
CLOSOS
Speci�cation of a Lisp operating

system.

Robert Strandh

2013

ii

Contents

1 Introduction 1

1.1 What a Lisp operating system is 1

1.2 Problems with existing systems 1

1.2.1 The concept of a process 1

1.2.2 Hierarchical �le systems 3

1.2.3 Distinction between primary and secondary memory . . 4

1.2.4 Full address-space access 5

1.2.5 The concept of a kernel 6

1.2.6 Mediocre input/output performance 7

1.3 Objectives for a Lisp operating system 8

1.3.1 Single address space . 8

1.3.2 Object store based on attributes 9

1.3.3 Single memory abstraction 10

1.3.4 Other features . 11

1.4 How to accomplish it . 12

1.4.1 Create a Lisp system to be used as basis 13

1.4.2 Create a single-user system as a UNIX process 13

1.4.3 Create a multi-user system as a UNIX process 13

1.4.4 Create a bootable system 14

2 Object store 15

3 Protection 19

3.1 Protecting users from each other 19

3.2 Protecting the system from the users 20

4 Environments 23

iii

iv CONTENTS

5 Garbage collection 27
5.1 Introduction . 27
5.2 Per-thread garbage collector . 28
5.3 Global garbage collector . 28

6 Checkpointing 31
6.1 Technique inspired by EROS 31
6.2 Technique based on log-structured �le systems 35

7 Device drivers 41
7.1 Introduction . 41
7.2 Tickets . 41
7.3 Disk drivers . 42

I Appendices 45

A Use cases 47
A.1 Opening a document for reading 47

Bibliography 49

Index 50

Chapter 1

Introduction

1.1 What a Lisp operating system is

A Lisp Operating System (LispOS for short) is not just another operating
system that happens to be written in Lisp (although that would be a good
thing in itself). For the purpose of this document, a LispOS is also an operating
system that uses the Lisp interactive environment as an inspiration for the
interface between the user and the system, and between applications and the
system.

In this document, we give some ideas on what a LispOS might contain, how
it would be di�erent from existing operating systems, and how such a system
might be created.

1.2 Problems with existing systems

1.2.1 The concept of a process

Most popular existing operating systems are derived from UNIX which was
written in the 1970s. The computers for which UNIX was intended had a very
small address space; too small for most usable end-user applications. To solve

1

2 CHAPTER 1. INTRODUCTION

this problem, the creators of UNIX used the concept of a process. A large
application was written so that it consisted of several smaller programs, each
of which ran in its own address space. These smaller programs would commu-
nicate by having one application write text to its output stream for another
application to read. This method of communication was called a pipe and a
sequence of small applications was called a pipeline. As a typical example of a
chain of applications, consider the pipeline for producing a typeset document
(one of the main applications for which UNIX was designed). This chain had
a program for creating tables (called tbl), a program for generating pictures
(called pic), a program for generating equations (called eqn), and of course
the typesetting program itself (called troff).

The computers that UNIX was intended to run on did not have any memory-
management unit (MMU). The absence of memory management meant that
the code could not move around in physical memory depending on whether
other programs were present in memory as well. To solve this problem, a
mechanism called swapping was used. Each program was written so that it
had the entire physical address space at its disposal, and to make that work,
one process at a time was present in physical memory. To give the illusion of
multi-programming, at regular intervals the current process was interrupted,
moved from main memory to secondary memory, and another runnable process
was loaded into main memory instead. Programs written in low-level languages
such as C and C++ are still written as if they were meant to be executed on
such early computers.

Using UNIX-style pipes to communicate between di�erent components of an
application has several disadvantages:

• To communicate complex data structures (such as trees or graphs), they
must be converted to a stream of bytes by the creating component, and
it must be analyzed and parsed into an equivalent data structure by
the using component. Not only is this unparsing/parsing ine�cient in
terms of computing resources, but it is also problematic from a software-
engineering point of view, because the external format must be speci�ed
and maintained as a separate aspect of each component.

• An arti�cial order between the di�erent components is imposed, so that
components can not work as libraries that other components can use in

1.2. PROBLEMS WITH EXISTING SYSTEMS 3

any order. Sometimes (as in the example of the troff chain) the end
result of a computation depends in subtle ways on the order between
the components of the chain. Introducing a new component may require
other components to be modi�ed.

Pipes also have some advantages though. In particular, they provide a syn-
chronization mechanism between programs, making it very easy to implement
producer/consumer control structures.

It is an interesting observation that in most text books on operating systems,
the concept of a process is presented as playing a central role in operating-
system design, whereas it ought to be presented as an unfortunate necessity
due to the limited address space of existing computers in the 1970s. It is also
presented as the method for obtaining some kind of security, preventing one
application from intentionally or accidentally modifying the data of some other
application. In reality, there are several ways of obtaining such security, and
separate address spaces should be considered to be a method with too many
disadvantages.

Nowadays, computers have addresses1 that are 64 bit wide, making it possible
to address almost 20 exabytes of data. To get an idea of the order of magnitude
of such a number, consider that a fairly large disc that can hold a terabyte of
data. Then each byte of 20 million such discs can be directly addressed by the
processor. We can thus consider the problem of too small an address space to
be solved. The design of CLOSOS takes advantage of this large address space
to �nd better solutions to the problems that processes were intended to solve.

1.2.2 Hierarchical �le systems

Existing operating system come with a hierarchical �le system. There are two
signi�cant problems, namely hierarchical and �le.

The hierarchy is also a concept that dates back to the 1970s, and it was

1The virtual address is 64 bits wide. That does not mean that all 64 bits are used on all
implementations of the architectures. However, on the current (as of this writing) Intel and
AMD x86-64 processors, at least 48 bits are used, and this number is likely to increase in the
future.

4 CHAPTER 1. INTRODUCTION

considered a vast improvement on �at �le systems. However, as some authors2

explain, most things are not naturally hierarchical. A hierarchical organization
imposes an arti�cial order between names. Whether a document is called
Lisp/Programs/2013/stuff, Programs/Lisp/2013/stuff, or something else
like 2013/Programs/Lisp/stuff, is usually not important.

The problem with a �le is that it is only a sequence of bytes with no structure.
This lack of structure �ts the UNIX pipe model very well, because intermediate
steps between individual software components can be saved to a �le without
changing the result. But it also means that in order for complex data structures
to be stored in the �le system, they have to be transformed into a sequence of
bytes. And whenever such a structure needs to be modi�ed by some applica-
tion, it must again be parsed and transformed into an in-memory structure.

1.2.3 Distinction between primary and secondary memory

Current systems (at least for desktop computers) make a very clear distinction
between primary and secondary memory. Not only are the two not the same,
but they also have totally di�erent semantics:

• Primary memory is volatile. When power is turned o�, whatever was in
primary memory is lost.

• Secondary memory is permanent. Stored data will not disappear when
power is turned o�.

