12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
f, err := os.Open(os.Args[1])
if err != nil {
os.Stderr.WriteString("Unable to open input file. " + err.Error())
os.Exit(1)
}
pairs, symbols := analyze(f)
fmt.Println(pairs)
fmt.Println(symbols)
}
// Reads the provided input and returns information about the available byte pair and used symbols
func analyze(reader io.Reader) (pairSlice, symbolSlice) {
var (
current uint16 // Stores a pair of bytes in it's high and low bits
buffer []byte = make([]byte, 1)
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
f, err := os.Open(os.Args[1])
if err != nil {
os.Stderr.WriteString("Unable to open input file. " + err.Error())
os.Exit(1)
}
pairs, symbols := analyze(f)
rec := recommend(pairs, symbols)
fmt.Println(*rec)
}
type pair struct {
value uint16
count uint64
}
type symbol struct {
value byte
count uint64
}
type recommendation struct {
p2s map[uint16]byte
s2p map[byte]uint16
}
func recommend(pairs pairSlice, symbols symbolSlice) *recommendation {
var (
rec recommendation
pairsLength = len(pairs)
)
rec.p2s = make(map[uint16]byte) // Store pair to symbol mappings
rec.s2p = make(map[byte]uint16) // Store symbol to pair mappings
for i := 0; i < pairsLength; i++ {
currentPair := pairs[i]
// Termination condition for when we are out of symbols
if len(symbols) == 0 {
break
}
gain := currentPair.count - 4 // 4 bytes for the default header
currentSymbol := symbols[0]
if currentSymbol.count == 0 {
// Termination condition for possitive compression effect
if gain <= 0 {
break
}
// Mark the recommendation and proceed with the next pair
rec.p2s[currentPair.value] = currentSymbol.value
continue
} else { // if the current symbol is present in the data
// Decrease the gain by a symbol -> p`, p -> symbol replacement
gain -= 2 // Additional 2 bytes for the more complex header
gain -= currentSymbol.count // Account for swaping the symbol to a pair in order to free it
// Termination condition for possitive compression effect
if gain <= 0 {
break
}
// Mark this symbol for replacement by the last unused pair
rec.s2p[currentSymbol.value] = pairs[pairsLength-1].value
pairsLength--
// Mark the current pair for replacement by the current symbol
rec.p2s[currentPair.value] = currentSymbol.value
}
}
return &rec
}
// Reads the provided input and returns information about the available byte pair and used symbols
func analyze(reader io.Reader) (pairSlice, symbolSlice) {
var (
current uint16 // Stores a pair of bytes in it's high and low bits
buffer []byte = make([]byte, 1)
|
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
|
// Store bytes frequency
symbols[value]++
}
return len(data), nil
}), reader)
// Extract and sort all available byte pairs
availablePairs := make(pairSlice, 0)
for index, value := range pairs {
if value > 0 {
availablePairs = append(availablePairs, pair{value: uint16(index), count: value})
}
}
sort.Sort(availablePairs)
// Extract and sort all symbols (including the ones with zero counts)
allSymbols := make(symbolSlice, 0)
for index, value := range symbols {
allSymbols = append(allSymbols, symbol{value: byte(index), count: value})
}
sort.Sort(allSymbols)
return availablePairs, allSymbols
}
type pair struct {
value uint16
count uint64
}
// Implements fmt.Stringer, used for debugging
func (p pair) String() string {
return fmt.Sprintf("[ %d %d (%d) ]", (p.value >> 8), ((p.value << 8) >> 8), p.count)
}
type pairSlice []pair
func (s pairSlice) Len() int {
return len(s)
}
func (s pairSlice) Less(i, j int) bool {
// Sort in descending order
return s[i].count > s[j].count
}
func (s pairSlice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type symbol struct {
value byte
count uint64
}
type symbolSlice []symbol
func (s symbolSlice) Len() int {
return len(s)
}
func (s symbolSlice) Less(i, j int) bool {
// Sort in descending order
return s[i].count > s[j].count
}
func (s symbolSlice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
|
|
|
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
// Store bytes frequency
symbols[value]++
}
return len(data), nil
}), reader)
// Extract and sort all byte pairs
availablePairs := make(pairSlice, 0)
for index, value := range pairs {
availablePairs = append(availablePairs, pair{value: uint16(index), count: value})
}
sort.Sort(availablePairs)
// Extract and sort all symbols (including the ones with zero counts)
allSymbols := make(symbolSlice, 0)
for index, value := range symbols {
allSymbols = append(allSymbols, symbol{value: byte(index), count: value})
}
sort.Sort(allSymbols)
return availablePairs, allSymbols
}
// Implements fmt.Stringer, used for debugging
func (p pair) String() string {
return fmt.Sprintf("[ %d %d (%d) ]", (p.value >> 8), ((p.value << 8) >> 8), p.count)
}
type pairSlice []pair
func (s pairSlice) Len() int {
return len(s)
}
func (s pairSlice) Less(i, j int) bool {
// Sort in descending order
return s[i].count > s[j].count
}
func (s pairSlice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type symbolSlice []symbol
func (s symbolSlice) Len() int {
return len(s)
}
func (s symbolSlice) Less(i, j int) bool {
// Sort in ascending order
return s[i].count < s[j].count
}
func (s symbolSlice) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
|