15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
// Returns a closure over the provided writer that compresses data when called.
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) func([]byte) error {
var ctx context
ctx.input = ctx.buffer[:]
// Forward declaration as it is required for recursion
var write func(data []byte) error
write = func(data []byte) error {
var (
err error
blockSize int = 8
bufferLength int = len(ctx.input)
)
// Force a flush if we are called with no data to write
if len(data) == 0 {
// We can't have more than 7 bytes in the buffer so this is safe
blockSize = len(ctx.input)
goto write
}
// Check if there are pending bytes in the buffer
if bufferLength > 0 && bufferLength < 8 {
// Check whether we have enough bytes for a complete block
if len(data) > 8-bufferLength {
// Fill the buffer ...
ctx.input = append(ctx.input, data[:8-bufferLength]...)
// ... and recurse, calling ourselves with the full buffer
err = write(ctx.input)
if err != nil {
|
|
>
>
>
>
>
|
<
|
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
// Returns a closure over the provided writer that compresses data when called.
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) func([]byte) error {
var ctx context
ctx.input = ctx.buffer[:0]
// Forward declaration as it is required for recursion
var write func(data []byte) error
write = func(data []byte) error {
var (
err error
blockSize int = 8
bufferLength int = len(ctx.input)
)
// Force a flush if we are called with no data to write
if len(data) == 0 {
if len(ctx.input) == 0 {
return nil
}
data = ctx.input
// We can't have more than 7 bytes in the buffer so this is safe
blockSize = len(ctx.input)
goto write
}
// Check if there are pending bytes in the buffer
if len(data) < blockSize || bufferLength > 0 {
// Check whether we have enough bytes for a complete block
if len(data) > 8-bufferLength {
// Fill the buffer ...
ctx.input = append(ctx.input, data[:8-bufferLength]...)
// ... and recurse, calling ourselves with the full buffer
err = write(ctx.input)
if err != nil {
|
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
|
ctx.input = append(ctx.input, data...)
return nil
}
}
write:
var buf []byte = make([]byte, 1, blockSize+1)
for block := 0; block < len(data)/blockSize; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
|
>
>
>
>
>
>
|
|
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
ctx.input = append(ctx.input, data...)
return nil
}
}
write:
var buf []byte = make([]byte, 1, blockSize+1)
var blocks int = len(data) / blockSize
if blocks == 0 {
blocks++
}
for block := 0; block < blocks; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
return err
}
// Reset the flags and buffer for the next iteration
buf[0] ^= buf[0]
buf = buf[:1]
}
return nil
}
return write
}
type reader func([]byte) (int, error)
func (r reader) Read(output []byte) (int, error) {
return r(output)
}
// TODO - document
func Decompressor(reader io.Reader) reader {
var ctx context
ctx.input = ctx.buffer[:0]
return func(output []byte) (int, error) {
var (
err error
flags byte
readCount int
)
// Sanity check for space to read into
if len(output) == 0 {
return 0, nil
}
// Check whether we have leftover data in the buffer
if len(ctx.input) > 0 {
readCount = copy(output, ctx.input)
ctx.input = ctx.input[readCount:]
return readCount, nil
}
// // The buffer will shrink as it empties, restore it if it is needed
// if len(ctx.input) == 0 {
// ctx.input = ctx.buffer[:1]
// }
// Read the flags
readCount, err = reader.Read(ctx.buffer[:1])
if readCount == 0 || err != nil {
return readCount, err
}
// This is single-iteration only but it is fine according to io.Reader's contract ?!
// TODO - read all bytes from a block based on the hamming weight of the flag
// and just shuffle them for predictions instead of bite-sized reads ;)
flags = ctx.buffer[0]
var i uint = 0
for ; i < 8; i++ {
if flags&(1<<i) > 0 {
// Guess was right
ctx.buffer[i] = ctx.table[ctx.hash]
} else {
readCount, err = reader.Read(ctx.buffer[i:(i + 1)])
if err == io.EOF {
break
}
if err != nil {
return readCount, err
}
if readCount == 0 { // treat as EoF
break
}
ctx.table[ctx.hash] = ctx.buffer[i]
}
ctx.hash = (ctx.hash << 4) ^ uint16(ctx.buffer[i])
}
readCount = copy(output, ctx.buffer[:i])
// Place any remaining bytes in the buffer
if uint(readCount) < i {
ctx.input = ctx.buffer[readCount:i]
}
return readCount, nil
}
}
|
>
>
>
>
>
>
>
>
>
|
|
|
|
|
<
>
|
<
<
<
|
|
|
|
|
|
|
>
>
|
|
|
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
return err
}
// Reset the flags and buffer for the next iteration
buf[0] ^= buf[0]
buf = buf[:1]
}
var remaining int = len(data) % blockSize
if remaining > 0 {
ctx.input = ctx.buffer[:remaining]
copy(ctx.input, data[len(data)-remaining:])
} else {
ctx.input = ctx.buffer[:0]
}
return nil
}
return write
}
type reader func([]byte) (int, error)
func (r reader) Read(output []byte) (int, error) {
return r(output)
}
// TODO - document
func Decompressor(wrapped io.Reader) io.Reader {
var ctx context
ctx.input = ctx.buffer[:0]
return reader(func(output []byte) (int, error) {
var (
err error
flags byte
readCount int
)
// Sanity check for space to read into
if len(output) == 0 {
return 0, nil
}
// Check whether we have leftover data in the buffer
if len(ctx.input) > 0 {
readCount = copy(output, ctx.input)
ctx.input = ctx.input[readCount:]
return readCount, nil
}
// This is single-iteration only but it is fine according to io.Reader's contract ?!
// TODO - read all bytes from a block based on the hamming weight of the flag
// and just shuffle them for predictions instead of bite-sized reads ;)
// Read the flags
ctx.input = ctx.buffer[:1]
readCount, err = wrapped.Read(ctx.input)
if readCount == 0 || err != nil {
return readCount, err
}
flags = ctx.input[0]
ctx.input = ctx.buffer[:8]
var i uint = 0
for ; i < 8; i++ {
if flags&(1<<i) > 0 {
// Guess was right
ctx.input[i] = ctx.table[ctx.hash]
} else {
readCount, err = wrapped.Read(ctx.input[i:(i + 1)])
if err == io.EOF {
break
}
if err != nil {
return readCount, err
}
if readCount == 0 { // treat as EoF
break
}
ctx.table[ctx.hash] = ctx.input[i]
}
ctx.hash = (ctx.hash << 4) ^ uint16(ctx.input[i])
}
readCount = copy(output, ctx.input[:i])
// Place any remaining bytes in the buffer
if uint(readCount) < i {
ctx.input = ctx.input[readCount:i]
} else {
ctx.input = ctx.buffer[:0]
}
return readCount, nil
})
}
|