This distinction coupled with the semantics of the two memories creates a
permanent conundrum for the user of most applications, in that if current
application data is not saved, then it will be lost in case of power loss, and if
it is saved, then previously saved data is forever lost.

Techniques were developed as early in the 1960s for presenting primary and
secondary memory as a single abstraction to the user. For example, the Mul-
tics system had a single hierarchy of �xed-size byte arrays (called segments)
that served as permanent storage, but that could also be treated as any in-

2See http://www.shirky.com/writings/ontology_overrated.html

1.2. PROBLEMS WITH EXISTING SYSTEMS 5

memory array by applications. As operating systems derived from UNIX be-
came widespread, these techniques were largely forgotten.

1.2.4 Full address-space access

With operating systems such as UNIX, programs written in low-level languages
such as C are written so that they have access to the full (virtual) address space3

except that such a program naturally can not access the contents of a virtual
address that does not have any physical memory associated with it.

Programs are written like that for historical reasons. Early computers had
no memory-management unit, so there was no way to prevent a program from
accessing the contents of any address. Essentially, we still write programs today
as if we were using computers with no memory-management unit.

Full address-space access is a notorious source of security problems, in par-
ticular in combination with a programming language like C. The C language
speci�cation leaves many situations unspeci�ed, and most compilers take ad-
vantage of this freedom to optimize for speed, to the detriment of other aspects
such as security. As a result, it is possible for C programs to construct arbitrary
data and arbitrary addresses and alter large parts of its addressable memory
in uncontrolled ways.

Thus if a program does not take great care to prevent a temporary bu�er from
over�owing, reading an external document such as a web page may overwrite
part of the stack4 (which is located in the address space of the process). Such a
bu�er over�ow can alter the return address of the currently executing function,
so that instead of returning normally, it returns to some code that can have
an e�ect that the program was absolutely not meant to have. It can do that
because the C library is linked into the same address space as the rest of the
code, so anything that a program can do with the C library, such as deleting
�les or transfer sensitive information to an external computer, can be done as
a result of reading an external document.

There have been attempts to mitigate these basic problems with a fully ac-

3Or sometimes half of it, the operating system kernel occupying the other half.
4Problems with bu�er over�ow are not limited to the stack, of course. Over�owing a

bu�er located on the heap is a security problem as well.

6 CHAPTER 1. INTRODUCTION

cessible address space. Recently, for instance, a technique called address space
layout randomization5 has started being used to prevent the problems caused
by full address-space access. The technique consists of giving the code of the
main program and of the libraries that it uses di�erent virtual addresses each
time the programs is executed. That way, a malicious document can not rely
on the address to return to being at a particular location, and defective pro-
grams that do not check for bu�er over�ow can continue to exist without so
much danger in terms of security.

But address space layout randomization has its own problems. For one thing,
a program can no longer be written to have prede�ned data structures with
absolute virtual address at start-up. Either relative addressing must be used
(which complicates the code and thus makes it less maintainable), or such data
structures must use symbolic addresses to be resolved by the dynamic linker
at program start-up (which also complicates the code, but in addition slows
down program start-up because of additional work that the linker must do).

In summary, then, a system in which a user program executes in a process with
an address space to which the code has full access will always have problems
in terms of security, performance, maintainability, or a combination of those.

1.2.5 The concept of a kernel

The kernel of an operating system is a fairly large, monolithic program that
is started when the computer is powered on. The kernel is not an ordinary
program of the computer. It executes in a privileged state so that it has full
access to devices and to data structures that must be protected from direct use
by user-level programs.

The very existence of a kernel is problematic because the computer needs to
be restarted whenever the kernel is updated, and then all existing state is lost,
including open �les and data structures that reside in volatile memory. Some
programs, such as web browsers, compensate somewhat for this problem by
remembering the open windows and the addresses that were associated with
each window.

The fact that the kernel is monolithic poses a problem; because, when code

5https://en.wikipedia.org/wiki/Address_space_layout_randomization

1.2. PROBLEMS WITH EXISTING SYSTEMS 7

needs to be added to the kernel in the form of a kernel module, such code has
full access to the entire computer system. This universal access represents a
security risk, of course, but more commonly, the module can be defective and
then it will fail often by crashing the entire computer.

The problem with traditional kernels compared to the planned LispOS de-
scribed in this document is similar to the di�erence between an executable �le
resulting from a program written in C and a Common Lisp system.6 In a tra-
ditional executable program created by the linker from a collection of modules,
it is hard to replace an individual function. The linker has turned the entire
program into a monolithic executable in which addresses have been resolved
once and for all. Compare that situation to a typical Common Lisp system
in which it is normal practice to replace a single function, rede�ne a class,
or add a method to a generic function, without restarting the Common Lisp
system. The planned LispOS will be able to have parts of it updated, just as
an ordinary Common Lisp system is able to do, without rebooting.

We have had solutions to this problem for many decades. The Multics system,
for example, did not have a kernel at all. An interrupt or a system call was
executed by the user-level process that issued the system call or that happened
to be executing when the interrupt arrived. The code that executed then was
not part of a monolithic kernel, but existed as independent programs that could
be added or replaced without restarting the system. The system could still
crash, of course, if some essential system-wide data structure was corrupted,
but most of the time, only the user-level process that issued the request would
crash, simply because the problem was limited to the address space of a single
process. Multics did not have a kernel, but it still had the problem of full access
to its own address space, so that the stack could be overwritten by a defective
end-user program.

1.2.6 Mediocre input/output performance

Recent research [BMPR17] [WH18] indicates that the performance of input
and output in traditional kernel-based systems is not good enough for some of
the modern devices now becoming available. Recall that, in order to perform

6Thanks to Daniel Kochma«ski for suggesting this comparison, and for letting me use it
here.

8 CHAPTER 1. INTRODUCTION

some input or output, an application program must make a system call so
that the kernel can perform the operation on behalf of the application. Things
are organized this way in order to prevent application programs from directly
accessing devices so as to protect those devices from getting incorrect controls.
Thus, input and output requires a context switch which consists of the system
call itself, a change of the page table for address translation, and �ushing
the cache since virtual addresses are no longer valid. Such a context switch
typically takes around 1µs.

For typical devices such as disks, performance is not a problem because these
devices are very slow compared to the time it takes for the context switch.
However, for some modern storage devices the slow context switch is a problem.

1.3 Objectives for a Lisp operating system

The three main objectives of a Lisp operating system correspond to solutions
to the two main problems with existing systems as indicated in the previous
section.

1.3.1 Single address space

Instead of each application having its own address space, we propose that all
applications share a single large address space. This way, applications can
share data simply by passing pointers around, because a pointer is globally
valid, unlike pointers in current operating systems.

