
Copyright © 1994-2009 RSA Security Inc. License to copy this document is granted provided that it is
identified as “RSA Security Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning
or referencing this document.

PKCS #11 Base Functionality v2.30: Cryptoki – Draft 4

RSA Laboratories

10 July 2009

Table of Contents

1 INTRODUCTION .. 1

2 SCOPE... 1

3 REFERENCES.. 1

4 DEFINITIONS.. 4

5 SYMBOLS AND ABBREVIATIONS... 6

6 GENERAL OVERVIEW ... 9
6.1 INTRODUCTION... 9
6.2 DESIGN GOALS ... 9
6.3 GENERAL MODEL ... 10
6.4 LOGICAL VIEW OF A TOKEN.. 12
6.5 USERS .. 13
6.6 APPLICATIONS AND THEIR USE OF CRYPTOKI ... 14

6.6.1 Applications and processes .. 14
6.6.2 Applications and threads.. 15

6.7 SESSIONS.. 16
6.7.1 Read-only session states ... 16
6.7.2 Read/write session states .. 17
6.7.3 Permitted object accesses by sessions .. 18
6.7.4 Session events ... 19
6.7.5 Session handles and object handles.. 20
6.7.6 Capabilities of sessions .. 20
6.7.7 Example of use of sessions.. 21

6.8 SECONDARY AUTHENTICATION (DEPRECATED).. 23
6.9 FUNCTION OVERVIEW... 24

7 SECURITY CONSIDERATIONS .. 27

8 PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 28
8.1 STRUCTURE PACKING ... 28
8.2 POINTER-RELATED MACROS ... 29

♦ CK_PTR .. 29
♦ CK_DEFINE_FUNCTION.. 29
♦ CK_DECLARE_FUNCTION .. 29
♦ CK_DECLARE_FUNCTION_POINTER.. 29

ii PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ CK_CALLBACK_FUNCTION .. 30
♦ NULL_PTR.. 30

8.3 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODE ... 30
8.3.1 Win32.. 30
8.3.2 Win16.. 31
8.3.3 Generic UNIX... 32

9 GENERAL DATA TYPES... 33
9.1 GENERAL INFORMATION .. 33

♦ CK_VERSION; CK_VERSION_PTR .. 33
♦ CK_INFO; CK_INFO_PTR .. 34
♦ CK_NOTIFICATION .. 35

9.2 SLOT AND TOKEN TYPES... 35
♦ CK_SLOT_ID; CK_SLOT_ID_PTR.. 35
♦ CK_SLOT_INFO; CK_SLOT_INFO_PTR.. 36
♦ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR... 37

9.3 SESSION TYPES ... 42
♦ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR ... 42
♦ CK_USER_TYPE .. 43
♦ CK_STATE .. 43
♦ CK_SESSION_INFO; CK_SESSION_INFO_PTR.. 43

9.4 OBJECT TYPES .. 44
♦ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR ... 44
♦ CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTR ... 45
♦ CK_HW_FEATURE_TYPE... 45
♦ CK_KEY_TYPE... 45
♦ CK_CERTIFICATE_TYPE.. 46
♦ CK_ATTRIBUTE_TYPE.. 46
♦ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR.. 47
♦ CK_DATE.. 47

9.5 DATA TYPES FOR MECHANISMS .. 48
♦ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR .. 48
♦ CK_MECHANISM; CK_MECHANISM_PTR... 48
♦ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR .. 49

9.6 FUNCTION TYPES.. 50
♦ CK_RV... 51
♦ CK_NOTIFY.. 51
♦ CK_C_XXX.. 51
♦ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR; CK_FUNCTION_LIST_PTR_PTR..... 52

9.7 LOCKING-RELATED TYPES.. 54
♦ CK_CREATEMUTEX.. 54
♦ CK_DESTROYMUTEX ... 54
♦ CK_LOCKMUTEX and CK_UNLOCKMUTEX ... 54
♦ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR ... 56

10 OBJECTS .. 58
10.1 CREATING, MODIFYING, AND COPYING OBJECTS... 59

10.1.1 Creating objects... 59
10.1.2 Modifying objects... 61
10.1.3 Copying objects ... 61

10.2 COMMON ATTRIBUTES.. 62
10.3 HARDWARE FEATURE OBJECTS.. 63

10.3.1 Definitions.. 63

 iii

April 2009 Copyright © 2009 RSA Security Inc.

10.3.2 Overview .. 63
10.3.3 Clock .. 63
10.3.4 Monotonic Counter Objects... 64
10.3.5 User Interface Objects ... 65

10.4 STORAGE OBJECTS ... 67
10.5 DATA OBJECTS ... 68

10.5.1 Definitions.. 68
10.5.2 Overview .. 68

10.6 CERTIFICATE OBJECTS.. 69
10.6.1 Definitions.. 69
10.6.2 Overview .. 69
10.6.3 X.509 public key certificate objects ... 70
10.6.4 WTLS public key certificate objects ... 73
10.6.5 X.509 attribute certificate objects.. 74

10.7 KEY OBJECTS ... 76
10.7.1 Definitions.. 76
10.7.2 Overview .. 76

10.8 PUBLIC KEY OBJECTS.. 77
10.9 PRIVATE KEY OBJECTS ... 79
10.10 SECRET KEY OBJECTS ... 81
10.11 DOMAIN PARAMETER OBJECTS ... 84

10.11.1 Definitions.. 84
10.11.2 Overview .. 84

10.12 MECHANISM OBJECTS... 85
10.12.1 Definitions.. 85
10.12.2 Overview .. 85

11 FUNCTIONS... 86
11.1 FUNCTION RETURN VALUES.. 87

11.1.1 Universal Cryptoki function return values .. 87
11.1.2 Cryptoki function return values for functions that use a session handle 88
11.1.3 Cryptoki function return values for functions that use a token.. 89
11.1.4 Special return value for application-supplied callbacks ... 89
11.1.5 Special return values for mutex-handling functions .. 90
11.1.6 All other Cryptoki function return values .. 90
11.1.7 More on relative priorities of Cryptoki errors... 98
11.1.8 Error code “gotchas”.. 98

11.2 CONVENTIONS FOR FUNCTIONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER 99
11.3 DISCLAIMER CONCERNING SAMPLE CODE... 100
11.4 GENERAL-PURPOSE FUNCTIONS.. 100

♦ C_Initialize .. 100
♦ C_Finalize ... 102
♦ C_GetInfo .. 102
♦ C_GetFunctionList .. 103

11.5 SLOT AND TOKEN MANAGEMENT FUNCTIONS ... 104
♦ C_GetSlotList .. 104
♦ C_GetSlotInfo.. 106
♦ C_GetTokenInfo .. 106
♦ C_WaitForSlotEvent ... 107
♦ C_GetMechanismList .. 109
♦ C_GetMechanismInfo.. 110
♦ C_InitToken... 111
♦ C_InitPIN .. 112
♦ C_SetPIN... 113

iv PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

11.6 SESSION MANAGEMENT FUNCTIONS ... 115
♦ C_OpenSession.. 115
♦ C_CloseSession ... 116
♦ C_CloseAllSessions ... 117
♦ C_GetSessionInfo .. 118
♦ C_GetOperationState .. 119
♦ C_SetOperationState ... 120
♦ C_Login... 123
♦ C_Logout... 124

11.7 OBJECT MANAGEMENT FUNCTIONS .. 125
♦ C_CreateObject... 125
♦ C_CopyObject ... 127
♦ C_DestroyObject ... 129
♦ C_GetObjectSize ... 130
♦ C_GetAttributeValue ... 131
♦ C_SetAttributeValue.. 133
♦ C_FindObjectsInit ... 134
♦ C_FindObjects .. 135
♦ C_FindObjectsFinal.. 136

11.8 ENCRYPTION FUNCTIONS.. 137
♦ C_EncryptInit .. 137
♦ C_Encrypt.. 138
♦ C_EncryptUpdate.. 139
♦ C_EncryptFinal... 139

11.9 DECRYPTION FUNCTIONS.. 142
♦ C_DecryptInit.. 142
♦ C_Decrypt ... 143
♦ C_DecryptUpdate.. 144
♦ C_DecryptFinal... 144

11.10 MESSAGE DIGESTING FUNCTIONS ... 146
♦ C_DigestInit .. 146
♦ C_Digest.. 147
♦ C_DigestUpdate .. 148
♦ C_DigestKey.. 148
♦ C_DigestFinal ... 149

11.11 SIGNING AND MACING FUNCTIONS.. 150
♦ C_SignInit ... 150
♦ C_Sign ... 151
♦ C_SignUpdate ... 152
♦ C_SignFinal .. 152
♦ C_SignRecoverInit .. 153
♦ C_SignRecover .. 154

11.12 FUNCTIONS FOR VERIFYING SIGNATURES AND MACS .. 155
♦ C_VerifyInit ... 155
♦ C_Verify .. 156
♦ C_VerifyUpdate... 157
♦ C_VerifyFinal.. 157
♦ C_VerifyRecoverInit .. 159
♦ C_VerifyRecover ... 159

11.13 DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS .. 161
♦ C_DigestEncryptUpdate ... 161
♦ C_DecryptDigestUpdate ... 163

 v

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_SignEncryptUpdate... 167
♦ C_DecryptVerifyUpdate.. 169

11.14 KEY MANAGEMENT FUNCTIONS ... 172
♦ C_GenerateKey ... 173
♦ C_GenerateKeyPair .. 174
♦ C_WrapKey ... 176
♦ C_UnwrapKey... 178
♦ C_DeriveKey ... 180

11.15 RANDOM NUMBER GENERATION FUNCTIONS .. 182
♦ C_SeedRandom ... 182
♦ C_GenerateRandom.. 182

11.16 PARALLEL FUNCTION MANAGEMENT FUNCTIONS ... 183
♦ C_GetFunctionStatus .. 183
♦ C_CancelFunction .. 184

11.17 CALLBACK FUNCTIONS... 184
11.17.1 Surrender callbacks ... 184
11.17.2 Vendor-defined callbacks .. 185

12 CRYPTOKI TIPS AND REMINDERS .. 186
12.1 OPERATIONS, SESSIONS, AND THREADS .. 186
12.2 MULTIPLE APPLICATION ACCESS BEHAVIOR ... 186
12.3 OBJECTS, ATTRIBUTES, AND TEMPLATES .. 187
12.4 SIGNING WITH RECOVERY .. 187

A MANIFEST CONSTANTS.. 189

B TOKEN PROFILES ... 192
B.1 GOVERNMENT AUTHENTICATION-ONLY ... 193
B.2 CELLULAR DIGITAL PACKET DATA.. 193
B.3 OTHER PROFILES .. 193

C COMPARISON OF CRYPTOKI AND OTHER APIS... 194
C.1 FORTEZZA CIPG, REV. 1.52 ... 194
C.2 GCS-API ... 196

D INTELLECTUAL PROPERTY CONSIDERATIONS... 198

E METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI
(DEPRECATED).. 199

F REVISION HISTORY ... 200

List of Figures

FIGURE 1, GENERAL CRYPTOKI MODEL..11
FIGURE 2, OBJECT HIERARCHY ...12
FIGURE 3, READ-ONLY SESSION STATES ..17
FIGURE 4, READ/WRITE SESSION STATES ...18
FIGURE 5, OBJECT ATTRIBUTE HIERARCHY ..58

List of Tables

TABLE 1, SYMBOLS...6

vi PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

TABLE 2, PREFIXES ...6
TABLE 3, CHARACTER SET..8
TABLE 4, READ-ONLY SESSION STATES ...17
TABLE 5, READ/WRITE SESSION STATES ..18
TABLE 6, ACCESS TO DIFFERENT TYPES OBJECTS BY DIFFERENT TYPES OF SESSIONS19
TABLE 7, SESSION EVENTS ...19
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS ..24
TABLE 9, MAJOR AND MINOR VERSION VALUES FOR PUBLISHED CRYPTOKI SPECIFICATIONS34
TABLE 10, SLOT INFORMATION FLAGS ...36
TABLE 11, TOKEN INFORMATION FLAGS...39
TABLE 12, SESSION INFORMATION FLAGS ..44
TABLE 13, MECHANISM INFORMATION FLAGS..50
TABLE 14, C_INITIALIZE PARAMETER FLAGS ...57
TABLE 15, COMMON FOOTNOTES FOR OBJECT ATTRIBUTE TABLES62
TABLE 16, COMMON OBJECT ATTRIBUTES ...63
TABLE 17, HARDWARE FEATURE COMMON ATTRIBUTES ...63
TABLE 18, CLOCK OBJECT ATTRIBUTES ...64
TABLE 19, MONOTONIC COUNTER ATTRIBUTES ...65
TABLE 20, USER INTERFACE OBJECT ATTRIBUTES ...66
TABLE 21, COMMON STORAGE OBJECT ATTRIBUTES..67
TABLE 22, DATA OBJECT ATTRIBUTES ...68
TABLE 23, COMMON CERTIFICATE OBJECT ATTRIBUTES..69
TABLE 24, X.509 CERTIFICATE OBJECT ATTRIBUTES ...71
TABLE 25: WTLS CERTIFICATE OBJECT ATTRIBUTES ..73
TABLE 26, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES75
TABLE 27, COMMON KEY ATTRIBUTES ..76
TABLE 28, COMMON PUBLIC KEY ATTRIBUTES ..77
TABLE 29, MAPPING OF X.509 KEY USAGE FLAGS TO CRYPTOKI ATTRIBUTES FOR PUBLIC

KEYS...79
TABLE 30, COMMON PRIVATE KEY ATTRIBUTES..79
TABLE 31, COMMON SECRET KEY ATTRIBUTES ...82
TABLE 32, COMMON DOMAIN PARAMETER ATTRIBUTES..85
TABLE 33, COMMON MECHANISM ATTRIBUTES..85

1. INTRODUCTION 1

April 2009 Copyright © 2009 RSA Security Inc.

