19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
|
-
-
-
-
-
-
-
+
-
+
+
-
+
-
+
-
+
+
-
+
-
+
-
+
-
-
+
+
-
+
-
+
-
-
+
+
-
+
-
+
-
+
|
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val byte) {
ctx.hash = (ctx.hash << 4) ^ uint16(val)
}
type compressor func([]byte) error
func (w compressor) Write(data []byte) (int, error) {
return len(data), w(data)
}
// Returns an io.Writer implementation that wraps the provided io.Writer
// and compresses data according to the predictor algorithm
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) io.Writer {
var ctx context
ctx.input = make([]byte, 0, 8)
// Forward declaration as it is required for recursion
var write compressor
var write iou.WriterFunc
write = func(data []byte) error {
write = func(data []byte) (int, error) {
var (
blockSize int = 8
bufferLength int = len(ctx.input)
datalength int = len(data)
)
// Force a flush if we are called with no data to write
if len(data) == 0 {
if datalength == 0 {
// Nothing to flush if the buffer is empty though
if len(ctx.input) == 0 {
return nil
return 0, nil
}
// We can't have more than 7 bytes in the buffer so this is safe
data, blockSize, bufferLength = ctx.input, len(ctx.input), 0
data, datalength = ctx.input, len(ctx.input)
blockSize, bufferLength = datalength, 0
}
// Check if there are pending bytes in the buffer
if len(data) < blockSize || bufferLength > 0 {
if datalength < blockSize || bufferLength > 0 {
// If the current buffer + new data can fit into a block
if (len(data) + bufferLength) <= blockSize {
if (datalength + bufferLength) <= blockSize {
ctx.input = append(ctx.input, data...)
// Flush the block if the buffer fills it
if len(ctx.input) == blockSize {
return write(nil)
}
// ... otherwise just return
return nil
return datalength, nil
}
// The current buffer + new data overflow the block size
// Complete the block, flush it ...
ctx.input = append(ctx.input, data[:blockSize-bufferLength]...)
if err := write(nil); err != nil {
return err
if c, err := write(nil); err != nil {
return c, err
}
// ... and stage the rest of the data in the buffer
ctx.input = append(ctx.input, data[blockSize-bufferLength:]...)
return nil
return datalength, nil
}
var buf []byte = make([]byte, 1, blockSize+1)
for block := 0; block < len(data)/blockSize; block++ {
for block := 0; block < datalength/blockSize; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
ctx.table[ctx.hash] = current
buf = append(buf, current)
}
ctx.update(current)
}
if _, err := writer.Write(buf); err != nil {
return err
if c, err := writer.Write(buf); err != nil {
return (block * blockSize) + c, err
}
// Reset the flags and buffer for the next iteration
buf, buf[0] = buf[:1], 0
}
if remaining := len(data) % blockSize; remaining > 0 {
if remaining := datalength % blockSize; remaining > 0 {
ctx.input = ctx.input[:remaining]
copy(ctx.input, data[len(data)-remaining:])
copy(ctx.input, data[datalength-remaining:])
} else {
ctx.input = ctx.input[:0]
}
return nil
return datalength, nil
}
return write
}
// Returns an io.Reader implementation that wraps the provided io.Reader
// and decompresses data according to the predictor algorithm
|