Clearly, if there is a single address space shared by all applications, there needs
to be a di�erent mechanism to ensure protection between them so that one
application can not intentionally or accidentally destroy the data of another
application. Many high-level programming languages (in particular Lisp, but
others as well) propose a solution to this problem by simply not allowing users
to execute arbitrary machine code. Instead, they allow only code that has
been produced from the high-level notation of the language and which excludes
arbitrary pointer arithmetic so that the application can only address its own

1.3. OBJECTIVES FOR A LISP OPERATING SYSTEM 9

data. We shall call this kind of system a controlled access system7 and we shall
call the typical modern operating system where a process has full access to its
address space, an arbitrary access system.

In order for access to be completely controlled, some optimizations that current
Common Lisp compilers allow, must be ruled out. Examples of such optimiza-
tions are avoiding array-bounds checking (typically when the safety quality is
set to 0) or trusting the programmer with dynamic-extent declarations. Such
optimizations could still be allowed in system code, but installing such code
would require additional privileges, equivalent to those of system administra-
tors on current operating systems.

It might sometimes be desirable to write an application in a low-level language
like C or even assembler, or it might be necessary to run applications that
have been written for other systems. Such applications could co-exist with the
normal ones, but they would have to work in their own address space as with
current operating systems, and with the same di�culties of communicating
with other applications.

1.3.2 Object store based on attributes

Instead of a hierarchical �le system, we propose an object store which can
contain any objects. If a �le (i.e. a sequence of bytes) is desired, it would be
stored as an array of bytes.

Instead of organizing the objects into a hierarchy, objects in the store can op-
tionally be associated with an arbitrary number of attributes. These attributes
are key/value pairs, such as for example the date of creation of the archive
entry, the creator (a user) of the archive entry, and the access permissions for
the entry. Notice that attributes are not properties of the objects themselves,
but only of the archive entry that allows an object to be accessed. Some at-

7In the literature, this technique is sometimes called "trusted compiler", be we want
to avoid that terminology in this document, because it suggests that the compiler must
somehow be formally veri�ed correct in order for this technique to be useful. Technically,
the typical modern operating system would then have to be formally veri�ed correct in order
for the separation of address spaces to be a trusted mechanism. Clearly, we use such modern
operating systems on a daily basis without any such formal veri�cation, and we are reasonably
sure that it respects that separation.

10 CHAPTER 1. INTRODUCTION

tributes might be derived from the contents of the object being stored such as
the sender or the date of an email message. It should be possible to accomplish
most searches of the store without accessing the objects themselves, but only
the attributes. Occasionally, contents must be accessed such as when a raw
search of the contents of a text is wanted.

For a more detailed description of the object store, see Chapter 2.

It is sometimes desirable to group related objects together as with directories of
current operating systems. Should a user want such a group, it would simply be
another object (say instances of the class directory) in the store. Users who
can not adapt to a non-hierarchical organization can even store such directories
as one of the objects inside another directory.

When (a pointer to) an object is returned to a user as a result of a search
of the object store, it is actually similar to what is called a "capability" in
the operating-system literature. Such a capability is essentially only a pointer
with a few bits indicating what access rights the user has to the objects. Each
creator may interpret the contents of those bits as he or she likes, but typically
they would be used to restrict access, so that for instance executing a reader
method is allowed, but executing a writer method is not.

1.3.3 Single memory abstraction

Current computers have two kinds of memory, a primary memory which is fast,
volatile, and expensive, and secondary memory which is slow, permanent, and
cheap. In contrast, the Lisp operating system would present a single abstraction
of the memory, which looks like any interactive Lisp system, except that data
is permanent.

In an implementation of a Lisp operating system on a current computer with
two kinds of memory, the primary memory simply acts as a cache for the
secondary memory, so that the address of an object uniquely determines where
in the secondary memory it is stored. The cache is managed as an ordinary
virtual memory with existing algorithms.

There are some indications that future computers may feature new memory
technology with is fast, permanent, and cheap. An implementation of a Lisp

1.3. OBJECTIVES FOR A LISP OPERATING SYSTEM 11

operating system on such a computer will have the same abstraction of the
memory, but its structure will be greatly simpli�ed.

Since data is permanent, application writers are encouraged to provide a so-
phisticated undo facility.

1.3.4 Other features

Crash proof (maybe)

There is extensive work on crash-proof systems, be it operating systems or
database systems. In our opinion, this work is confusing in that the objective
is not clearly stated.

Sometimes the objective is stated as the desire that no data be lost when
power is lost. But the solution to that problem already exists in every laptop
computer; it simply provides a battery that allows the system to continue to
work, or to be shut down in a controlled way.

Other times, the objective is stated as a protection against defective software,
so that data is stored at regular intervals (checkpointing), perhaps combined
with a transaction log so that the state of the system immediately before a
crash can always be recovered. But it is very hard to protect oneself against
defective software. There can be defects in the checkpointing code or in the
code for logging transactions, and there can be defects in the underlying �le
system. We believe that it is a better use of developer time to �nd and eliminate
defects than to aim for a recovery as a result of existing defects.

Multiple simultaneous environments

To allow for a user to add methods to standard generic functions (such as
print-object) without interfering with other users, we suggest that each user
gets a di�erent global environment. The environment maps names to objects
such as functions, classes, types, packages, and more. Immutable objects (such
as the common-lisp package)8 can exist in several di�erent environments si-

8The common-lisp package is probably a bad example of an immutable object, because
it could very well be necessary to make modi�cations to it on a per-user basis as a result of

12 CHAPTER 1. INTRODUCTION

multaneously, but other objects (such as the generic function print-object)
would be di�erent in di�erent environments.

Multiple environments would also provide more safety for users in that if a
user inadvertently removes some system feature, then it can be recovered from
a default environment, and in the worst case a fresh default environment could
be installed for a user who inadvertently destroyed large parts of his or her
environment.

Finally, multiple environments would simplify experimentation with new fea-
tures without running the risk of destroying the entire system. Di�erent ver-
sions of a single package could exist in di�erent environments.

For more details on multiple environments, see Chapter 4.

Safe concurrency

Any modern operating system must be written to handle concurrency, both in
terms of context switches at arbitrary times, but especially in terms of multiple
simultaneous threads of execution resulting from the execution of the system
on a computer with multiple cores.

In particular, we will guarantee the integrity of the system in the presence of
concurrency, so that there are no race conditions that may cause the system
to be in an unde�ned state. We accomplish this guarantee by well known
techniques such as locks, lock-free data structures, transactional memory, etc.

Furthermore, the global system garbage collector (See Section 5.), will itself be
parallel and concurrent in order to take advantage of the existence of multiple
cores, and in order to minimize pauses during garbage collection.

1.4 How to accomplish it

The most important aspect of a Lisp operating system is not that all the code be
written in Lisp, but rather to present a Lisp-like interface between users and the

the installation of di�erent software systems.

1.4. HOW TO ACCOMPLISH IT 13

system and between applications and the system. It is therefore legitimate to
take advantage of some existing system (probably Linux or some BSD version)
in order to provide services such as device drivers, network communication,
thread scheduling, etc.