1 Introduction

This document describes the basic PKCS#11 token interface and token behavior.

2 Scope

This standard specifies an application programming interface (API), called “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions.
Cryptoki follows a simple object-based approach, addressing the goals of technology
independence (any kind of device) and resource sharing (multiple applications accessing
multiple devices), presenting to applications a common, logical view of the device called
a “cryptographic token”.

This document specifies the data types and functions available to an application requiring
cryptographic services using the ANSI C programming language. These data types and
functions will typically be provided via C header files by the supplier of a Cryptoki
library. Generic ANSI C header files for Cryptoki are available from the PKCS Web
page. This document and up-to-date errata for Cryptoki will also be available from the
same place.

Additional documents may provide a generic, language-independent Cryptoki interface
and/or bindings between Cryptoki and other programming languages.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to run in a
different environment; thus, the application is portable. How Cryptoki provides this
isolation is beyond the scope of this document, although some conventions for the
support of multiple types of device will be addressed here and possibly in a separate
document.

Details of cryptographic mechanisms (algorithms) may be found in the associated
document PKCS#11 Mechanisms.

Cryptoki is intended for cryptographic devices associated with a single user, so some
features that might be included in a general-purpose interface are omitted. For example,
Cryptoki does not have a means of distinguishing multiple users. The focus is on a single
user’s keys and perhaps a small number of certificates related to them. Moreover, the
emphasis is on cryptography. While the device may perform useful non-cryptographic
functions, such functions are left to other interfaces.

3 References

ANSI C ANSI/ISO. American National Standard for Programming Languages
– C. 1990.

2 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CC/PP W3C. Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies. World Wide Web Consortium, January 2004. URL:
http://www.w3.org/TR/CCPP-struct-vocab/

CDPD Ameritech Mobile Communications et al. Cellular Digital Packet
Data System Specifications: Part 406: Airlink Security. 1993.

FIPS PUB 46–3 NIST. FIPS 46-3: Data Encryption Standard (DES). October 25,
1999. URL: http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 74 NIST. FIPS 74: Guidelines for Implementing and Using the NBS Data
Encryption Standard. April 1, 1981. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 81 NIST. FIPS 81: DES Modes of Operation. December 1980. URL:
http://csrc.nist.gov/publications/fips/index.html

FIPS PUB 113 NIST. FIPS 113: Computer Data Authentication. May 30, 1985.
URL: http://csrc.nist.gov/publications/fips/index.html

GCS-API X/Open Company Ltd. Generic Cryptographic Service API (GCS-
API), Base - Draft 2. February 14, 1995.

ISO/IEC 7816-1 ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 1: Physical Characteristics. 1998.

ISO/IEC 7816-4 ISO. Information Technology — Identification Cards — Integrated
Circuit(s) with Contacts — Part 4: Interindustry Commands for
Interchange. 1995.

ISO/IEC 8824-1 ISO. Information Technology-- Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation. 2002.

ISO/IEC 8825-1 ISO. Information Technology—ASN.1 Encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). 2002.

ISO/IEC 9594-1 ISO. Information Technology — Open Systems Interconnection — The
Directory: Overview of Concepts, Models and Services. 2001.

ISO/IEC 9594-8 ISO. Information Technology — Open Systems Interconnection — The
Directory: Public-key and Attribute Certificate Frameworks. 2001.

ISO/IEC 9796-2 ISO. Information Technology — Security Techniques — Digital
Signature Scheme Giving Message Recovery — Part 2: Integer
factorization based mechanisms. 2002.

Java MIDP Java Community Process. Mobile Information Device Profile for Java
2 Micro Edition. November 2002. URL:
http://jcp.org/jsr/detail/118.jsp

MeT-PTD MeT. MeT PTD Definition – Personal Trusted Device Definition,
Version 1.0, February 2003. URL: http://www.mobiletransaction.org

3. REFERENCES 3

April 2009 Copyright © 2009 RSA Security Inc.

PCMCIA Personal Computer Memory Card International Association. PC Card
Standard, Release 2.1,. July 1993.

PKCS #1 RSA Laboratories. RSA Cryptography Standard. v2.1, June 14, 2002.

PKCS #3 RSA Laboratories. Diffie-Hellman Key-Agreement Standard. v1.4,
November 1993.

PKCS #5 RSA Laboratories. Password-Based Encryption Standard. v2.0,
March 25, 1999

PKCS #7 RSA Laboratories. Cryptographic Message Syntax Standard. v1.5,
November 1993

PKCS #8 RSA Laboratories. Private-Key Information Syntax Standard. v1.2,
November 1993.

PKCS #11-C RSA Laboratories. PKCS #11: Conformance Profile Specification,
October 2000.

PKCS #11-P RSA Laboratories. PKCS #11 Profiles for mobile devices, June 2003.

PKCS #11-M1 RSA Laboratories. PKCS #11 Mechanisms, June 2009.

PKCS #11-M2 RSA Laboratories. PKCS #11 Other Mechanisms, June 2009.

PKCS #12 RSA Laboratories. Personal Information Exchange Syntax Standard.
v1.0, June 1999.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic
Mail: Part I: Message Encryption and Authentication Procedures.
IAB IRTF PSRG, IETF PEM WG, February 1993. URL:
http://ietf.org/rfc/rfc1421.txt

RFC 2045 Freed, N., and N. Borenstein. RFC 2045: Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies.
November 1996. URL: http://ietf.org/rfc/rfc2045.txt

RFC 2246 T. Dierks & C. Allen. RFC 2246: The TLS Protocol Version 1.0.
Certicom, January 1999. URL: http://ietf.org/rfc/rfc2246.txt

RFC 2279 F. Yergeau. RFC 2279: UTF-8, a transformation format of ISO 10646
Alis Technologies, January 1998. URL: http://ietf.org/rfc/rfc2279.txt

RFC 2534 Masinter, L., Wing, D., Mutz, A., and K. Holtman. RFC 2534: Media
Features for Display, Print, and Fax. March 1999. URL:
http://ietf.org/rfc/rfc2534.txt

RFC 2630 R. Housley. RFC 2630: Cryptographic Message Syntax. June 1999.
URL: http://ietf.org/rfc/rfc2630.txt

RFC 2743 J. Linn. RFC 2743: Generic Security Service Application Program
Interface Version 2, Update 1. RSA Laboratories, January 2000.
URL: http://ietf.org/rfc/rfc2743.txt

4 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

RFC 2744 J. Wray. RFC 2744: Generic Security Services API Version 2: C-
bindings. Iris Associates, January 2000. URL:
http://ietf.org/rfc/rfc2744.txt

SEC 1 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography.
Version 1.0, September 20, 2000.

SEC 2 Standards for Efficient Cryptography Group (SECG). Standards for
Efficient Cryptography (SEC) 2: Recommended Elliptic Curve
Domain Parameters. Version 1.0, September 20, 2000.

TLS IETF. RFC 2246: The TLS Protocol Version 1.0 . January 1999. URL:
http://ietf.org/rfc/rfc2246.txt

WIM WAP. Wireless Identity Module. — WAP-260-WIM-20010712-a. July
2001. URL: http://www.wapforum.org/

WPKI WAP. Wireless PKI. — WAP-217-WPKI-20010424-a. April 2001.
URL: http://www.wapforum.org/

WTLS WAP. Wireless Transport Layer Security Version — WAP-261-WTLS-
20010406-a. April 2001. URL: http://www.wapforum.org/.

X.500 ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Overview of Concepts, Models and Services. February
2001.
Identical to ISO/IEC 9594-1

X.509 ITU-T. Information Technology — Open Systems Interconnection —
The Directory: Public-key and Attribute Certificate Frameworks.
March 2000.
Identical to ISO/IEC 9594-8

X.680 ITU-T. Information Technology — Abstract Syntax Notation One
(ASN.1): Specification of Basic Notation. July 2002.
Identical to ISO/IEC 8824-1

X.690 ITU-T. Information Technology — ASN.1 Encoding Rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER), and Distinguished Encoding Rules (DER). July 2002.
Identical to ISO/IEC 8825-1

4 Definitions

For the purposes of this standard, the following definitions apply:

 API Application programming interface.

 Application Any computer program that calls the Cryptoki
interface.

4. DEFINITIONS 5

April 2009 Copyright © 2009 RSA Security Inc.

 ASN.1 Abstract Syntax Notation One, as defined in X.680.

 Attribute A characteristic of an object.

 BER Basic Encoding Rules, as defined in X.690.

 CBC Cipher-Block Chaining mode, as defined in FIPS PUB
81.

 Certificate A signed message binding a subject name and a public
key, or a subject name and a set of attributes.

 CMS Cryptographic Message Syntax (see RFC 2630)

 Cryptographic Device A device storing cryptographic information and
possibly performing cryptographic functions. May be
implemented as a smart card, smart disk, PCMCIA
card, or with some other technology, including
software-only.

 Cryptoki The Cryptographic Token Interface defined in this
standard.

 Cryptoki library A library that implements the functions specified in
this standard.

 DER Distinguished Encoding Rules, as defined in X.690.

 DES Data Encryption Standard, as defined in FIPS PUB 46-
3.

 DSA Digital Signature Algorithm, as defined in FIPS PUB
186-2.

 EC Elliptic Curve

 ECB Electronic Codebook mode, as defined in FIPS PUB
81.

 IV Initialization Vector.

 MAC Message Authentication Code.

 Mechanism A process for implementing a cryptographic operation.

 Object An item that is stored on a token. May be data, a
certificate, or a key.

 PIN Personal Identification Number.

 PKCS Public-Key Cryptography Standards.

 PRF Pseudo random function.

 PTD Personal Trusted Device, as defined in MeT-PTD

 RSA The RSA public-key cryptosystem.

6 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 Reader The means by which information is exchanged with a
device.

 Session A logical connection between an application and a
token.

 Slot A logical reader that potentially contains a token.

 SSL The Secure Sockets Layer 3.0 protocol.

 Subject Name The X.500 distinguished name of the entity to which a
key is assigned.

 SO A Security Officer user.

 TLS Transport Layer Security.

 Token The logical view of a cryptographic device defined by
Cryptoki.

 User The person using an application that interfaces to
Cryptoki.

 UTF-8 Universal Character Set (UCS) transformation format
(UTF) that represents ISO 10646 and UNICODE
strings with a variable number of octets.

 WIM Wireless Identification Module.

 WTLS Wireless Transport Layer Security.

5 Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbols

Symbol Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this standard:

Table 2, Prefixes

Prefix Description
C_ Function
CK_ Data type or general constant
CKA_ Attribute

5. SYMBOLS AND ABBREVIATIONS 7

April 2009 Copyright © 2009 RSA Security Inc.

Prefix Description
CKC_ Certificate type
CKD_ Key derivation function
CKF_ Bit flag
CKG_ Mask generation function
CKH_ Hardware feature type
CKK_ Key type
CKM_ Mechanism type
CKN_ Notification
CKO_ Object class
CKP_ Pseudo-random function
CKS_ Session state
CKR_ Return value
CKU_ User type
CKZ_ Salt/Encoding parameter source
h a handle
ul a CK_ULONG
p a pointer
pb a pointer to a CK_BYTE
ph a pointer to a handle
pul a pointer to a CK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types:

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK_BYTE CK_CHAR;

/* an 8-bit UTF-8 character */
typedef CK_BYTE CK_UTF8CHAR;

/* a BYTE-sized Boolean flag */
typedef CK_BYTE CK_BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK_ULONG;

/* a signed value, the same size as a CK_ULONG */
typedef long int CK_LONG;

8 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

/* at least 32 bits; each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type void,
which are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK_BYTE */
CK_CHAR_PTR /* Pointer to a CK_CHAR */
CK_UTF8CHAR_PTR /* Pointer to a CK_UTF8CHAR */
CK_ULONG_PTR /* Pointer to a CK_ULONG */
CK_VOID_PTR /* Pointer to a void */

Cryptoki also defines a pointer to a CK_VOID_PTR, which is implementation-
dependent:

CK_VOID_PTR_PTR /* Pointer to a CK_VOID_PTR */

In addition, Cryptoki defines a C-style NULL pointer, which is distinct from any valid
pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one
environment to another (e.g., a CK_ULONG will sometimes be 32 bits, and sometimes
perhaps 64 bits). However, these details should not affect an application, assuming it is
compiled with Cryptoki header files consistent with the Cryptoki library to which the
application is linked.

