcs(a, b); case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return numeqcb(a, b); case TYPE_RATNUM: return numeqcr(a, b); case TYPE_COMPLEX_NUM: return numeqcc(a, b); default: differentb; } } case TAG_BOXFLOAT: return numeqcf(a, b); default: differentb; } #endif default: differenta; } } case TAG_BOXFLOAT: switch ((int)b & TAG_BITS) { case TAG_FIXNUM: return numeqfi(a, b); #ifdef COMMON case TAG_SFLOAT: return numeqfs(a, b); #endif case TAG_NUMBERS: { int32 hb = type_of_header(numhdr(b)); switch (hb) { case TYPE_BIGNUM: return numeqfb(a, b); #ifdef COMMON case TYPE_RATNUM: return numeqfr(a, b); case TYPE_COMPLEX_NUM: return numeqfc(a, b); #endif default: differentb; } } case TAG_BOXFLOAT: return numeqff(a, b); default: differentb; } default: differenta; } } /* end of arith11.c */