1.4.1 Create a Lisp system to be used as basis

The �rst step is to create a Common Lisp system that can be used as a basis for
the Lisp operating system. It should already allow for multiple environments,
and it should be available on 64-bit platforms. Preferably, this system should
use as little C code as possible and interact directly with the system calls of
the underlying kernel.

1.4.2 Create a single-user system as a UNIX process

In parallel with creating a new Common Lisp system, it is possible to implement
and test many of the features of the interface between the system and the users,
such as the object store (probably without access control) using an existing
Common Lisp system running as a process in an ordinary operating system.

The result of this activity would be su�cient to write or adapt several appli-
cations such as text editors, inspectors, debuggers, GUI interface libraries, etc.
for the system.

1.4.3 Create a multi-user system as a UNIX process

With the new Common Lisp system complete and the object store imple-
mented, it will be possible to create a full multi-user system (including pro-
tection) as a UNIX process, where the UNIX system would play the role of a
virtual machine, supplying essential services such as input/output, networking,
etc.

14 CHAPTER 1. INTRODUCTION

1.4.4 Create a bootable system

The �nal step is to replace the temporary UNIX kernel with native device
drivers, and to write the code for required system services such as the thread
scheduler, synchronization primitives, etc. Such a system could initially run
in an emulator such as QEMU in order to facilitate debugging. Integration
with an existing operating system could be accomplished by communication
with the host operating system through its X11 server, which would avoid the
necessity of a native display server for the Lisp operating system.

Chapter 2

Object store

The object store is a system-wide database containing any kind of objects. Each
object is a capability.

An object in the store can optionally be associated with a certain number of
attributes. An attribute is a pair consisting of the attribute name and the
attribute value. The attribute name is a symbol in the keyword package. The
attribute value can be any object.

15

16 CHAPTER 2. OBJECT STORE

Keyword Possible values

category The nature of the object such as movie, music, arti-
cle, book, user manual, dictionary, course, lecture,
recipe, program, bank statement, email. These would
be chosen from an editable set that is de�ned per user.

name A string that is displayed with the object, such as "A Dra-
matic Turn of Events", "Three seasons", "Alternative en-
ergy".

author An object identifying a person, an organization, a company,
etc.

genre progressive metal, science, algorithms, garbage col-
lection, game, programming language implementa-
tion, operating system. These would be chosen from an
editable set that is de�ned per user.

format This attribute can be used to identify the �le type of doc-
uments such as PDF, ogg/vorbis, MPEG4, PNG, in
which case the attribute can be assigned automatically,
but also to identify the source format of �les in a directory
containing things like articles or user manuals, for example
LaTeX, Texinfo, HTML. These would be chosen from
an editable set that is de�ned per user.

date of cre-
ation

A date interval.

composer An object representing a person. On a compilation album
there can be more than one attribute of this kind.

language An object representing a natural language such as English,
Vietnamese, or a programming languages such as Lisp,
Python. These would be chosen from an editable set that
is de�ned per user. If appropriate, a document can have
several of these attributes, for instance if some program
uses multiple programming languages, or if a document is
written using several languages, such as a dictionary.

duration An object representing a duration.

source con-
trol

GIT, SVN, CVS, darcs, etc. These would be chosen
from an editable set that is de�ned per user.

In a typical operating system installation, there are many fairly large objects

17

such as movies, music �les, pictures, etc. The amount of data associated with
such an object that would be stored in the object store is typically very small
compared to the object itself. Even a fairly modest text �le probably has
104 − 105 characters in it, whereas the meta-data probably takes up no more
than 102 − 103 bytes. It is therefore likely that the entire object store will �t
in main memory. Scanning the entire object store would then take at most a
few second of CPU time. For better performance, one or more indexes could
be created. The objects could for instance be divided by category.

Searching the object store amounts to de�ning a �lter, i.e. a function that,
given a set of keyword/value pairs, returns true if and only if the corresponding
object should be included in the search result. The result is returned to the
user in the form of a directory object which is a list of object entries where each
entry contains the object itself and the attributes of the object from the store,
if any.

18 CHAPTER 2. OBJECT STORE

Chapter 3

Protection

There are two kinds of protection that are important in an operating system:

• protecting di�erent users from each other. User A should not be able to
access or destroy the data of some other user B, other than if B explicitly
permits it, and then only in ways that are acceptable to B.

• protecting the system from the users. Users should be able to access
system resources such as memory and peripherals only in controlled ways,
so as to guarantee the integrity of the system.

3.1 Protecting users from each other

We use a combination of access control lists and capabilities. All heap-allocated
objects except cons cells and (heap-allocated) numbers are manipulated through
a tagged pointer. In addition to containing a type tag, the pointer also contains
an access tag. The access tag consists of the 4 most-signi�cant bits of a 64-bit
pointer. Before a pointer is used to fetch an object from memory, the access
bits are cleared. A primitive operation to fetch the access tag of a pointer is
available to any user code. Each of the 4 bits represents a potential access
restriction, the signi�cance of which is up to the programmer. A function that

19

20 CHAPTER 3. PROTECTION

wishes to restrict permission to some object can test the corresponding access
bit and signal an error if that bit is set.

The author of some complex data structure may for instance grant access to
it only to certain other users. This would be done by interpreting one of the
access bits as read permission, and by having generic functions that access
the data structures check that this bit has the desired value (for instance in a
:before method).

The access bits of a capability are determined when the object is accessed
through the object store. (See Chapter 2.) One of the possible attributes asso-
ciated with the object in the object store corresponds to the access permissions
in the form of an access control list. A user who accesses the object from
the object store will be checked against the access control list and appropriate
access bits will be cleared in the object before it is given to the user.

3.2 Protecting the system from the users

In a typical modern operating system, the system is protected from the users
through the use of a mode of execution of the processor, which can be either
user mode or supervisor mode. Certain instructions are restricted to supervisor
mode, such as instructions for input/output or for remapping the address space.

In CLOSOS, the normal mode of execution is supervisor mode. The code
executed by the user is translated to machine code by a compiler which is
known not to generate code that, if executed, might represent a risk to the
integrity of the system. Since no remapping of the address space is required as
a result of an interrupt or a trap, such events can be handled very quickly.

Occasionally, it might be useful to write or install some software that is com-
piled to machine code by some compiler that does not necessarily generate code
with controlled access, such as a compiler for some typical low-level program-
ming language used today. The result of such a compilation or installation is a
single (possibly large) Lisp function. When this function is executed, the mode
of execution is switched to user mode. As with traditional modern operating
systems, the code of such software has its own address space, which means that
it can not directly manipulate CLOSOS capabilities. Instead, it has to commu-

3.2. PROTECTING THE SYSTEM FROM THE USERS 21

nicate with the system through the user of system calls. A system-wide object
is referred to by such code through an interposing object descriptor, much like
a �le descriptor in UNIX. The details of this mechanism have not yet been fully
determined.