All numbers and values expressed in this document are decimal, unless they are preceded
by “0x”, in which case they are hexadecimal values.

The CK_CHAR data type holds characters from the following table, taken from ANSI
C:

Table 3, Character Set

Category Characters
Letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z
Numbers 0 1 2 3 4 5 6 7 8 9
Graphic characters ! “ # % & ‘ () * + , - . / : ; < = > ? [\] ^ _ { | } ~
Blank character ‘ ‘

The CK_UTF8CHAR data type holds UTF-8 encoded Unicode characters as specified
in RFC2279. UTF-8 allows internationalization while maintaining backward
compatibility with the Local String definition of PKCS #11 version 2.01.

6. GENERAL OVERVIEW 9

April 2009 Copyright © 2009 RSA Security Inc.

In Cryptoki, the CK_BBOOL data type is a Boolean type that can be true or false. A
zero value means false, and a nonzero value means true. Similarly, an individual bit flag,
CKF_..., can also be set (true) or unset (false). For convenience, Cryptoki defines the
following macros for use with values of type CK_BBOOL:

#define CK_FALSE 0
#define CK_TRUE 1

For backwards compatibility, header files for this version of Cryptoki also defines TRUE
and FALSE as (CK_DISABLE_TRUE_FALSE may be set by the application vendor):

#ifndef CK_DISABLE_TRUE_FALSE
#ifndef FALSE
#define FALSE CK_FALSE
#endif

#ifndef TRUE
#define TRUE CK_TRUE
#endif
#endif

6 General overview

6.1 Introduction

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are
ideal tools for implementing public-key cryptography, as they provide a way to store the
private-key component of a public-key/private-key pair securely, under the control of a
single user. With such a device, a cryptographic application, rather than performing
cryptographic operations itself, utilizes the device to perform the operations, with
sensitive information such as private keys never being revealed. As more applications
are developed for public-key cryptography, a standard programming interface for these
devices becomes increasingly valuable. This standard addresses this need.

6.2 Design goals

Cryptoki was intended from the beginning to be an interface between applications and all
kinds of portable cryptographic devices, such as those based on smart cards, PCMCIA
cards, and smart diskettes. There are already standards (de facto or official) for
interfacing to these devices at some level. For instance, the mechanical characteristics
and electrical connections are well-defined, as are the methods for supplying commands
and receiving results. (See, for example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. It
would not be enough simply to define command sets for each kind of device, as that
would not solve the general problem of an application interface independent of the

10 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

device. To do so is still a long-term goal, and would certainly contribute to
interoperability. The primary goal of Cryptoki was a lower-level programming interface
that abstracts the details of the devices, and presents to the application a common model
of the cryptographic device, called a “cryptographic token” (or simply “token”).

A secondary goal was resource-sharing. As desktop multi-tasking operating systems
become more popular, a single device should be shared between more than one
application. In addition, an application should be able to interface to more than one
device at a given time.

It is not the goal of Cryptoki to be a generic interface to cryptographic operations or
security services, although one certainly could build such operations and services with
the functions that Cryptoki provides. Cryptoki is intended to complement, not compete
with, such emerging and evolving interfaces as “Generic Security Services Application
Programming Interface” (RFC 2743 and RFC 2744) and “Generic Cryptographic Service
API” (GCS-API) from X/Open.

6.3 General model

Cryptoki's general model is illustrated in the following figure. The model begins with one
or more applications that need to perform certain cryptographic operations, and ends with
one or more cryptographic devices, on which some or all of the operations are actually
performed. A user may or may not be associated with an application.

6. GENERAL OVERVIEW 11

April 2009 Copyright © 2009 RSA Security Inc.

Other Security Layers

Application 1

Cryptoki

Other Security Layers

Application k

Cryptoki

Device Contention/Synchronization

Slot 1

Token 1
(Device 1)

Slot n

Token n
(Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “slots”. Each slot, which corresponds to a physical reader or
other device interface, may contain a token. A token is typically “present in the slot”
when a cryptographic device is present in the reader. Of course, since Cryptoki provides
a logical view of slots and tokens, there may be other physical interpretations. It is
possible that multiple slots may share the same physical reader. The point is that a
system has some number of slots, and applications can connect to tokens in any or all of
those slots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typically passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logically like every other device, regardless of the implementation
technology. Thus the application need not interface directly to the device drivers (or
even know which ones are involved); Cryptoki hides these details. Indeed, the
underlying “device” may be implemented entirely in software (for instance, as a process
running on a server)—no special hardware is necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface,
and applications will be linked to the library. An application may be linked to Cryptoki
directly; alternatively, Cryptoki can be a so-called “shared” library (or dynamic link

12 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

library), in which case the application would link the library dynamically. Shared
libraries are fairly straightforward to produce in operating systems such as Microsoft
Windows and OS/2, and can be achieved without too much difficulty in UNIX and DOS
systems.

The dynamic approach certainly has advantages as new libraries are made available, but
from a security perspective, there are some drawbacks. In particular, if a library is easily
replaced, then there is the possibility that an attacker can substitute a rogue library that
intercepts a user’s PIN. From a security perspective, therefore, direct linking is generally
preferable, although code-signing techniques can prevent many of the security risks of
dynamic linking. In any case, whether the linking is direct or dynamic, the programming
interface between the application and a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki
library. This standard specifies only the interface to the library, not its features. In
particular, not all libraries will support all the mechanisms (algorithms) defined in this
interface (since not all tokens are expected to support all the mechanisms), and libraries
will likely support only a subset of all the kinds of cryptographic devices that are
available. (The more kinds, the better, of course, and it is anticipated that libraries will
be developed supporting multiple kinds of token, rather than just those from a single
vendor.) It is expected that as applications are developed that interface to Cryptoki,
standard library and token “profiles” will emerge.

6.4 Logical view of a token

Cryptoki’s logical view of a token is a device that stores objects and can perform
cryptographic functions. Cryptoki defines three classes of object: data, certificates, and
keys. A data object is defined by an application. A certificate object stores a certificate. A
key object stores a cryptographic key. The key may be a public key, a private key, or a
secret key; each of these types of keys has subtypes for use in specific mechanisms. This
view is illustrated in the following figure:

Object

CertificateKeyData

Secret KeyPrivate KeyPublic Key

Figure 2, Object Hierarchy

6. GENERAL OVERVIEW 13

April 2009 Copyright © 2009 RSA Security Inc.

Objects are also classified according to their lifetime and visibility. “Token objects” are
visible to all applications connected to the token that have sufficient permission, and
remain on the token even after the “sessions” (connections between an application and
the token) are closed and the token is removed from its slot. “Session objects” are more
temporary: whenever a session is closed by any means, all session objects created by that
session are automatically destroyed. In addition, session objects are only visible to the
application which created them.

Further classification defines access requirements. Applications are not required to log
into the token to view “public objects”; however, to view “private objects”, a user must
be authenticated to the token by a PIN or some other token-dependent method (for
example, a biometric device).

See Table 6 on page 19 for further clarification on access to objects.

A token can create and destroy objects, manipulate them, and search for them. It can also
perform cryptographic functions with objects. A token may have an internal random
number generator.

It is important to distinguish between the logical view of a token and the actual
implementation, because not all cryptographic devices will have this concept of
“objects,” or be able to perform every kind of cryptographic function. Many devices will
simply have fixed storage places for keys of a fixed algorithm, and be able to do a limited
set of operations. Cryptoki's role is to translate this into the logical view, mapping
attributes to fixed storage elements and so on. Not all Cryptoki libraries and tokens need
to support every object type. It is expected that standard “profiles” will be developed,
specifying sets of algorithms to be supported.

“Attributes” are characteristics that distinguish an instance of an object. In Cryptoki,
there are general attributes, such as whether the object is private or public. There are also
attributes that are specific to a particular type of object, such as a modulus or exponent
for RSA keys.

6.5 Users

This version of Cryptoki recognizes two token user types. One type is a Security Officer
(SO). The other type is the normal user. Only the normal user is allowed access to
private objects on the token, and that access is granted only after the normal user has
been authenticated. Some tokens may also require that a user be authenticated before any
cryptographic function can be performed on the token, whether or not it involves private
objects. The role of the SO is to initialize a token and to set the normal user’s PIN (or
otherwise define, by some method outside the scope of this version of Cryptoki, how the
normal user may be authenticated), and possibly to manipulate some public objects. The
normal user cannot log in until the SO has set the normal user’s PIN.

14 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may
be the same person or may be different, but such matters are outside the scope of this
standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that
they are variable-length strings of characters from the set in Table 3. Any translation to
the device’s requirements is left to the Cryptoki library. The following issues are beyond
the scope of Cryptoki:

• Any padding of PINs.

• How the PINs are generated (by the user, by the application, or by some other
means).

PINs that are supplied by some means other than through an application (e.g., PINs
entered via a PINpad on the token) are even more abstract. Cryptoki knows how to wait
(if need be) for such a PIN to be supplied and used, and little more.

6.6 Applications and their use of Cryptoki

To Cryptoki, an application consists of a single address space and all the threads of
control running in it. An application becomes a “Cryptoki application” by calling the
Cryptoki function C_Initialize (see Section 11.4) from one of its threads; after this call is
made, the application can call other Cryptoki functions. When the application is done
using Cryptoki, it calls the Cryptoki function C_Finalize (see Section 11.4) and ceases to
be a Cryptoki application.

6.6.1 Applications and processes

In general, on most platforms, the previous paragraph means that an application consists
of a single process.

Consider a UNIX process P which becomes a Cryptoki application by calling
C_Initialize, and then uses the fork() system call to create a child process C. Since P
and C have separate address spaces (or will when one of them performs a write
operation, if the operating system follows the copy-on-write paradigm), they are not part
of the same application. Therefore, if C needs to use Cryptoki, it needs to perform its
own C_Initialize call. Furthermore, if C needs to be logged into the token(s) that it will
access via Cryptoki, it needs to log into them even if P already logged in, since P and C
are completely separate applications.

In this particular case (when C is the child of a process which is a Cryptoki application),
the behavior of Cryptoki is undefined if C tries to use it without its own C_Initialize call.
Ideally, such an attempt would return the value CKR_CRYPTOKI_NOT_INITIALIZED;
however, because of the way fork() works, insisting on this return value might have a

6. GENERAL OVERVIEW 15

April 2009 Copyright © 2009 RSA Security Inc.

bad impact on the performance of libraries. Therefore, the behavior of Cryptoki in this
situation is left undefined. Applications should definitely not attempt to take advantage
of any potential “shortcuts” which might (or might not!) be available because of this.

In the scenario specified above, C should actually call C_Initialize whether or not it
needs to use Cryptoki; if it has no need to use Cryptoki, it should then call C_Finalize
immediately thereafter. This (having the child immediately call C_Initialize and then
call C_Finalize if the parent is using Cryptoki) is considered to be good Cryptoki
programming practice, since it can prevent the existence of dangling duplicate resources
that were created at the time of the fork() call; however, it is not required by Cryptoki.

6.6.2 Applications and threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki
enables applications to provide information to libraries so that they can give appropriate
support for multi-threading. In particular, when an application initializes a Cryptoki
library with a call to C_Initialize, it can specify one of four possible multi-threading
behaviors for the library:

1. The application can specify that it will not be accessing the library concurrently from
multiple threads, and so the library need not worry about performing any type of
locking for the sake of thread-safety.

2. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must be able to use native operation system
synchronization primitives to ensure proper thread-safe behavior.

3. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use a set of application-supplied
synchronization primitives to ensure proper thread-safe behavior.

4. The application can specify that it will be accessing the library concurrently from
multiple threads, and the library must use either the native operation system
synchronization primitives or a set of application-supplied synchronization primitives
to ensure proper thread-safe behavior.

The 3rd and 4th types of behavior listed above are appropriate for multi-threaded
applications which are not using the native operating system thread model. The
application-supplied synchronization primitives consist of four functions for handling
mutex (mutual exclusion) objects in the application’s threading model. Mutex objects are
simple objects which can be in either of two states at any given time: unlocked or locked.
If a call is made by a thread to lock a mutex which is already locked, that thread blocks
(waits) until the mutex is unlocked; then it locks it and the call returns. If more than one
thread is blocking on a particular mutex, and that mutex becomes unlocked, then exactly
one of those threads will get the lock on the mutex and return control to the caller (the
other blocking threads will continue to block and wait for their turn).

