1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
+
+
-
+
+
+
+
+
+
+
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
-
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
-
+
+
+
-
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
-
-
-
-
-
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
-
-
+
+
-
-
-
-
-
+
+
+
+
+
-
+
-
|
// Package predictor implements the predictor compression/decompression algorithm
// as specified by RFC1978 - PPP Predictor Compression Protocol
package predictor
import (
bits "0dev.org/bits"
iou "0dev.org/ioutil"
"io"
)
// The context struct contains the predictor's algorithm guess table
// and the current value of its input/output hash
type context struct {
table [1 << 16]byte
input []byte
hash uint16
}
// The following hash code is the heart of the algorithm:
// It builds a sliding hash sum of the previous 3-and-a-bit
// characters which will be used to index the guess table.
// A better hash function would result in additional compression,
// at the expense of time.
func (ctx *context) update(val byte) {
ctx.hash = (ctx.hash << 4) ^ uint16(val)
}
// Returns an io.Writer implementation that wraps the provided io.Writer
// and compresses data according to the predictor algorithm
//
// It can buffer data as the predictor mandates 8-byte blocks with a header.
// A call with no data will force a flush.
func Compressor(writer io.Writer) io.Writer {
var cmp compressor
cmp.Writer = iou.SizedWriter(iou.WriterFunc(cmp.compress), 8)
cmp.target = writer
return &cmp
}
type compressor struct {
var ctx context
return iou.SizedWriter(iou.WriterFunc(func(data []byte) (int, error) {
var (
blockSize int = 8
datalength int = len(data)
)
context
io.Writer
target io.Writer
}
func (ctx *compressor) compress(data []byte) (int, error) {
var (
blockSize int = 8
datalength int = len(data)
)
if datalength == 0 {
return 0, nil
}
if datalength == 0 {
return 0, nil
}
if datalength < blockSize {
blockSize = datalength
}
if datalength < blockSize {
blockSize = datalength
}
var buf []byte = make([]byte, 1, blockSize+1)
for block := 0; block < datalength/blockSize; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
ctx.table[ctx.hash] = current
buf = append(buf, current)
}
ctx.update(current)
}
var buf []byte = make([]byte, 1, blockSize+1)
for block := 0; block < datalength/blockSize; block++ {
for i := 0; i < blockSize; i++ {
var current byte = data[(block*blockSize)+i]
if ctx.table[ctx.hash] == current {
// Guess was right - don't output
buf[0] |= 1 << uint(i)
} else {
// Guess was wrong, output char
ctx.table[ctx.hash] = current
buf = append(buf, current)
}
ctx.update(current)
}
if c, err := writer.Write(buf); err != nil {
return (block * blockSize) + c, err
}
if c, err := ctx.target.Write(buf); err != nil {
return (block * blockSize) + c, err
}
// Reset the flags and buffer for the next iteration
buf, buf[0] = buf[:1], 0
}
// Reset the flags and buffer for the next iteration
buf, buf[0] = buf[:1], 0
}
return datalength, nil
return datalength, nil
}), 8)
}
// Returns an io.Reader implementation that wraps the provided io.Reader
// and decompresses data according to the predictor algorithm
func Decompressor(reader io.Reader) io.Reader {
var ctx context
ctx.input = make([]byte, 0, 8)
return iou.SizedReader(iou.ReaderFunc(func(output []byte) (int, error) {
var (
err error
flags, predicted byte
rc, total, copied int
)
var dcmp decompressor
dcmp.Reader = iou.SizedReader(iou.ReaderFunc(dcmp.decompress), 8)
dcmp.source = reader
dcmp.input = make([]byte, 0, 8)
return &dcmp
}
type decompressor struct {
context
io.Reader
source io.Reader
input []byte
}
func (ctx *decompressor) decompress(output []byte) (int, error) {
var (
err error
flags, predicted byte
rc, total, copied int
)
// Read the next prediction header
readHeader:
rc, err = reader.Read(ctx.input[:1])
// Fail on error unless it is EOF
if err != nil && err != io.EOF {
return total, err
} else if rc == 0 {
return total, err
}
// Read the next prediction header
readHeader:
rc, err = ctx.source.Read(ctx.input[:1])
// Fail on error unless it is EOF
if err != nil && err != io.EOF {
return total, err
} else if rc == 0 {
return total, err
}
// Extend the buffer, copy the prediction header
// and calculate the number of subsequent bytes to read
ctx.input = ctx.input[:8]
flags = ctx.input[0]
predicted = bits.Hamming(flags)
// Extend the buffer, copy the prediction header
// and calculate the number of subsequent bytes to read
ctx.input = ctx.input[:8]
flags = ctx.input[0]
predicted = bits.Hamming(flags)
// Read the non-predicted bytes and place them in the end of the buffer
rc, err = reader.Read(ctx.input[predicted:])
retryData:
if rc < int(8-predicted) && err == nil {
// Retry the read if we have fewer bytes than what the prediction header indicates
var r int
r, err = reader.Read(ctx.input[int(predicted)+rc:])
rc += r
goto retryData
} // Continue on any error, try to decompress and return it along the result
// Read the non-predicted bytes and place them in the end of the buffer
rc, err = ctx.source.Read(ctx.input[predicted:])
retryData:
if rc < int(8-predicted) && err == nil {
// Retry the read if we have fewer bytes than what the prediction header indicates
var r int
r, err = ctx.source.Read(ctx.input[int(predicted)+rc:])
rc += r
goto retryData
} // Continue on any error, try to decompress and return it along the result
// rc now contains the amount of actual bytes in this cycle (usually 8)
rc += int(predicted)
// rc now contains the amount of actual bytes in this cycle (usually 8)
rc += int(predicted)
// Walk the buffer, filling in the predicted blanks,
// relocating read bytes and and updating the guess table
for i, a := 0, predicted; i < rc; i++ {
if (flags & (1 << uint(i))) > 0 {
// Guess succeeded, fill in from the table
ctx.input[i] = ctx.table[ctx.hash]
} else {
// Relocate a read byte and advance the read byte index
ctx.input[i], a = ctx.input[a], a+1
// Guess failed, update the table
ctx.table[ctx.hash] = ctx.input[i]
}
// Update the hash
ctx.update(ctx.input[i])
}
// Walk the buffer, filling in the predicted blanks,
// relocating read bytes and and updating the guess table
for i, a := 0, predicted; i < rc; i++ {
if (flags & (1 << uint(i))) > 0 {
// Guess succeeded, fill in from the table
ctx.input[i] = ctx.table[ctx.hash]
} else {
// Relocate a read byte and advance the read byte index
ctx.input[i], a = ctx.input[a], a+1
// Guess failed, update the table
ctx.table[ctx.hash] = ctx.input[i]
}
// Update the hash
ctx.update(ctx.input[i])
}
// Copy the decompressed data to the output and accumulate the count
copied = copy(output, ctx.input[:rc])
total += copied
// Copy the decompressed data to the output and accumulate the count
copied = copy(output, ctx.input[:rc])
total += copied
// Clear the buffer
ctx.input = ctx.input[:0]
// Clear the buffer
ctx.input = ctx.input[:0]
// Loop for another pass if there is available space in the output
output = output[copied:]
if len(output) > 0 && err == nil {
goto readHeader
}
// Loop for another pass if there is available space in the output
output = output[copied:]
if len(output) > 0 && err == nil {
goto readHeader
}
return total, err
return total, err
}), 8)
}
|