22 CHAPTER 3. PROTECTION

Chapter 4

Environments

Recall that an environment is a mapping from names to objects. This mapping
consists of a set of bindings.

When a user is created in the system, a default global environment is created
for that user. The global environment of a user consists of a system-wide
environment and a user-speci�c environment.

The system-wide environment consists of bindings that are themselves im-
mutable (i.e., the user is not allowed to alter the binding) such as the binding
of the symbol cl:length to the function that returns the length of a sequence.1

The objects of these bindings are also immutable, such as the length function
itself. The system-wide environment is the same for every user, allowing the
installation of software that is immediately visible to all users.

The user-speci�c environment consists of bindings that are created by the user.
These bindings are of three di�erent kinds:

• Bindings created by the user for instance as a result of executing a

1It may be necessary to allow the user to change bindings such as the one of cl:length
to the function that returns the length of a sequence. In fact, it may be necessary to allow
the user to modify every binding, in which case the global environment for a user contains
no system-wide environment. Alternatively, the system-wide environment would be reduced
to a small set of bindings. Perhaps bindings that allow the user to recover after destroying
his or her environment should be stored there.

23

24 CHAPTER 4. ENVIRONMENTS

defparameter or defun form.

• Default system-wide bindings that can be altered by the user, such as the
value of *print-base*.

• Immutable bindings where the object can be modi�ed by the user, such
as system-de�ned generic functions to which the user is allowed to add
speci�c methods. Each user has a private copy of such objects.

The environment contains the following mappings:2

• Mappings from names to packages as managed by make-package, delete-package,
defpackage, etc.

• Mappings from names to function objects, as managed by symbol-function,
(setf symbol-function), fdefinition, and (setf fdefinition).

• Mappings from names tomacro functions, as managed by macro-function
and (setf macro-function).

• Mappings from names to compiler macros, as managed by compiler-macro-function
and (setf compiler-macro-function).

• Mappings from names to classes as managed by find-class, (setf

find-class), defclass, defstruct, define-condition, etc.

• Mappings from names to type de�nitions established by deftype.

• Mappings from names to global symbol macros de�ned by define-symbol-macro.

• Mappings from names to constant variables de�ned by defconstant.

• Mappings from names to special variables de�ned by (proclaim special),
defvar, etc.

When a function or method object is created as a result of calling compile on a
lambda expression, or as a result of loading a fasl �le, the object is linked to the
current global environment, in that external references are then resolved. When

2I may have forgotten some mappings that are part of the global environment.

25

such a function or method object is given to a di�erent user, that di�erent user
can execute it, but external references in it will still refer to the environment
into which it was compiled or loaded.

Notice that methods are not in themselves part of the environment. When we
say that a method is linked to the current global environment, we just mean
that references to symbols within that method are resolved in the current global
environment.

This mechanism provides an e�cient method of protection. User A can grant
controlled access to part of his or her global environment by allowing a user
B to execute a function made available to him or her through the object store.
(See Chapter 2.) In a traditional modern operating system such as UNIX,
this kind of controlled access required the use of the setuid mechanism, simply
because in such a system there is no way to access an object other than through
the global �le system, and the accessing user must have the right permissions
to access the object.

The same mechanism can be used by the system itself to protect objects that
would be unwise to give users direct access to, such as disks or printers.

26 CHAPTER 4. ENVIRONMENTS

Chapter 5

Garbage collection

5.1 Introduction

Contrary to traditional operating systems such as UNIX, a Lisp operating sys-
tem will need a global tracing garbage collector. Traditional operating systems
get away with a simpler technique, because the �le system in such an operating
system can not contain cycles. With this restriction, the simpler reference

counting mechanism is su�cient. Furthermore, although reference counting
is usually slower than a tracing garbage collector, the additional overhead of
reference counters is of no importance when used for a �le system in secondary
memory.

There is a rich literature on automatic memory management. (see e.g., [JHM11])

For CLOSOS, we plan to have a two-level memory management technique.
The low level consists of a relatively small local heap for each thread, and a
per-thread garbage collector that manages that heap. The higher-level consists
of a global heap that contains long-lived objects and objects that are shared
between several threads.

27

28 CHAPTER 5. GARBAGE COLLECTION

5.2 Per-thread garbage collector

Each thread has a local heap, roughly the size of the cache, say around 4MiB.
The thread-local heap is managed entirely by the thread itself, so that the
garbage collector for it is executed by the thread itself. Experiments show that
we will be able to run the thread-local garbage collector in a few milliseconds,
which is good enough for most applications. We will use a sliding garbage
collector in order to maintain allocation order. This way, we have a precise
measure of the relative age of the objects, so that we can promote only the
oldest objects when required.

There can be no references between an object in one local heap to an object
in another local heap. And there can be no references from the global heap
to a local heap. Whenever a reference is about to be created from an object
in the global heap to an object in the local heap, this attempt is caught by a
write barrier on the global heap. As a result if this write barrier being tripped,
the object in the local heap being referred to (and its transitive closure) will
migrate to the global heap, thereby preserving the general invariant.

5.3 Global garbage collector

In addition to the thread-local heaps, there is a global heap. The garbage
collector for this heap will use a combination of the traditional mark-and-sweep
collector and an ordinary memory allocator, similar to the one used by the C
functions malloc and free.

Recall that that a heap-allocated object is either a cons cell or a general in-
stance. A cons cell is represented as two machine words. A general instance is
represented as a header consisting of two machine words, and a rack which is
a vector of words with a contents that depends on the exact type of the object.
In both cases, then, a reference to a heap-allocated object is a reference to a
double word.

Given this representation, we separate the headers from the racks, so that
cons cells and headers of general instances are allocated from a separate part
of the global heap. Since this part of the global heap consists of only two-word
objects, it can be managed very e�ciently with a mark-and-sweep garbage

5.3. GLOBAL GARBAGE COLLECTOR 29

collector, using a simple free list. The advantage of this technique is that
an object is never moved as a result of a garbage collection. Therefore, any
reference to an object that is shared between several threads, remains valid
after a garbage collection of the global heap.

The marking phase is done by �rst requesting each thread to do a garbage
collection and to mark any object in the global heap that is referred to by local
objects. When all threads have responded, a global collection is started. The
global collection is done concurrently with thread activity. For that reason,
objects allocated in the global heap during this phase are marked as being live.
The global collection traces the global heap starting with objects marked by
the mutator threads. This tracing uses a standard three-color algorithm. Write
operations to the global heap are caught by a write barrier.

When tracing in the global heap is �nished, the part of the global heap that
contains two-word headers and cons cells is scanned and unmarked cells are
collected into a free list. If an unmarked cell is a cons cell, then no further
action is needed. If an unmarked cell is a header object, then the corresponding
rack is returned to the rack part of the global heap.