16 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

See Section 9.7 for more information on Cryptoki’s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initialization time, an application can also specify whether or not application threads
executing library calls may use native operating system calls to spawn new threads.

6.7 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token’s objects and functions. A session provides a logical connection
between the application and the token. A session can be a read/write (R/W) session or a
read-only (R/O) session. Read/write and read-only refer to the access to token objects,
not to session objects. In both session types, an application can create, read, write and
destroy session objects, and read token objects. However, only in a read/write session
can an application create, modify, and destroy token objects.

After it opens a session, an application has access to the token’s public objects. All
threads of a given application have access to exactly the same sessions and the same
session objects. To gain access to the token’s private objects, the normal user must log in
and be authenticated.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other sessions.
That is, if a single application has multiple sessions open with a token, and it uses one of
them to create a session object, then that session object is visible through any of that
application’s sessions. However, as soon as the session that was used to create the object
is closed, that object is destroyed.

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple sessions
with one or more applications. A particular token may allow an application to have only
a limited number of sessions—or only a limited number of read/write sessions-- however.

An open session can be in one of several states. The session state determines allowable
access to objects and functions that can be performed on them. The session states are
described in Section 6.7.1 and Section 6.7.2.

6.7.1 Read-only session states

A read-only session can be in one of two states, as illustrated in the following figure.
When the session is initially opened, it is in either the “R/O Public Session” state (if the
application has no previously open sessions that are logged in) or the “R/O User
Functions” state (if the application already has an open session that is logged in). Note
that read-only SO sessions do not exist.

6. GENERAL OVERVIEW 17

April 2009 Copyright © 2009 RSA Security Inc.

R/O Public
Session

R/O User
Functions

Lo
gi

n
U

se
r

Lo
go

ut

Open Session

Open Session

Close Session/
Device Removed

Close Session/
Device Removed

Figure 3, Read-Only Session States

The following table describes the session states:

Table 4, Read-Only Session States

State Description
R/O Public Session The application has opened a read-only session. The application

has read-only access to public token objects and read/write access
to public session objects.

R/O User Functions The normal user has been authenticated to the token. The
application has read-only access to all token objects (public or
private) and read/write access to all session objects (public or
private).

6.7.2 Read/write session states

A read/write session can be in one of three states, as illustrated in the following figure.
When the session is opened, it is in either the “R/W Public Session” state (if the
application has no previously open sessions that are logged in), the “R/W User
Functions” state (if the application already has an open session that the normal user is
logged into), or the “R/W SO Functions” state (if the application already has an open
session that the SO is logged into).

18 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

R/W SO
Functions

R/W Public
Session

Lo
gi

n
SO

Lo
go

ut

Open Session

Open Session

Close Session/
Device Removed

Close Session/
Device Removed

R/W User
Functions

Lo
gi

n
U

se
r

Lo
go

ut

Open Session Close Session/

Device Removed

Figure 4, Read/Write Session States

The following table describes the session states:

Table 5, Read/Write Session States

State Description
R/W Public Session The application has opened a read/write session. The application

has read/write access to all public objects.
R/W SO Functions The Security Officer has been authenticated to the token. The

application has read/write access only to public objects on the
token, not to private objects. The SO can set the normal user’s
PIN.

R/W User
Functions

The normal user has been authenticated to the token. The
application has read/write access to all objects.

6.7.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of session has to each type
of object. A given type of session has either read-only access, read/write access, or no
access whatsoever to a given type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User
Functions” session cannot create or delete a token object.

6. GENERAL OVERVIEW 19

April 2009 Copyright © 2009 RSA Security Inc.

Table 6, Access to Different Types Objects by Different Types of Sessions
 Type of session

Type of object

R/O
Public

R/W
Public

R/O
User

R/W
User

R/W
SO

Public session object R/W R/W R/W R/W R/W
Private session object R/W R/W
Public token object R/O R/W R/O R/W R/W
Private token object R/O R/W

As previously indicated, the access to a given session object which is shown in Table 6 is
limited to sessions belonging to the application which owns that object (i.e., which
created that object).

6.7.4 Session events

Session events cause the session state to change. The following table describes the
events:

Table 7, Session Events

Event Occurs when...
Log In SO the SO is authenticated to the token.
Log In User the normal user is authenticated to the token.
Log Out the application logs out the current user (SO or normal user).
Close Session the application closes the session or closes all sessions.
Device Removed the device underlying the token has been removed from its slot.

When the device is removed, all sessions of all applications are automatically logged out.
Furthermore, all sessions any applications have with the device are closed (this latter
behavior was not present in Version 1.0 of Cryptoki)—an application cannot have a
session with a token that is not present. Realistically, Cryptoki may not be constantly
monitoring whether or not the token is present, and so the token’s absence could
conceivably not be noticed until a Cryptoki function is executed. If the token is re-
inserted into the slot before that, Cryptoki might never know that it was missing.

In Cryptoki, all sessions that an application has with a token must have the same
login/logout status (i.e., for a given application and token, one of the following holds: all
sessions are public sessions; all sessions are SO sessions; or all sessions are user
sessions). When an application’s session logs into a token, all of that application’s
sessions with that token become logged in, and when an application’s session logs out of
a token, all of that application’s sessions with that token become logged out. Similarly,
for example, if an application already has a R/O user session open with a token, and then
opens a R/W session with that token, the R/W session is automatically logged in.

20 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

This implies that a given application may not simultaneously have SO sessions and user
sessions open with a given token. It also implies that if an application has a R/W SO
session with a token, then it may not open a R/O session with that token, since R/O SO
sessions do not exist. For the same reason, if an application has a R/O session open, then
it may not log any other session into the token as the SO.

6.7.5 Session handles and object handles

A session handle is a Cryptoki-assigned value that identifies a session. It is in many
ways akin to a file handle, and is specified to functions to indicate which session the
function should act on. All threads of an application have equal access to all session
handles. That is, anything that can be accomplished with a given file handle by one
thread can also be accomplished with that file handle by any other thread of the same
application.

Cryptoki also has object handles, which are identifiers used to manipulate Cryptoki
objects. Object handles are similar to session handles in the sense that visibility of a
given object through an object handle is the same among all threads of a given
application. R/O sessions, of course, only have read-only access to token objects,
whereas R/W sessions have read/write access to token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers’ convenience, Cryptoki defines the following symbolic value:

CK_INVALID_HANDLE

6.7.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be
used to perform: administrative operations (such as logging in); object management
operations (such as creating or destroying an object on the token); and cryptographic
operations (such as computing a message digest). Cryptographic operations sometimes
require more than one function call to the Cryptoki API to complete. In general, a single
session can perform only one operation at a time; for this reason, it may be desirable for a
single application to open multiple sessions with a single token. For efficiency’s sake,
however, a single session on some tokens can perform the following pairs of operation
types simultaneously: message digesting and encryption; decryption and message
digesting; signature or MACing and encryption; and decryption and verifying signatures
or MACs. Details on performing simultaneous cryptographic operations in one session
are provided in Section 11.13.

A consequence of the fact that a single session can, in general, perform only one
operation at a time is that an application should never make multiple simultaneous
function calls to Cryptoki which use a common session. If multiple threads of an
application attempt to use a common session concurrently in this fashion, Cryptoki does
not define what happens. This means that if multiple threads of an application all need to

6. GENERAL OVERVIEW 21

April 2009 Copyright © 2009 RSA Security Inc.

use Cryptoki to access a particular token, it might be appropriate for each thread to have
its own session with the token, unless the application can ensure by some other means
(e.g., by some locking mechanism) that no sessions are ever used by multiple threads
simultaneously. This is true regardless of whether or not the Cryptoki library was
initialized in a fashion which permits safe multi-threaded access to it. Even if it is safe to
access the library from multiple threads simultaneously, it is still not necessarily safe to
use a particular session from multiple threads simultaneously.

6.7.7 Example of use of sessions

We give here a detailed and lengthy example of how multiple applications can make use
of sessions in a Cryptoki library. Despite the somewhat painful level of detail, we highly
recommend reading through this example carefully to understand session handles and
object handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki simultaneously; rather, it is meant to clarify what uses of Cryptoki’s
sessions and objects and handles are permissible. In other words, instead of
demonstrating good technique here, we demonstrate “pushing the envelope”.

For our example, we suppose that two applications, A and B, are using a Cryptoki library
to access a single token T. Each application has two threads running: A has threads A1
and A2, and B has threads B1 and B2. We assume in what follows that there are no
instances where multiple threads of a single application simultaneously use the same
session, and that the events of our example occur in the order specified, without
overlapping each other in time.

1. A1 and B1 each initialize the Cryptoki library by calling C_Initialize (the specifics
of Cryptoki functions will be explained in Section 10.12). Note that exactly one call
to C_Initialize should be made for each application (as opposed to one call for every
thread, for example).

2. A1 opens a R/W session and receives the session handle 7 for the session. Since this
is the first session to be opened for A, it is a public session.

3. A2 opens a R/O session and receives the session handle 4. Since all of A’s existing
sessions are public sessions, session 4 is also a public session.

4. A1 attempts to log the SO into session 7. The attempt fails, because if session 7
becomes an SO session, then session 4 does, as well, and R/O SO sessions do not
exist. A1 receives an error code indicating that the existence of a R/O session has
blocked this attempt to log in (CKR_SESSION_READ_ONLY_EXISTS).

5. A2 logs the normal user into session 7. This turns session 7 into a R/W user session,
and turns session 4 into a R/O user session. Note that because A1 and A2 belong to

22 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

the same application, they have equal access to all sessions, and therefore, A2 is able
to perform this action.

6. A2 opens a R/W session and receives the session handle 9. Since all of A’s existing
sessions are user sessions, session 9 is also a user session.

7. A1 closes session 9.

8. B1 attempts to log out session 4. The attempt fails, because A and B have no access
rights to each other’s sessions or objects. B1 receives an error message which
indicates that there is no such session handle
(CKR_SESSION_HANDLE_INVALID).

9. B2 attempts to close session 4. The attempt fails in precisely the same way as B1’s
attempt to log out session 4 failed (i.e., B2 receives a
CKR_SESSION_HANDLE_INVALID error code).

10. B1 opens a R/W session and receives the session handle 7. Note that, as far as B is
concerned, this is the first occurrence of session handle 7. A’s session 7 and B’s
session 7 are completely different sessions.

11. B1 logs the SO into [B’s] session 7. This turns B’s session 7 into a R/W SO session,
and has no effect on either of A’s sessions.

12. B2 attempts to open a R/O session. The attempt fails, since B already has an SO
session open, and R/O SO sessions do not exist. B1 receives an error message
indicating that the existence of an SO session has blocked this attempt to open a R/O
session (CKR_SESSION_READ_WRITE_SO_EXISTS).

13. A1 uses [A’s] session 7 to create a session object O1 of some sort and receives the
object handle 7. Note that a Cryptoki implementation may or may not support
separate spaces of handles for sessions and objects.

14. B1 uses [B’s] session 7 to create a token object O2 of some sort and receives the
object handle 7. As with session handles, different applications have no access rights
to each other’s object handles, and so B’s object handle 7 is entirely different from
A’s object handle 7. Of course, since B1 is an SO session, it cannot create private
objects, and so O2 must be a public object (if B1 attempted to create a private object,
the attempt would fail with error code CKR_USER_NOT_LOGGED_IN or
CKR_TEMPLATE_INCONSISTENT).

15. B2 uses [B’s] session 7 to perform some operation to modify the object associated
with [B’s] object handle 7. This modifies O2.

16. A1 uses [A’s] session 4 to perform an object search operation to get a handle for O2.
The search returns object handle 1. Note that A’s object handle 1 and B’s object
handle 7 now point to the same object.

6. GENERAL OVERVIEW 23

April 2009 Copyright © 2009 RSA Security Inc.

17. A1 attempts to use [A’s] session 4 to modify the object associated with [A’s] object
handle 1. The attempt fails, because A’s session 4 is a R/O session, and is therefore
incapable of modifying O2, which is a token object. A1 receives an error message
indicating that the session is a R/O session (CKR_SESSION_READ_ONLY).

18. A1 uses [A’s] session 7 to modify the object associated with [A’s] object handle 1.
This time, since A’s session 7 is a R/W session, the attempt succeeds in modifying
O2.

19. B1 uses [B’s] session 7 to perform an object search operation to find O1. Since O1 is
a session object belonging to A, however, the search does not succeed.

20. A2 uses [A’s] session 4 to perform some operation to modify the object associated
with [A’s] object handle 7. This operation modifies O1.

