14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
}
// The following hash code is the heart of the algorithm:
// It builds a sliding hash sum of the previous 3-and-a-bit
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val uint16) {
ctx.hash = (ctx.hash << 4) ^ val
}
type compressor func([]byte) error
func (w compressor) Write(data []byte) (int, error) {
return len(data), w(data)
}
|
|
|
|
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
}
// The following hash code is the heart of the algorithm:
// It builds a sliding hash sum of the previous 3-and-a-bit
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val byte) {
ctx.hash = (ctx.hash << 4) ^ uint16(val)
}
type compressor func([]byte) error
func (w compressor) Write(data []byte) (int, error) {
return len(data), w(data)
}
|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
ctx.table[ctx.hash] = current
buf = append(buf, current)
}
ctx.update(uint16(current))
}
if _, err := writer.Write(buf); err != nil {
return err
}
// Reset the flags and buffer for the next iteration
|
|
|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
ctx.table[ctx.hash] = current
buf = append(buf, current)
}
ctx.update(current)
}
if _, err := writer.Write(buf); err != nil {
return err
}
// Reset the flags and buffer for the next iteration
|
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
// Check whether we have leftover data in the buffer
if len(ctx.input) > 0 {
rc = copy(output, ctx.input)
// Check whether we still have leftover data in the buffer :)
if rc < len(ctx.input) {
ctx.input = ctx.input[:copy(ctx.input, ctx.input[rc:])]
}
return rc, nil
}
// Read the next prediction header
readHeader:
|
>
>
|
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
// Check whether we have leftover data in the buffer
if len(ctx.input) > 0 {
rc = copy(output, ctx.input)
// Check whether we still have leftover data in the buffer :)
if rc < len(ctx.input) {
// Shift the remaining bytes at the start of the buffer
// and resize the buffer accordingly
ctx.input = ctx.input[:copy(ctx.input, ctx.input[rc:])]
}
return rc, nil
}
// Read the next prediction header
readHeader:
|
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
// Walk the buffer, filling in the predicted blanks,
// relocating read bytes and and updating the guess table
for i, a := 0, predicted; i < rc; i++ {
if (flags & (1 << uint(i))) > 0 {
// Guess succeeded, fill in from the table
ctx.input[i] = ctx.table[ctx.hash]
} else {
// Relocate a read byte
ctx.input[i], a = ctx.input[a], a+1
// Guess failed, update the table
ctx.table[ctx.hash] = ctx.input[i]
}
// Update the hash
ctx.update(uint16(ctx.input[i]))
}
// Copy the decompressed data to the output
ctx.input = ctx.input[:rc]
copied = copy(output, ctx.input)
total += copied
// Check for remaining bytes that dont fit in the output buffer
if copied < rc {
ctx.input = ctx.input[:copy(ctx.input, ctx.input[copied:])]
} else {
// Clear the buffer
ctx.input = ctx.input[:0]
output = output[copied:]
if len(output) > 0 && err == nil {
goto readHeader
}
}
return total, err
})
}
|
|
|
|
<
|
<
>
>
|
>
|
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
// Walk the buffer, filling in the predicted blanks,
// relocating read bytes and and updating the guess table
for i, a := 0, predicted; i < rc; i++ {
if (flags & (1 << uint(i))) > 0 {
// Guess succeeded, fill in from the table
ctx.input[i] = ctx.table[ctx.hash]
} else {
// Relocate a read byte and advance the read byte index
ctx.input[i], a = ctx.input[a], a+1
// Guess failed, update the table
ctx.table[ctx.hash] = ctx.input[i]
}
// Update the hash
ctx.update(ctx.input[i])
}
// Copy the decompressed data to the output and accumulate the count
copied = copy(output, ctx.input[:rc])
total += copied
// Check for remaining bytes that dont fit in the output buffer
if copied < rc {
// Shift the remaining bytes at the start of the buffer
// and resize the buffer accordingly
ctx.input = ctx.input[:copy(ctx.input, ctx.input[copied:rc])]
} else {
// Clear the buffer
ctx.input = ctx.input[:0]
// Loop for another pass if there is available space in the output
output = output[copied:]
if len(output) > 0 && err == nil {
goto readHeader
}
}
return total, err
})
}
|