30 CHAPTER 5. GARBAGE COLLECTION

Chapter 6

Checkpointing

In this chapter, we describe two alternative checkpointing techniques. The �rst
one is inspired by the work on the EROS operating system. The second one is
based on work on log-structured �le systems.

6.1 Technique inspired by EROS

The checkpointing mechanism described in this section is inspired by that of
the EROS system.

The address of an object can be considered as consisting of two parts: the page
number and the o�set within the page. The page number directly corresponds
to the location on disk of the page. However, when checkpointing is activated,
the available disk memory is divided into three parts, and the page number
should be multiplied by 3 to get the �rst of three disk locations where the
object might be located.1

Checkpointing is divided into cycles delimited by snapshots. At any point in
time, two checkpointing cycles are important. The current checkpointing cycle
started at the last snapshot and is still going on. The previous checkpointing

1The price to pay for checkpointing is thus that disk memory will cost a factor 3 as much
compared to the price when no checkpointing is used.

31

32 CHAPTER 6. CHECKPOINTING

cycle is the one that ended at the last snapshot.

A page can exist in one, two, or three versions, located in three di�erent places
on disk. Version 0 of the page is the oldest version, and also the version that
would be used when the system is rebooted after a crash. Version 0 of the
page always exists. Version 1 of the page corresponds to the contents of the
page as it was at the end of the previous checkpoint cycle. Version 1 of the
page exists if and only if the page was modi�ed during the previous checkpoint
cycle. Version 2 of the page is the current version of the page. Version 2 of
the page exists if and only if the page has been modi�ed since the beginning
of the current checkpoint cycle. We use the word page instance to refer to a
particular version of a particular page.

A page can be associated with a frame.2 An attempt to access a page that is
not associated with a frame results in a page fault. At most one version of a
particular page can be associated with a frame, and then it is the version with
the highest number. A frame associated with version 0 or version 1 of a page
is write protected, but a frame associated with version 2 of a page is not. Any
attempt to modify the contents of a write-protected frame results in a write
fault.

A frame can be clean or dirty. By de�nition, when the frame is clean, its
contents are identical to those of the associated page instance. When the
frame is dirty, it means that it has been modi�ed after it was associated with
the underlying page instance. A frame that is associated with version 0 of a
page can not be dirty. If a frame that is associated with version 1 of a page
is dirty, then it is because it was modi�ed during the previous checkpointing
cycle, and not the current one.

When a page fault occurs, and there are unused frames, an arbitrary unused
frame is associated with the latest version of the page. If there are no unused
frames when a page fault occurs (which is the normal situation), a frame that
is already associated with a page must be freed up. To select the frame to free
up, an ordinary ALRU method can be used. If the selected frame is dirty, the
contents are written to the page instance associated with the frame. Finally,
the latest version of the requested page is associated with the selected frame.
If the latest version of the requested page is either version 0 or version 1, then

2A frame is the main-memory instance of a page.

6.1. TECHNIQUE INSPIRED BY EROS 33

the frame is write protected before execution resumes.

As indicated above, when a write fault occurs, the frame written to must be
associated with either version 0 or version 1 of a page. If it is associated
with version 0 of the page, then the frame must be clean. In that case, the
association of the frame is modi�ed, so that it henceforth is associated with
version 2 of the page. Before execution resumes, the frame is unprotected. As
soon as execution resumes, the frame will be marked as dirty since the reason
for the fault was an attempt to write to it. When a write fault occurs and
the frame is associated with version 1 of the associated page, the frame may
be either clean or dirty. If it is clean, again, the association of the frame is
modi�ed so that it henceforth is associated with version 2 of the page, and
again the frame is unprotected before execution resumes. If the frame is dirty,
then its contents are �rst written to the associated page instance. Then the
association is changed as before.

To determine the disk location of each version of each page, we use a version
table. The version table is just a sequence of bytes, one for each page. Only 6
bits in each byte are actually used. The two least signi�cant bits indicate the
location of version 0 of the page. 00means the �rst of the 3 possible consecutive
disk locations, 01 means the second and 10 means the third, and 11 is not used.
The next two bits indicate the location of version 1 of the page, with the same
meaning as before, except that 11 means that there is no version 1 of the page.
The �nal two bits indicate the location of version 2 of the page with the same
interpretation as for version 1.

At any point in time, there exist three version tables; two on disk and one in
main memory. The two versions on disk play the same role as the disk tables in
EROS, i.e., while one of them is being updated, the other is still complete and
accurate. A single bit in the boot sector of the disk selects which one should
be used at boot time. When a new version table needs to be written to disk, it
is �rst written to the place of the unused disk table, and then the boot sector
is written with a �ipped selection bit.

The version table in main memory is represented in two levels with a directory
of pages. If one page is 4kiB, then one page can hold 212 version table entries.
For a 300GB disk (with room for around 25 million pages), the directory will
contain around 6000 entries. A directory entry contains not only a pointer to
the page of table entries, but also a bit indicating whether any of the table

34 CHAPTER 6. CHECKPOINTING

entries in the corresponding page indicates a page which exists in more than
one version. It is expected that a relatively small fraction of the directory
entries in each checkpointing cycle with have the bit set.

When a write fault occurs and as a result a new version of a page is created,
the in-memory version table is consulted. The entry for the page indicates the
disk location of version 0 of the page, and sometimes also version 1 of the page.
The disk location for the new version (version 2) of the page is chosen to be
one of the two unused ones (if only version 0 of the page exists) or the only
unused one (if both version 0 and version 1 of the page exists). The location
for version 2 of the page is indicated in the version table entry by setting bits
4 and 5 of the entry to the corresponding disk location.

In parallel with mutator threads, one or more threads scan the page table of
the operating system for dirty frames. When a dirty frame corresponding to
version 1 of a page is found, the contents of the frame is saved to its associated
page instance, and the dirty-bit is cleared. When there are no more dirty frames
corresponding to version 1 pages, the set of page instances corresponding to all
version 1 pages and version 0 pages where no version 1 exists represents the
state of the system at the time of the last snapshot.

To save the coherent state of the system to disk, the in-memory version table
directory is scanned. Whenever a directory entry with the bit indicating the
existence of pages with several versions set, the page of the directory entry is
saved to disk. When the entire version table has been scanned, a new boot
sector is written to indicate that the newly saved table is the current one.

The �nal action to take in order to �nish the current checkpointing cycle and
begin a new one is an atomic �ip. This atomic �ip consists of turning all version
1 pages into version 0 pages and all version 2 pages into version 1 pages. To
do that, mutator threads must be stopped. Then the in-memory version table
is scanned. Whenever an entry is found that has a version other than 0 in it,
it is modi�ed. If both a version 1 and a version 2 exists, bits 2 and 3 of the
entry are moved to position 0 and 1, bits 4 and 5 are moved to positions 2 and
3, and positions 4, and 5 are set to 11. If no version 1 exists, then bits 4 and 5
are moved to positions 2 and 3, and positions 4, and 5 are set to 11. Finally,
mutator threads are restarted.