21. A2 uses [A’s] session 7 to destroy the object associated with [A’s] object handle 1.
This destroys O2.

22. B1 attempts to perform some operation with the object associated with [B’s] object
handle 7. The attempt fails, since there is no longer any such object. B1 receives an
error message indicating that its object handle is invalid
(CKR_OBJECT_HANDLE_INVALID).

23. A1 logs out [A’s] session 4. This turns A’s session 4 into a R/O public session, and
turns A’s session 7 into a R/W public session.

24. A1 closes [A’s] session 7. This destroys the session object O1, which was created by
A’s session 7.

25. A2 attempt to use [A’s] session 4 to perform some operation with the object
associated with [A’s] object handle 7. The attempt fails, since there is no longer any
such object. It returns a CKR_OBJECT_HANDLE_INVALID.

26. A2 executes a call to C_CloseAllSessions. This closes [A’s] session 4. At this point,
if A were to open a new session, the session would not be logged in (i.e., it would be
a public session).

27. B2 closes [B’s] session 7. At this point, if B were to open a new session, the session
would not be logged in.

28. A and B each call C_Finalize to indicate that they are done with the Cryptoki library.

6.8 Secondary authentication (Deprecated)

Note: This support may be present for backwards compatibility. Refer to
PKCS11 V 2.11 for details.

24 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

6.9 Function overview

The Cryptoki API consists of a number of functions, spanning slot and token
management and object management, as well as cryptographic functions. These
functions are presented in the following table:

Table 8, Summary of Cryptoki Functions

Category Function Description
General C_Initialize initializes Cryptoki
purpose
functions

C_Finalize clean up miscellaneous Cryptoki-
associated resources

 C_GetInfo obtains general information about
Cryptoki

 C_GetFunctionList obtains entry points of Cryptoki library
functions

Slot and token C_GetSlotList obtains a list of slots in the system
management C_GetSlotInfo obtains information about a particular slot
functions C_GetTokenInfo obtains information about a particular

token
 C_WaitForSlotEvent waits for a slot event (token insertion,

removal, etc.) to occur
 C_GetMechanismList obtains a list of mechanisms supported by

a token
 C_GetMechanismInfo obtains information about a particular

mechanism
 C_InitToken initializes a token
 C_InitPIN initializes the normal user’s PIN
 C_SetPIN modifies the PIN of the current user
Session
management
functions

C_OpenSession opens a connection between an
application and a particular token or sets
up an application callback for token
insertion

 C_CloseSession closes a session
 C_CloseAllSessions closes all sessions with a token
 C_GetSessionInfo obtains information about the session
 C_GetOperationState obtains the cryptographic operations state

of a session
 C_SetOperationState sets the cryptographic operations state of a

session
 C_Login logs into a token
 C_Logout logs out from a token

6. GENERAL OVERVIEW 25

April 2009 Copyright © 2009 RSA Security Inc.

Category Function Description
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
 C_GetObjectSize obtains the size of an object in bytes
 C_GetAttributeValue obtains an attribute value of an object
 C_SetAttributeValue modifies an attribute value of an object
 C_FindObjectsInit initializes an object search operation
 C_FindObjects continues an object search operation
 C_FindObjectsFinal finishes an object search operation
Encryption C_EncryptInit initializes an encryption operation
functions C_Encrypt encrypts single-part data
 C_EncryptUpdate continues a multiple-part encryption

operation
 C_EncryptFinal finishes a multiple-part encryption

operation
Decryption C_DecryptInit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
 C_DecryptUpdate continues a multiple-part decryption

operation
 C_DecryptFinal finishes a multiple-part decryption

operation
Message C_DigestInit initializes a message-digesting operation
digesting C_Digest digests single-part data
functions C_DigestUpdate continues a multiple-part digesting

operation
 C_DigestKey digests a key
 C_DigestFinal finishes a multiple-part digesting

operation

26 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Category Function Description
Signing C_SignInit initializes a signature operation
and MACing C_Sign signs single-part data
functions C_SignUpdate continues a multiple-part signature

operation
 C_SignFinal finishes a multiple-part signature

operation
 C_SignRecoverInit initializes a signature operation, where the

data can be recovered from the signature
 C_SignRecover signs single-part data, where the data can

be recovered from the signature
Functions for
verifying

C_VerifyInit initializes a verification operation

signatures C_Verify verifies a signature on single-part data
and MACs C_VerifyUpdate continues a multiple-part verification

operation
 C_VerifyFinal finishes a multiple-part verification

operation
 C_VerifyRecoverInit initializes a verification operation where

the data is recovered from the signature
 C_VerifyRecover verifies a signature on single-part data,

where the data is recovered from the
signature

Dual-purpose
cryptographic

C_DigestEncryptUpdate continues simultaneous multiple-part
digesting and encryption operations

functions C_DecryptDigestUpdate continues simultaneous multiple-part
decryption and digesting operations

 C_SignEncryptUpdate continues simultaneous multiple-part
signature and encryption operations

 C_DecryptVerifyUpdate continues simultaneous multiple-part
decryption and verification operations

Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C_WrapKey wraps (encrypts) a key
 C_UnwrapKey unwraps (decrypts) a key
 C_DeriveKey derives a key from a base key

7. SECURITY CONSIDERATIONS 27

April 2009 Copyright © 2009 RSA Security Inc.

Category Function Description
Random
number
generation

C_SeedRandom mixes in additional seed material to the
random number generator

functions C_GenerateRandom generates random data
Parallel
function
management

C_GetFunctionStatus legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

functions C_CancelFunction legacy function which always returns
CKR_FUNCTION_NOT_PARALLEL

Callback
function

 application-supplied function to process
notifications from Cryptoki

7 Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a
computer or communications system. Two of the particular features of the interface that
facilitate such security are the following:

1. Access to private objects on the token, and possibly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic
device that implements the token may not be sufficient to use it; the PIN may also be
needed.

2. Additional protection can be given to private keys and secret keys by marking them
as “sensitive” or “unextractable”. Sensitive keys cannot be revealed in plaintext off
the token, and unextractable keys cannot be revealed off the token even when
encrypted (though they can still be used as keys).

It is expected that access to private, sensitive, or unextractable objects by means other
than Cryptoki (e.g., other programming interfaces, or reverse engineering of the device)
would be difficult.

If a device does not have a tamper-proof environment or protected memory in which to
store private and sensitive objects, the device may encrypt the objects with a master key
which is perhaps derived from the user’s PIN. The particular mechanism for protecting
private objects is left to the device implementation, however.

Based on these features it should be possible to design applications in such a way that the
token can provide adequate security for the objects the applications manage.

Of course, cryptography is only one element of security, and the token is only one
component in a system. While the token itself may be secure, one must also consider the
security of the operating system by which the application interfaces to it, especially since
the PIN may be passed through the operating system. This can make it easy for a rogue

28 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

application on the operating system to obtain the PIN; it is also possible that other
devices monitoring communication lines to the cryptographic device can obtain the PIN.
Rogue applications and devices may also change the commands sent to the cryptographic
device to obtain services other than what the application requested.

It is important to be sure that the system is secure against such attack. Cryptoki may well
play a role here; for instance, a token may be involved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sensitive,”
since a key that is sensitive will always remain sensitive. Similarly, a key that is
unextractable cannot be modified to be extractable.

An application may also want to be sure that the token is “legitimate” in some sense (for
a variety of reasons, including export restrictions and basic security). This is outside the
scope of the present standard, but it can be achieved by distributing the token with a
built-in, certified public/private-key pair, by which the token can prove its identity. The
certificate would be signed by an authority (presumably the one indicating that the token
is “legitimate”) whose public key is known to the application. The application would
verify the certificate and challenge the token to prove its identity by signing a time-
varying message with its built-in private key.

Once a normal user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation
supported by the token. Some tokens may not even require any type of authentication to
make use of its cryptographic functions.

8 Platform- and compiler-dependent directives for C or C++

There is a large array of Cryptoki-related data types which are defined in the Cryptoki
header files. Certain packing- and pointer-related aspects of these types are platform- and
compiler-dependent; these aspects are therefore resolved on a platform-by-platform (or
compiler-by-compiler) basis outside of the Cryptoki header files by means of
preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be
issued before including a Cryptoki header file. These directives are described in the
remainder of Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on
the Windows platforms, Cryptoki structures should be packed with 1-byte alignment. In
a UNIX environment, it may or may not be necessary (or even possible) to alter the byte-
alignment of structures.

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 29

April 2009 Copyright © 2009 RSA Security Inc.

8.2 Pointer-related macros

Because different platforms and compilers have different ways of dealing with different
types of pointers, Cryptoki requires the following 6 macros to be set outside the scope of
Cryptoki:

♦ CK_PTR

CK_PTR is the “indirection string” a given platform and compiler uses to make a pointer
to an object. It is used in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR;

♦ CK_DEFINE_FUNCTION

CK_DEFINE_FUNCTION(returnType, name), when followed by a parentheses-
enclosed list of arguments and a function definition, defines a Cryptoki API function in a
Cryptoki library. returnType is the return type of the function, and name is its name.
It is used in the following fashion:

CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
 CK_VOID_PTR pReserved
)
{
 ...
}

♦ CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTION(returnType, name), when followed by a parentheses-
enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. returnType is the return type of the function, and name is its name.
It is used in the following fashion:

CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
 CK_VOID_PTR pReserved
);

♦ CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTION_POINTER(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to a Cryptoki API function in a Cryptoki library. returnType is the return
type of the function, and name is its name. It can be used in either of the following
fashions to define a function pointer variable, myC_Initialize, which can point to a
C_Initialize function in a Cryptoki library (note that neither of the following code
snippets actually assigns a value to myC_Initialize):

30 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_DECLARE_FUNCTION_POINTER(CK_RV, myC_Initialize)(
 CK_VOID_PTR pReserved
);

or:

typedef CK_DECLARE_FUNCTION_POINTER(CK_RV,
myC_InitializeType)(

 CK_VOID_PTR pReserved
);
myC_InitializeType myC_Initialize;

♦ CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTION(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which
is a pointer to an application callback function that can be used by a Cryptoki API
function in a Cryptoki library. returnType is the return type of the function, and
name is its name. It can be used in either of the following fashions to define a function
pointer variable, myCallback, which can point to an application callback which takes
arguments args and returns a CK_RV (note that neither of the following code snippets
actually assigns a value to myCallback):

CK_CALLBACK_FUNCTION(CK_RV, myCallback)(args);

or:

typedef CK_CALLBACK_FUNCTION(CK_RV,
myCallbackType)(args);

myCallbackType myCallback;

♦ NULL_PTR

NULL_PTR is the value of a NULL pointer. In any ANSI C environment—and in many
others as well—NULL_PTR should be defined simply as 0.

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers using Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dll might issue the following directives
before including any Cryptoki header files:

#pragma pack(push, cryptoki, 1)

#define CK_IMPORT_SPEC __declspec(dllimport)

8. PLATFORM- AND COMPILER-DEPENDENT DIRECTIVES FOR C OR C++ 31

April 2009 Copyright © 2009 RSA Security Inc.

/* Define CRYPTOKI_EXPORTS during the build of cryptoki
 * libraries. Do not define it in applications.
 */
#ifdef CRYPTOKI_EXPORTS
#define CK_EXPORT_SPEC __declspec(dllexport)
#else
#define CK_EXPORT_SPEC CK_IMPORT_SPEC
#endif

/* Ensures the calling convention for Win32 builds */
#define CK_CALL_SPEC __cdecl

#define CK_PTR *

#define CK_DEFINE_FUNCTION(returnType, name) \
 returnType CK_EXPORT_SPEC CK_CALL_SPEC name

#define CK_DECLARE_FUNCTION(returnType, name) \
 returnType CK_EXPORT_SPEC CK_CALL_SPEC name

#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 returnType CK_IMPORT_SPEC (CK_CALL_SPEC CK_PTR name)

#define CK_CALLBACK_FUNCTION(returnType, name) \
 returnType (CK_CALL_SPEC CK_PTR name)

#ifndef NULL_PTR
#define NULL_PTR 0
#endif

Hence the calling convention for all C_xxx functions should correspond to "cdecl" where
function parameters are passed from right to left and the caller removes parameters from
the stack when the call returns.

After including any Cryptoki header files, they might issue the following directives to
reset the structure packing to its earlier value:

#pragma pack(pop, cryptoki)

8.3.2 Win16

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++
code which implements or makes use of a Win16 Cryptoki .dll might issue the following
directives before including any Cryptoki header files:

#pragma pack(1)

#define CK_PTR far *

32 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

#define CK_DEFINE_FUNCTION(returnType, name) \
 returnType __export _far _pascal name

#define CK_DECLARE_FUNCTION(returnType, name) \
 returnType __export _far _pascal name

#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 returnType __export _far _pascal (* name)

#define CK_CALLBACK_FUNCTION(returnType, name) \
 returnType _far _pascal (* name)

#ifndef NULL_PTR
#define NULL_PTR 0
#endif

8.3.3 Generic UNIX

Developers performing generic UNIX development might issue the following directives
before including any Cryptoki header files:

#define CK_PTR *

#define CK_DEFINE_FUNCTION(returnType, name) \
 returnType name

#define CK_DECLARE_FUNCTION(returnType, name) \
 returnType name

#define CK_DECLARE_FUNCTION_POINTER(returnType, name) \
 returnType (* name)

#define CK_CALLBACK_FUNCTION(returnType, name) \
 returnType (* name)

#ifndef NULL_PTR
#define NULL_PTR 0
#endif

9. GENERAL DATA TYPES 33

April 2009 Copyright © 2009 RSA Security Inc.