The easiest way to modify a version table entry is probably to create a 64-byte

6.2. TECHNIQUE BASED ON LOG-STRUCTURED FILE SYSTEMS 35

table in memory which, for each possible version of the existing version table
entry gives the new version. Even though it would require a memory access,
this table will quickly be in the cache, so access will be fast.

To get an idea of performance of the atomic �ip, let us take a situation where
the working set is no bigger than the size of main memory.3 Furthermore, let
us say that the size of main memory is 64GiB and that around half the pages of
the working set are modi�ed in a particular checkpointing cycle. If we assume
that the modi�ed pages are concentrated with respect to the version table
directory, then we can ignore the time to scan the version table directory. To
accomplish the �ip, we then need to modify 223 entries. If we assume modi�ed
entries are adjacent, we can load and store 8 of them at a time, requiring 221

memory accesses. If a memory access takes around 10ns, the �ip will take
around 20ms.

The time for a �ip can be made shorter by taking more frequent snapshots.

6.2 Technique based on log-structured �le systems

To make the description more concrete, we imagine a secondary storage device
consisting of around 230 pages, each containing 212 bytes. Recall that CLOSOS
treats primary memory as a cache for secondary memory. Therefore, the pages
on the secondary storage device can be considered as making up the complete
address space of CLOSOS. As such, they have unique numbers, starting at 0.
In the example system, the unique page number would occupy bits 41− 12 of
a pointer.

However, with the technique described in this section, the unique page number
does not correspond to any �xed location on the secondary storage device.
Instead, the location of a particular page can vary over time. But when a
page fault for a particular unique page number occurs, the location of the page
on secondary storage must be known. For that reason, we keep a page map
in main memory. In the example system, this page map would consist of 230

4-byte entries, for a total of 232 bytes of main memory.

3If the working set is larger than the main memory, performance is likely to deteriorate
for more fundamental reasons.

36 CHAPTER 6. CHECKPOINTING

With the technique described in this section, the secondary storage device
represents a very large circular queue where each element of the queue is called
a segment. Such a segment represents a unit of checkpointing. New segments
are added to the tail of the queue. Old segments are removed from the head
of the queue as described below.

A segment consists of:

• a header containing metadata about the contents of the segment, and

• a certain number of pages that may have been modi�ed since the previous
checkpoint.

Again, to make the description more concrete, let us imagine that the number
of pages in a segment is around 250 or so, for a total of around 1MB of page
data. A segment is written as a unit to the secondary storage device. If that
device is a disk, then the seek time and rotation delay of the disk will not
signi�cantly impact the transfer of the segment to the disk, because the size of
the segment is su�ciently large that the data-transfer time will dominate.

Furthermore, it is advantageous to keep the secondary storage device nearly
full, because then (if the device is a disk) the head and the tail of the queue
will be physically close, thereby minimizing seek time.

The header of a segment contains:

• A list of the unique page number of each of the pages in the segment.
For the example segment size, this information occupies around 1KB.

• A SHA value calculated from the data in the segment.

• The position of the head of the queue, i.e. the position of the �rst segment
to be removed from the secondary device.

In addition to the queue of segments, the secondary storage device contains a
single word of information, indicating the tail of the queue, i.e. the position on
the device of the last checkpoint segment that was written.

6.2. TECHNIQUE BASED ON LOG-STRUCTURED FILE SYSTEMS 37

The �rst thing we need to verify at this point is that it is possible to boot the
system, given only the information on the secondary storage device. Here is
how the system would be booted:

1. Read the information indicating where the tail of the queue is located.

2. Using this information, read the metadata of the last checkpointing seg-
ment that was written.

3. From this metadata, retrieve the information about the head of the queue.

4. Read each segment from the head to the tail of the queue, constructing
the page map from the metadata of each segment.

5. Load initial pages into main memory, setting up the page tables as ap-
propriate.

6. Jump to the entry point of the system.

Segments are removed from the head of the queue, by a procedure called clean-
ing. This procedure will be described later. For now, we assume that it is not
present.

The system maintains three bu�ers, each one the size of a segment. Two bu�ers
are used to alternate, so that one is being written to secondary memory while
the other one (the active one) is used to receive pages in main memory. The
third bu�er is used to read back and compare what was written to secondary
storage. Two counters, M and N , each with an initial value of 0 is kept for
each of two ordinary segment bu�ers. M indicates the �rst free page in the
active segment bu�er, or equivalently, the number of pages that have already
been copied to the bu�er. N indicates the number of dirty pages that have
not yet been copied to the segment bu�er. If ever M + N reaches the value
corresponding to the number of pages in the bu�er (in our example, 250, then
a checkpoint is triggered as described below.

When a page fault occurs, a victim page is chosen using some standard tech-
nique, such as �least recently used�. If the victim page is clean, it is simply
discarded and the page map is modi�ed to re�ect the change. If the victim
page is dirty, its contents is copied to the �rst free page of the active segment

38 CHAPTER 6. CHECKPOINTING

bu�er, and the value of M is incremented. The unique number of the page is
retrieved from the page map and stored in the header of the active segment
bu�er.

All clean pages are read-only. When an attempt is made to modify a page, N
is incremented and the page is marked as writable.

As mentioned above, when M + N reaches the value corresponding to the
number of available pages in the segment bu�er, a checkpoint is triggered. The
initial operation of a checkpoint is called an atomic �ip which involves two
segment bu�ers that we shall call A and B. A is the current active segment
bu�er with MA + NA having reached its ceiling and B is the next one to be
activated with its MB and NB equal to 0.

First, the NA dirty pages not yet in the bu�er are marked as read-only. This
operation must be done atomically, i.e., all executing threads must be tem-
porarily stopped. The active segment bu�er is then set to segment B.

Then the NA pages that were dirty are copied to segment bu�er A. Their
respective unique page numbers are retrieved from the page map and copied
to the header of segment bu�er A. Once this is done, the entire segment A is
written to the end of the queue on secondary storage, and MA and NA are set
to 0.

To avoid that the secondary storage device �lls up with more and more check-
point segments, an activity called cleaning works in parallel with the activity
described above. Conceptually, a segment is read from the head of the queue
and processed as follows. The list of unique page numbers in the segment
header is examined. For each unique page number, the page map in main
memory is consulted. There are two possible outcomes:

1. The location of the page as indicated by the page map is di�erent from
the location in the segment being processed. Then, there is a segment
further back in the queue that contains a newer version of the page.
Therefore, this version of the page is obsolete, and is simply discarded.

2. The location of the page as indicated by the page map is the same the
location in the segment being processed. Then, this version of the page is
the most recent one. In this case, the page is copied to the active segment
bu�er and M is incremented.