9 General data types

The general Cryptoki data types are described in the following subsections. The data
types for holding parameters for various mechanisms, and the pointers to those
parameters, are not described here; these types are described with the information on the
mechanisms themselves, in Section 12.

A C or C++ source file in a Cryptoki application or library can define all these types (the
types described here and the types that are specifically used for particular mechanism
parameters) by including the top-level Cryptoki include file, pkcs11.h. pkcs11.h,
in turn, includes the other Cryptoki include files, pkcs11t.h and pkcs11f.h. A
source file can also include just pkcs11t.h (instead of pkcs11.h); this defines most
(but not all) of the types specified here.

When including either of these header files, a source file must specify the preprocessor
directives indicated in Section 8.

9.1 General information

Cryptoki represents general information with the following types:

♦ CK_VERSION; CK_VERSION_PTR

CK_VERSION is a structure that describes the version of a Cryptoki interface, a
Cryptoki library, or an SSL implementation, or the hardware or firmware version of a slot
or token. It is defined as follows:

typedef struct CK_VERSION {
 CK_BYTE major;
 CK_BYTE minor;
} CK_VERSION;

The fields of the structure have the following meanings:

 major major version number (the integer portion of the
version)

 minor minor version number (the hundredths portion of the
version)

Example: For version 1.0, major = 1 and minor = 0. For version 2.10, major = 2 and
minor = 10. Table 9 below lists the major and minor version values for the officially
published Cryptoki specifications.

34 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Table 9, Major and minor version values for published Cryptoki specifications

Version major minor
1.0 0x01 0x00
2.01 0x02 0x01
2.10 0x02 0x0a
2.11 0x02 0x0b
2.20 0x02 0x14
2.30 0x02 0x1e

Minor revisions of the Cryptoki standard are always upwardly compatible within the
same major version number.

CK_VERSION_PTR is a pointer to a CK_VERSION.

♦ CK_INFO; CK_INFO_PTR

CK_INFO provides general information about Cryptoki. It is defined as follows:

typedef struct CK_INFO {
 CK_VERSION cryptokiVersion;
 CK_UTF8CHAR manufacturerID[32];
 CK_FLAGS flags;
 CK_UTF8CHAR libraryDescription[32];
 CK_VERSION libraryVersion;
} CK_INFO;

The fields of the structure have the following meanings:

 cryptokiVersion Cryptoki interface version number, for compatibility
with future revisions of this interface

 manufacturerID ID of the Cryptoki library manufacturer. Must be
padded with the blank character (‘ ‘). Should not be
null-terminated.

 flags bit flags reserved for future versions. Must be zero for
this version

 libraryDescription character-string description of the library. Must be
padded with the blank character (‘ ‘). Should not be
null-terminated.

 libraryVersion Cryptoki library version number

9. GENERAL DATA TYPES 35

April 2009 Copyright © 2009 RSA Security Inc.

For libraries written to this document, the value of cryptokiVersion should match the
version of this specification; the value of libraryVersion is the version number of the
library software itself.

CK_INFO_PTR is a pointer to a CK_INFO.

♦ CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
application. It is defined as follows:

typedef CK_ULONG CK_NOTIFICATION;

For this version of Cryptoki, the following types of notifications are defined:

CKN_SURRENDER

The notifications have the following meanings:

 CKN_SURRENDER Cryptoki is surrendering the execution of a function
executing in a session so that the application may
perform other operations. After performing any
desired operations, the application should indicate to
Cryptoki whether to continue or cancel the function
(see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents slot and token information with the following types:

♦ CK_SLOT_ID; CK_SLOT_ID_PTR

CK_SLOT_ID is a Cryptoki-assigned value that identifies a slot. It is defined as
follows:

typedef CK_ULONG CK_SLOT_ID;

A list of CK_SLOT_IDs is returned by C_GetSlotList. A priori, any value of
CK_SLOT_ID can be a valid slot identifier—in particular, a system may have a slot
identified by the value 0. It need not have such a slot, however.

CK_SLOT_ID_PTR is a pointer to a CK_SLOT_ID.

36 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ CK_SLOT_INFO; CK_SLOT_INFO_PTR

CK_SLOT_INFO provides information about a slot. It is defined as follows:

typedef struct CK_SLOT_INFO {
 CK_UTF8CHAR slotDescription[64];
 CK_UTF8CHAR manufacturerID[32];
 CK_FLAGS flags;
 CK_VERSION hardwareVersion;
 CK_VERSION firmwareVersion;
} CK_SLOT_INFO;

The fields of the structure have the following meanings:

 slotDescription character-string description of the slot. Must be
padded with the blank character (‘ ‘). Should not be
null-terminated.

 manufacturerID ID of the slot manufacturer. Must be padded with the
blank character (‘ ‘). Should not be null-terminated.

 flags bits flags that provide capabilities of the slot. The
flags are defined below

 hardwareVersion version number of the slot’s hardware

 firmwareVersion version number of the slot’s firmware

The following table defines the flags field:

Table 10, Slot Information Flags

Bit Flag Mask Meaning
CKF_TOKEN_PRESENT 0x00000001 True if a token is present in the slot

(e.g., a device is in the reader)
CKF_REMOVABLE_DEVICE 0x00000002 True if the reader supports removable

devices
CKF_HW_SLOT 0x00000004 True if the slot is a hardware slot, as

opposed to a software slot
implementing a “soft token”

For a given slot, the value of the CKF_REMOVABLE_DEVICE flag never changes.
In addition, if this flag is not set for a given slot, then the CKF_TOKEN_PRESENT
flag for that slot is always set. That is, if a slot does not support a removable device, then
that slot always has a token in it.

CK_SLOT_INFO_PTR is a pointer to a CK_SLOT_INFO.

9. GENERAL DATA TYPES 37

April 2009 Copyright © 2009 RSA Security Inc.

♦ CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO provides information about a token. It is defined as follows:

typedef struct CK_TOKEN_INFO {
 CK_UTF8CHAR label[32];
 CK_UTF8CHAR manufacturerID[32];
 CK_UTF8CHAR model[16];
 CK_CHAR serialNumber[16];
 CK_FLAGS flags;
 CK_ULONG ulMaxSessionCount;
 CK_ULONG ulSessionCount;
 CK_ULONG ulMaxRwSessionCount;
 CK_ULONG ulRwSessionCount;
 CK_ULONG ulMaxPinLen;
 CK_ULONG ulMinPinLen;
 CK_ULONG ulTotalPublicMemory;
 CK_ULONG ulFreePublicMemory;
 CK_ULONG ulTotalPrivateMemory;
 CK_ULONG ulFreePrivateMemory;
 CK_VERSION hardwareVersion;
 CK_VERSION firmwareVersion;
 CK_CHAR utcTime[16];
} CK_TOKEN_INFO;

The fields of the structure have the following meanings:

 label application-defined label, assigned during token
initialization. Must be padded with the blank character
(‘ ‘). Should not be null-terminated.

 manufacturerID ID of the device manufacturer. Must be padded with
the blank character (‘ ‘). Should not be null-
terminated.

 model model of the device. Must be padded with the blank
character (‘ ‘). Should not be null-terminated.

 serialNumber character-string serial number of the device. Must be
padded with the blank character (‘ ‘). Should not be
null-terminated.

 flags bit flags indicating capabilities and status of the device
as defined below

 ulMaxSessionCount maximum number of sessions that can be opened with
the token at one time by a single application (see note
below)

38 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 ulSessionCount number of sessions that this application currently has
open with the token (see note below)

 ulMaxRwSessionCount maximum number of read/write sessions that can be
opened with the token at one time by a single
application (see note below)

 ulRwSessionCount number of read/write sessions that this application
currently has open with the token (see note below)

 ulMaxPinLen maximum length in bytes of the PIN

 ulMinPinLen minimum length in bytes of the PIN

 ulTotalPublicMemory the total amount of memory on the token in bytes in
which public objects may be stored (see note below)

 ulFreePublicMemory the amount of free (unused) memory on the token in
bytes for public objects (see note below)

 ulTotalPrivateMemory the total amount of memory on the token in bytes in
which private objects may be stored (see note below)

 ulFreePrivateMemory the amount of free (unused) memory on the token in
bytes for private objects (see note below)

 hardwareVersion version number of hardware

 firmwareVersion version number of firmware

 utcTime current time as a character-string of length 16,
represented in the format YYYYMMDDhhmmssxx (4
characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additional reserved ‘0’ characters). The value of
this field only makes sense for tokens equipped with a
clock, as indicated in the token information flags (see
below)

9. GENERAL DATA TYPES 39

April 2009 Copyright © 2009 RSA Security Inc.

The following table defines the flags field:

Table 11, Token Information Flags

Bit Flag Mask Meaning
CKF_RNG 0x00000001 True if the token has its

own random number
generator

CKF_WRITE_PROTECTED 0x00000002 True if the token is write-
protected (see below)

CKF_LOGIN_REQUIRED 0x00000004 True if there are some
cryptographic functions that
a user must be logged in to
perform

CKF_USER_PIN_INITIALIZED 0x00000008 True if the normal user’s
PIN has been initialized

CKF_RESTORE_KEY_NOT_NEEDED 0x00000020 True if a successful save of
a session’s cryptographic
operations state always
contains all keys needed to
restore the state of the
session

CKF_CLOCK_ON_TOKEN 0x00000040 True if token has its own
hardware clock

CKF_PROTECTED_AUTHENTICATION_PATH 0x00000100 True if token has a
“protected authentication
path”, whereby a user can
log into the token without
passing a PIN through the
Cryptoki library

CKF_DUAL_CRYPTO_OPERATIONS 0x00000200 True if a single session with
the token can perform dual
cryptographic operations
(see Section 11.13)

CKF_TOKEN_INITIALIZED 0x00000400 True if the token has been
initialized using
C_InitToken or an
equivalent mechanism
outside the scope of this
standard. Calling
C_InitToken when this flag
is set will cause the token to
be reinitialized.

40 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Bit Flag Mask Meaning
CKF_SECONDARY_AUTHENTICATION 0x00000800 True if the token supports

secondary authentication for
private key objects.
(Deprecated; new
implementations MUST
NOT set this flag)

CKF_USER_PIN_COUNT_LOW 0x00010000 True if an incorrect user
login PIN has been entered
at least once since the last
successful authentication.

CKF_USER_PIN_FINAL_TRY 0x00020000 True if supplying an
incorrect user PIN will
cause it to become locked.

CKF_USER_PIN_LOCKED 0x00040000 True if the user PIN has
been locked. User login to
the token is not possible.

CKF_USER_PIN_TO_BE_CHANGED 0x00080000 True if the user PIN value is
the default value set by
token initialization or
manufacturing, or the PIN
has been expired by the
card.

CKF_SO_PIN_COUNT_LOW 0x00100000 True if an incorrect SO
login PIN has been entered
at least once since the last
successful authentication.

CKF_SO_PIN_FINAL_TRY 0x00200000 True if supplying an
incorrect SO PIN will cause
it to become locked.

CKF_SO_PIN_LOCKED 0x00400000 True if the SO PIN has been
locked. SO login to the
token is not possible.

CKF_SO_PIN_TO_BE_CHANGED 0x00800000 True if the SO PIN value is
the default value set by
token initialization or
manufacturing, or the PIN
has been expired by the
card.

CKF_ERROR_STATE

0x01000000 True if the token
failed a FIPS 140-2
self-test and entered
an error state.

9. GENERAL DATA TYPES 41

April 2009 Copyright © 2009 RSA Security Inc.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki.
An application may be unable to perform certain actions on a write-protected token; these
actions can include any of the following, among others:

• Creating/modifying/deleting any object on the token.

• Creating/modifying/deleting a token object on the token.

• Changing the SO’s PIN.

• Changing the normal user’s PIN.

The token may change the value of the CKF_WRITE_PROTECTED flag depending
on the session state to implement its object management policy. For instance, the token
may set the CKF_WRITE_PROTECTED flag unless the session state is R/W SO or
R/W User to implement a policy that does not allow any objects, public or private, to be
created, modified, or deleted unless the user has successfully called C_Login.

The CKF_USER_PIN_COUNT_LOW, CKF_USER_PIN_COUNT_LOW,
CKF_USER_PIN_FINAL_TRY, and CKF_SO_PIN_FINAL_TRY flags may always
be set to false if the token does not support the functionality or will not reveal the
information because of its security policy.

The CKF_USER_PIN_TO_BE_CHANGED and
CKF_SO_PIN_TO_BE_CHANGED flags may always be set to false if the token does
not support the functionality. If a PIN is set to the default value, or has expired, the
appropriate CKF_USER_PIN_TO_BE_CHANGED or
CKF_SO_PIN_TO_BE_CHANGED flag is set to true. When either of these flags are
true, logging in with the corresponding PIN will succeed, but only the C_SetPIN function
can be called. Calling any other function that required the user to be logged in will cause
CKR_PIN_EXPIRED to be returned until C_SetPIN is called successfully.

Note: The fields ulMaxSessionCount, ulSessionCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotalPublicMemory, ulFreePublicMemory, ulTotalPrivateMemory,
and ulFreePrivateMemory can have the special value
CK_UNAVAILABLE_INFORMATION, which means that the token and/or library is
unable or unwilling to provide that information. In addition, the fields
ulMaxSessionCount and ulMaxRwSessionCount can have the special value
CK_EFFECTIVELY_INFINITE, which means that there is no practical limit on the
number of sessions (resp. R/W sessions) an application can have open with the token.

It is important to check these fields for these special values. This is particularly true for
CK_EFFECTIVELY_INFINITE, since an application seeing this value in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it
can’t open any sessions with the token, which is far from being the case.

The upshot of all this is that the correct way to interpret (for example) the
ulMaxSessionCount field is something along the lines of the following:

42 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_TOKEN_INFO info;

.
.
if ((CK_LONG) info.ulMaxSessionCount
 == CK_UNAVAILABLE_INFORMATION) {
 /* Token refuses to give value of ulMaxSessionCount */
 .
 .
} else if (info.ulMaxSessionCount ==

CK_EFFECTIVELY_INFINITE) {
 /* Application can open as many sessions as it wants */
 .
 .
} else {
 /* ulMaxSessionCount really does contain what it should

*/
 .
 .
}

CK_TOKEN_INFO_PTR is a pointer to a CK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

♦ CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned value that identifies a session. It is
defined as follows:

typedef CK_ULONG CK_SESSION_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_INVALID_HANDLE

CK_SESSION_HANDLE_PTR is a pointer to a CK_SESSION_HANDLE.

9. GENERAL DATA TYPES 43

April 2009 Copyright © 2009 RSA Security Inc.

♦ CK_USER_TYPE

CK_USER_TYPE holds the types of Cryptoki users described in Section 6.5, and, in
addition, a context-specific type described in Section 10.9. It is defined as follows:

typedef CK_ULONG CK_USER_TYPE;

For this version of Cryptoki, the following types of users are defined:

CKU_SO
CKU_USER
CKU_CONTEXT_SPECIFIC

♦ CK_STATE

CK_STATE holds the session state, as described in Sections 6.7.1 and 6.7.2. It is defined
as follows:

typedef CK_ULONG CK_STATE;

For this version of Cryptoki, the following session states are defined:

CKS_RO_PUBLIC_SESSION
CKS_RO_USER_FUNCTIONS
CKS_RW_PUBLIC_SESSION
CKS_RW_USER_FUNCTIONS
CKS_RW_SO_FUNCTIONS

♦ CK_SESSION_INFO; CK_SESSION_INFO_PTR

CK_SESSION_INFO provides information about a session. It is defined as follows:

typedef struct CK_SESSION_INFO {
 CK_SLOT_ID slotID;
 CK_STATE state;
 CK_FLAGS flags;
 CK_ULONG ulDeviceError;
} CK_SESSION_INFO;

The fields of the structure have the following meanings:

 slotID ID of the slot that interfaces with the token

 state the state of the session

 flags bit flags that define the type of session; the flags are
defined below

44 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 ulDeviceError an error code defined by the cryptographic device.
Used for errors not covered by Cryptoki.

The following table defines the flags field:

Table 12, Session Information Flags

Bit Flag Mask Meaning
CKF_RW_SESSION 0x00000002 True if the session is read/write; false if the

session is read-only
CKF_SERIAL_SESSION 0x00000004 This flag is provided for backward

compatibility, and should always be set to
true

CK_SESSION_INFO_PTR is a pointer to a CK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

♦ CK_OBJECT_HANDLE; CK_OBJECT_HANDLE_PTR

CK_OBJECT_HANDLE is a token-specific identifier for an object. It is defined as
follows:

typedef CK_ULONG CK_OBJECT_HANDLE;

When an object is created or found on a token by an application, Cryptoki assigns it an
object handle for that application’s sessions to use to access it. A particular object on a
token does not necessarily have a handle which is fixed for the lifetime of the object;
however, if a particular session can use a particular handle to access a particular object,
then that session will continue to be able to use that handle to access that object as long
as the session continues to exist, the object continues to exist, and the object continues to
be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers’
convenience, Cryptoki defines the following symbolic value:

CK_INVALID_HANDLE

CK_OBJECT_HANDLE_PTR is a pointer to a CK_OBJECT_HANDLE.

9. GENERAL DATA TYPES 45

April 2009 Copyright © 2009 RSA Security Inc.

♦ CK_OBJECT_CLASS; CK_OBJECT_CLASS_PTR

CK_OBJECT_CLASS is a value that identifies the classes (or types) of objects that
Cryptoki recognizes. It is defined as follows:

typedef CK_ULONG CK_OBJECT_CLASS;

Object classes are defined with the objects that use them. The type is specified on an
object through the CKA_CLASS attribute of the object.

Vendor defined values for this type may also be specified.

CKO_VENDOR_ DEFINED

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their object classes through
the PKCS process.

CK_OBJECT_CLASS_PTR is a pointer to a CK_OBJECT_CLASS.

♦ CK_HW_FEATURE_TYPE

CK_HW_FEATURE_TYPE is a value that identifies a hardware feature type of a
device. It is defined as follows:

typedef CK_ULONG CK_HW_FEATURE_TYPE;

Hardware feature types are defined with the objects that use them. The type is specified
on an object through the CKA_HW_FEATURE_TYPE attribute of the object.

Vendor defined values for this type may also be specified.

CKH_VENDOR_DEFINED

Feature types CKH_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their feature types through
the PKCS process.

♦ CK_KEY_TYPE

CK_KEY_TYPE is a value that identifies a key type. It is defined as follows:

typedef CK_ULONG CK_KEY_TYPE;

Key types are defined with the objects and mechanisms that use them. The key type is
specified on an object through the CKA_KEY_TYPE attribute of the object.

46 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Vendor defined values for this type may also be specified.

CKK_VENDOR_DEFINED

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

♦ CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE is a value that identifies a certificate type. It is defined as
follows:

typedef CK_ULONG CK_CERTIFICATE_TYPE;

Certificate types are defined with the objects and mechanisms that use them. The
certificate type is specified on an object through the CKA_CERTIFICATE_TYPE
attribute of the object.

Vendor defined values for this type may also be specified.

CKC_VENDOR_DEFINED

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their certificate types
through the PKCS process.

♦ CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE is a value that identifies an attribute type. It is defined as
follows:

typedef CK_ULONG CK_ATTRIBUTE_TYPE;

Attributes are defined with the objects and mechanisms that use them. Attributes are
specified on an object as a list of type, length value items. These are often specified as an
attribute template.

Vendor defined values for this type may also be specified.

CKA_VENDOR_DEFINED

Attribute types CKA_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their attribute types through
the PKCS process.

9. GENERAL DATA TYPES 47

April 2009 Copyright © 2009 RSA Security Inc.

♦ CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a structure that includes the type, value, and length of an attribute.
It is defined as follows:

typedef struct CK_ATTRIBUTE {
 CK_ATTRIBUTE_TYPE type;
 CK_VOID_PTR pValue;
 CK_ULONG ulValueLen;
} CK_ATTRIBUTE;

The fields of the structure have the following meanings:

 type the attribute type

 pValue pointer to the value of the attribute

 ulValueLen length in bytes of the value

If an attribute has no value, then ulValueLen = 0, and the value of pValue is irrelevant.
An array of CK_ATTRIBUTEs is called a “template” and is used for creating,
manipulating and searching for objects. The order of the attributes in a template never
matters, even if the template contains vendor-specific attributes. Note that pValue is a
“void” pointer, facilitating the passing of arbitrary values. Both the application and
Cryptoki library must ensure that the pointer can be safely cast to the expected type (i.e.,
without word-alignment errors).

CK_ATTRIBUTE_PTR is a pointer to a CK_ATTRIBUTE.

♦ CK_DATE

CK_DATE is a structure that defines a date. It is defined as follows:

typedef struct CK_DATE {
 CK_CHAR year[4];
 CK_CHAR month[2];
 CK_CHAR day[2];
} CK_DATE;

The fields of the structure have the following meanings:

 year the year (“1900” - “9999”)

 month the month (“01” - “12”)

 day the day (“01” - “31”)

48 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The fields hold numeric characters from the character set in Table 3, not the literal byte
values.

When a Cryptoki object carries an attribute of this type, and the default value of the
attribute is specified to be "empty," then Cryptoki libraries shall set the attribute's
ulValueLen to 0.

Note that implementations of previous versions of Cryptoki may have used other
methods to identify an "empty" attribute of type CK_DATE, and that applications that
needs to interoperate with these libraries therefore have to be flexible in what they accept
as an empty value.

9.5 Data types for mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to
them:

♦ CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a value that identifies a mechanism type. It is defined as
follows:

typedef CK_ULONG CK_MECHANISM_TYPE;

Mechanism types are defined with the objects and mechanism descriptions that use them.

Vendor defined values for this type may also be specified.

CKM_VENDOR_DEFINED

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechanism types
through the PKCS process.

CK_MECHANISM_TYPE_PTR is a pointer to a CK_MECHANISM_TYPE.

♦ CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM is a structure that specifies a particular mechanism and any
parameters it requires. It is defined as follows:

typedef struct CK_MECHANISM {
 CK_MECHANISM_TYPE mechanism;
 CK_VOID_PTR pParameter;
 CK_ULONG ulParameterLen;
} CK_MECHANISM;

9. GENERAL DATA TYPES 49

April 2009 Copyright © 2009 RSA Security Inc.

The fields of the structure have the following meanings:

 mechanism the type of mechanism

 pParameter pointer to the parameter if required by the mechanism

 ulParameterLen length in bytes of the parameter

Note that pParameter is a “void” pointer, facilitating the passing of arbitrary values.
Both the application and the Cryptoki library must ensure that the pointer can be safely
cast to the expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTR is a pointer to a CK_MECHANISM.

♦ CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM_INFO is a structure that provides information about a particular
mechanism. It is defined as follows:

typedef struct CK_MECHANISM_INFO {
 CK_ULONG ulMinKeySize;
 CK_ULONG ulMaxKeySize;
 CK_FLAGS flags;
} CK_MECHANISM_INFO;

The fields of the structure have the following meanings:

 ulMinKeySize the minimum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

 ulMaxKeySize the maximum size of the key for the mechanism
(whether this is measured in bits or in bytes is
mechanism-dependent)

 flags bit flags specifying mechanism capabilities

For some mechanisms, the ulMinKeySize and ulMaxKeySize fields have meaningless
values.

50 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The following table defines the flags field:

Table 13, Mechanism Information Flags

Bit Flag Mask Meaning
CKF_HW 0x00000001 True if the mechanism is performed

by the device; false if the
mechanism is performed in software

CKF_ENCRYPT 0x00000100 True if the mechanism can be used
with C_EncryptInit

CKF_DECRYPT 0x00000200 True if the mechanism can be used
with C_DecryptInit

CKF_DIGEST 0x00000400 True if the mechanism can be used
with C_DigestInit

CKF_SIGN 0x00000800 True if the mechanism can be used
with C_SignInit

CKF_SIGN_RECOVER 0x00001000 True if the mechanism can be used
with C_SignRecoverInit

CKF_VERIFY 0x00002000 True if the mechanism can be used
with C_VerifyInit

CKF_VERIFY_RECOVER 0x00004000 True if the mechanism can be used
with C_VerifyRecoverInit

CKF_GENERATE 0x00008000 True if the mechanism can be used
with C_GenerateKey

CKF_GENERATE_KEY_PAIR 0x00010000 True if the mechanism can be used
with C_GenerateKeyPair

CKF_WRAP 0x00020000 True if the mechanism can be used
with C_WrapKey

CKF_UNWRAP 0x00040000 True if the mechanism can be used
with C_UnwrapKey

CKF_DERIVE 0x00080000 True if the mechanism can be used
with C_DeriveKey

CKF_EXTENSION 0x80000000 True if there is an extension to the
flags; false if no extensions. Must
be false for this version.