6.2. TECHNIQUE BASED ON LOG-STRUCTURED FILE SYSTEMS 39

When every page in the head segment has been processed this way, the header
of the active segment bu�er is updated to re�ect that the complete segment
at the head of the queue has been processed and the following segment on the
queue should be processed next. Notice that there is no danger in processing
pages this way multiple times. Thus, if a crash occurs in the middle, there is
no harm done.

Now, let us turn our attention to performance. Clearly, if a disk the size of
the secondary storage device in our example is to be completely read when the
system boots, it will take a very long time indeed. We suggest handling this
problem by separating the segment headers from the segment pages either to
two separate parts of a single storage device or to a second device. Only the
headers need to be read for a page map to be constructed in memory. The
headers are less than one half of a percent the size of the space occupied by
pages in our example, so booting the system is then much faster. Even better,
if the segment headers are placed on a persistent solid-state device, they can
be read much faster.

40 CHAPTER 6. CHECKPOINTING

Chapter 7

Device drivers

7.1 Introduction

The purpose of a device driver is to act as an intermediate layer between
an operating-speci�c API that is common for a group of similar devices and
vendor-speci�c interfaces for individual types of devices.

An important part of writing device drivers for a Lisp operating system is there-
fore to specify the di�erent groups of devices and the corresponding operating-
speci�c API for each group.1

7.2 Tickets

Some I/O operations, when called, return an object of type ticket. A ticket
is either pending or it has expired. A pending ticket corresponds to an I/O
operation that is not yet complete.

⇒ ticket [Protocol Class]

The base class for all tickets.

1As everything else in this document, this chapter is open to discussion. More so here,
because I have no prior experience in de�ning device-driver APIs. � RS

41

42 CHAPTER 7. DEVICE DRIVERS

⇒ standard-ticket [Class]

Instantiable subclass of the class ticket

⇒ expired-p ticket [Generic Function]

Return true if and only if ticket has expired.

⇒ wait-some &rest tickets [Function]

Suspend the current process until one of the tickets has expired.

⇒ wait-all &rest tickets [Function]

Suspend the current process until all of the tickets have expired.

7.3 Disk drivers

⇒ disk [Protocol Class]

This is the root class of all disk device classes. A disk is a device that stores
data in blocks. The size of a block varies between di�erent types of disks.
Blocks are numbered from 0 to N − 1 where N is the total number of blocks
on this device. Because of the existence of bad blocks, N may be smaller than
the nominal size of the device. Nevertheless, the driver and the disk controller
conspire to present the disk as contiguous sequence of blocks.

⇒ standard-disk [Class]

This class is an instantiable subclass of the class disk.

⇒ size disk [Generic Function]

Return the number of blocks that disk may store, so excluding bad blocks.

⇒ block-size disk [Generic Function]

Return the size of a native block for disk. This size is the preferred size to use
in transfers to and from this type of disk.

⇒ write-block disk block address [Generic Function]

Issue a write operation transferring the data in block to disk. The param-
eter disk is an instance of the class disk, and block is a a vector of type

7.3. DISK DRIVERS 43

(simple-array (unsigned-byte 8) (*)). The size of block must be a power
of 2, and the address must be aligned to the size of block. If the size of block
is smaller than the native block size of disk then a request to read an entire
native block will be issued and the result will be stored in a temporary location.
Part of the native block in the temporary location will then be overwritten by
the contents of block. Finally, the contents of the temporary location will be
written to the device. If the size of block is greater than the native block size
of disk, then several native blocks will be written from block.

A call to this generic function returns an instance of the class ticket. The
functions wait-some and wait-all can be used to wait for the I/O operation
to �nish.

⇒ read-block disk block address [Generic Function]

Write a block of data to the disk. The parameter disk is an instance of the
class disk, and block is a a vector of type (simple-array (unsigned-byte 8)

(*)). The size of block must be a power of 2, and the address must be aligned
to the size of block. If the size of block is smaller than the native block size of
disk then a request to read an entire native block will be issued and the result
will be stored in a temporary location. Then a part of that native block will
be copied to block. If the size of block is greater than the native block size of
disk, then several native blocks will be read into block.

A call to this generic function returns an instance of the class ticket. The
functions wait-some and wait-all can be used to wait for the I/O operation
to �nish.

44 CHAPTER 7. DEVICE DRIVERS

Part I

Appendices

45

Appendix A

Use cases

In this appendix, we consider particular �use cases� or �scenarios�, i.e. common
situations that the user will need to handle. The purpose of this exercise is
twofold:

1. To give the readers of this speci�cation an idea of how the system might
be used.

2. To determine the requirements of the object store (See Chapter 2.) based
on real situations that it must handle, or not.

A.1 Opening a document for reading

This scenario is de�ned by the fact that the user wants to start the execution
of some application, while giving it a particular document, presumably of the
type that this application can handle. Examples of such situation are:

• The user wants to read a text document in PDF format.1

1Notice that PDF is a way of storing a structured document in a �le consisting of a
sequence of bytes. This is not the kind of document we mean here. We rather mean some
structured version of the document containing the same sections as the PDF speci�cation
requires, but that is not stored as a sequence of bytes, but rather as a graph of instances of
classes that together represent such a document.

47

48 APPENDIX A. USE CASES

• The user wants to watch a particular movie.

• The user wants to listen to some piece of music.

In all these cases, there are several ways in which the scenario can play out:

• The user might be interacting with a listener, and the user knows some
Common Lisp form (perhaps the name of a special variable) to type in
order to obtain the desired document. In this case, the user calls the
top-level function of the application, passing it the result of the form as
an argument.

• The user might be interacting with a listener, but the document is some-
where in the object store. Then the user �rst issues a request to the
object store, perhaps with the document type and the title (or part of
the title). The object store then presents2 the documents that correspond
to the query. Finally the user types the name of the application, but in-
stead of giving a form as an argument, he or she clicks on the relevant
presentation.

• The user might already be interacting with the right application. There-
fore, he or she asks the application to read a di�erent (or another) doc-
ument. By doing this, the application starts a �document selector� that
allows the user to either type a Common Lisp form with the new docu-
ment as its value, or to issue a request to the object store. When the user
selects the document, it becomes the reusult of the call to the document
selector, and the application starts the execution on the new document.

2By �present�, we mean that the output is in the form of CLIM presentations that are
clickable.

Bibliography

[BMPR17] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48�54, March 2017.

[JHM11] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage
Collection Handbook: The Art of Automatic Memory Management.
Chapman & Hall/CRC, 1st edition, 2011.

[WH18] Daniel Waddington and Jim Harris. Software challenges for the
changing storage landscape. Commun. ACM, 61(11):136�145, Oc-
tober 2018.

49

Index

block-size Generic Function, 42
disk Protocol Class, 42
expired-p Generic Function, 42
read-block Generic Function, 43
size Generic Function, 42
standard-disk Class, 42
standard-ticket Class, 42
ticket Protocol Class, 41
wait-all Function, 42
wait-some Function, 42
write-block Generic Function, 42

50