CK_MECHANISM_INFO_PTR is a pointer to a CK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

9. GENERAL DATA TYPES 51

April 2009 Copyright © 2009 RSA Security Inc.

♦ CK_RV

CK_RV is a value that identifies the return value of a Cryptoki function. It is defined as
follows:

typedef CK_ULONG CK_RV;

Vendor defined values for this type may also be specified.

CKR_VENDOR_DEFINED

Section 11.1 defines the meaning of each CK_RV value. Return values
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors.
For interoperability, vendors should register their return values through the PKCS
process.

♦ CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform
notification callbacks. It is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_NOTIFY)(
 CK_SESSION_HANDLE hSession,
 CK_NOTIFICATION event,
 CK_VOID_PTR pApplication
);

The arguments to a notification callback function have the following meanings:

 hSession The handle of the session performing the callback

 event The type of notification callback

 pApplication An application-defined value. This is the same value
as was passed to C_OpenSession to open the session
performing the callback

♦ CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function
C_XXX in the Cryptoki API (see Section 10.12 for detailed information about each of
them), Cryptoki defines a type CK_C_XXX, which is a pointer to a function with the
same arguments and return value as C_XXX has. An appropriately-set variable of type
CK_C_XXX may be used by an application to call the Cryptoki function C_XXX.

52 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ CK_FUNCTION_LIST; CK_FUNCTION_LIST_PTR;
CK_FUNCTION_LIST_PTR_PTR

CK_FUNCTION_LIST is a structure which contains a Cryptoki version and a function
pointer to each function in the Cryptoki API. It is defined as follows:

typedef struct CK_FUNCTION_LIST {
 CK_VERSION version;
 CK_C_Initialize C_Initialize;
 CK_C_Finalize C_Finalize;
 CK_C_GetInfo C_GetInfo;
 CK_C_GetFunctionList C_GetFunctionList;
 CK_C_GetSlotList C_GetSlotList;
 CK_C_GetSlotInfo C_GetSlotInfo;
 CK_C_GetTokenInfo C_GetTokenInfo;
 CK_C_GetMechanismList C_GetMechanismList;
 CK_C_GetMechanismInfo C_GetMechanismInfo;
 CK_C_InitToken C_InitToken;
 CK_C_InitPIN C_InitPIN;
 CK_C_SetPIN C_SetPIN;
 CK_C_OpenSession C_OpenSession;
 CK_C_CloseSession C_CloseSession;
 CK_C_CloseAllSessions C_CloseAllSessions;
 CK_C_GetSessionInfo C_GetSessionInfo;
 CK_C_GetOperationState C_GetOperationState;
 CK_C_SetOperationState C_SetOperationState;
 CK_C_Login C_Login;
 CK_C_Logout C_Logout;
 CK_C_CreateObject C_CreateObject;
 CK_C_CopyObject C_CopyObject;
 CK_C_DestroyObject C_DestroyObject;
 CK_C_GetObjectSize C_GetObjectSize;
 CK_C_GetAttributeValue C_GetAttributeValue;
 CK_C_SetAttributeValue C_SetAttributeValue;
 CK_C_FindObjectsInit C_FindObjectsInit;
 CK_C_FindObjects C_FindObjects;
 CK_C_FindObjectsFinal C_FindObjectsFinal;
 CK_C_EncryptInit C_EncryptInit;
 CK_C_Encrypt C_Encrypt;
 CK_C_EncryptUpdate C_EncryptUpdate;
 CK_C_EncryptFinal C_EncryptFinal;
 CK_C_DecryptInit C_DecryptInit;
 CK_C_Decrypt C_Decrypt;
 CK_C_DecryptUpdate C_DecryptUpdate;
 CK_C_DecryptFinal C_DecryptFinal;
 CK_C_DigestInit C_DigestInit;
 CK_C_Digest C_Digest;
 CK_C_DigestUpdate C_DigestUpdate;
 CK_C_DigestKey C_DigestKey;

9. GENERAL DATA TYPES 53

April 2009 Copyright © 2009 RSA Security Inc.

 CK_C_DigestFinal C_DigestFinal;
 CK_C_SignInit C_SignInit;
 CK_C_Sign C_Sign;
 CK_C_SignUpdate C_SignUpdate;
 CK_C_SignFinal C_SignFinal;
 CK_C_SignRecoverInit C_SignRecoverInit;
 CK_C_SignRecover C_SignRecover;
 CK_C_VerifyInit C_VerifyInit;
 CK_C_Verify C_Verify;
 CK_C_VerifyUpdate C_VerifyUpdate;
 CK_C_VerifyFinal C_VerifyFinal;
 CK_C_VerifyRecoverInit C_VerifyRecoverInit;
 CK_C_VerifyRecover C_VerifyRecover;
 CK_C_DigestEncryptUpdate C_DigestEncryptUpdate;
 CK_C_DecryptDigestUpdate C_DecryptDigestUpdate;
 CK_C_SignEncryptUpdate C_SignEncryptUpdate;
 CK_C_DecryptVerifyUpdate C_DecryptVerifyUpdate;
 CK_C_GenerateKey C_GenerateKey;
 CK_C_GenerateKeyPair C_GenerateKeyPair;
 CK_C_WrapKey C_WrapKey;
 CK_C_UnwrapKey C_UnwrapKey;
 CK_C_DeriveKey C_DeriveKey;
 CK_C_SeedRandom C_SeedRandom;
 CK_C_GenerateRandom C_GenerateRandom;
 CK_C_GetFunctionStatus C_GetFunctionStatus;
 CK_C_CancelFunction C_CancelFunction;
 CK_C_WaitForSlotEvent C_WaitForSlotEvent;
} CK_FUNCTION_LIST;

Each Cryptoki library has a static CK_FUNCTION_LIST structure, and a pointer to it
(or to a copy of it which is also owned by the library) may be obtained by the
C_GetFunctionList function (see Section 11.2). The value that this pointer points to can
be used by an application to quickly find out where the executable code for each function
in the Cryptoki API is located. Every function in the Cryptoki API must have an entry
point defined in the Cryptoki library’s CK_FUNCTION_LIST structure. If a particular
function in the Cryptoki API is not supported by a library, then the function pointer for
that function in the library’s CK_FUNCTION_LIST structure should point to a function
stub which simply returns CKR_FUNCTION_NOT_SUPPORTED.

In this structure ‘version’ is the cryptoki specification version number. It should match
the value of ‘cryptokiVersion’ returned in the CK_INFO structure.

An application may or may not be able to modify a Cryptoki library’s static
CK_FUNCTION_LIST structure. Whether or not it can, it should never attempt to do
so.

CK_FUNCTION_LIST_PTR is a pointer to a CK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR is a pointer to a CK_FUNCTION_LIST_PTR.

54 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

9.7 Locking-related types

The types in this section are provided solely for applications which need to access
Cryptoki from multiple threads simultaneously. Applications which will not do this need
not use any of these types.

♦ CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an application-supplied function
which creates a new mutex object and returns a pointer to it. It is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_CREATEMUTEX)(
 CK_VOID_PTR_PTR ppMutex
);

Calling a CK_CREATEMUTEX function returns the pointer to the new mutex object in
the location pointed to by ppMutex. Such a function should return one of the following
values: CKR_OK, CKR_GENERAL_ERROR, CKR_HOST_MEMORY.

♦ CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an application-supplied function
which destroys an existing mutex object. It is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_DESTROYMUTEX)(
 CK_VOID_PTR pMutex
);

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to
be destroyed. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

♦ CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX is the type of a pointer to an application-supplied function which
locks an existing mutex object. CK_UNLOCKMUTEX is the type of a pointer to an
application-supplied function which unlocks an existing mutex object. The proper
behavior for these types of functions is as follows:

• If a CK_LOCKMUTEX function is called on a mutex which is not locked, the
calling thread obtains a lock on that mutex and returns.

• If a CK_LOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the calling thread blocks and waits for that mutex
to be unlocked.

9. GENERAL DATA TYPES 55

April 2009 Copyright © 2009 RSA Security Inc.

• If a CK_LOCKMUTEX function is called on a mutex which is locked by the calling
thread, the behavior of the function call is undefined.

• If a CK_UNLOCKMUTEX function is called on a mutex which is locked by the
calling thread, that mutex is unlocked and the function call returns. Furthermore:

• If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains a lock on that mutex, and its CK_LOCKMUTEX call returns.

• If more than one thread was blocking on that particular mutex, then exactly one of
the blocking threads is selected somehow. That lucky thread stops blocking,
obtains a lock on the mutex, and its CK_LOCKMUTEX call returns. All other
threads blocking on that particular mutex continue to block.

• If a CK_UNLOCKMUTEX function is called on a mutex which is not locked, then
the function call returns the error code CKR_MUTEX_NOT_LOCKED.

• If a CK_UNLOCKMUTEX function is called on a mutex which is locked by some
thread other than the calling thread, the behavior of the function call is undefined.

CK_LOCKMUTEX is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_LOCKMUTEX)(
 CK_VOID_PTR pMutex
);

The argument to a CK_LOCKMUTEX function is a pointer to the mutex object to be
locked. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX is defined as follows:

typedef CK_CALLBACK_FUNCTION(CK_RV, CK_UNLOCKMUTEX)(
 CK_VOID_PTR pMutex
);

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to
be unlocked. Such a function should return one of the following values: CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

56 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS_PTR

CK_C_INITIALIZE_ARGS is a structure containing the optional arguments for the
C_Initialize function. For this version of Cryptoki, these optional arguments are all
concerned with the way the library deals with threads. CK_C_INITIALIZE_ARGS is
defined as follows:

typedef struct CK_C_INITIALIZE_ARGS {
 CK_CREATEMUTEX CreateMutex;
 CK_DESTROYMUTEX DestroyMutex;
 CK_LOCKMUTEX LockMutex;
 CK_UNLOCKMUTEX UnlockMutex;
 CK_FLAGS flags;
 CK_VOID_PTR pReserved;
} CK_C_INITIALIZE_ARGS;

The fields of the structure have the following meanings:

 CreateMutex pointer to a function to use for creating mutex objects

 DestroyMutex pointer to a function to use for destroying mutex
objects

 LockMutex pointer to a function to use for locking mutex objects

 UnlockMutex pointer to a function to use for unlocking mutex
objects

 flags bit flags specifying options for C_Initialize; the flags
are defined below

 pReserved reserved for future use. Should be NULL_PTR for this
version of Cryptoki

9. GENERAL DATA TYPES 57

April 2009 Copyright © 2009 RSA Security Inc.

The following table defines the flags field:

Table 14, C_Initialize Parameter Flags

Bit Flag Mask Meaning
CKF_LIBRARY_CANT_CREATE_OS_THREADS 0x00000001 True if

application
threads which
are executing
calls to the
library may not
use native
operating system
calls to spawn
new threads;
false if they may

CKF_OS_LOCKING_OK 0x00000002 True if the
library can use
the native
operation system
threading model
for locking; false
otherwise

CK_C_INITIALIZE_ARGS_PTR is a pointer to a CK_C_INITIALIZE_ARGS.

58 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

10 Objects

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS data type. An object consists of a set of attributes, each of
which has a given value. Each attribute that an object possesses has precisely one value.
The following figure illustrates the high-level hierarchy of the Cryptoki objects and some
of the attributes they support:

Object
Class

Storage

Token
Private
Label
Modifiable

Hardware feature

Feature type

Mechanism

Mechanism type

Data

Application
Object Identifier
Value Certificate

Key

Domain
parameters

Figure 5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in general, and
for obtaining and modifying the values of their attributes. Some of the cryptographic
functions (e.g., C_GenerateKey) also create key objects to hold their results.

Objects are always “well-formed” in Cryptoki—that is, an object always contains all
required attributes, and the attributes are always consistent with one another from the
time the object is created. This contrasts with some object-based paradigms where an
object has no attributes other than perhaps a class when it is created, and is uninitialized
for some time. In Cryptoki, objects are always initialized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data
type of the attribute value and the meaning of the attribute, which may include a default
initial value. Some of the data types are defined explicitly by Cryptoki (e.g.,
CK_OBJECT_CLASS). Attribute values may also take the following types:

10. OBJECTS 59

April 2009 Copyright © 2009 RSA Security Inc.

 Byte array an arbitrary string (array) of CK_BYTEs

 Big integer a string of CK_BYTEs representing an unsigned
integer of arbitrary size, most-significant byte first
(e.g., the integer 32768 is represented as the 2-byte
string 0x80 0x00)

 Local string an unpadded string of CK_CHARs (see Table 3) with
no null-termination

 RFC2279 string an unpadded string of CK_UTF8CHARs with no null-
termination

A token can hold several identical objects, i.e., it is permissible for two or more objects to
have exactly the same values for all their attributes.

In most cases each type of object in the Cryptoki specification possesses a completely
well-defined set of Cryptoki attributes. Some of these attributes possess default values,
and need not be specified when creating an object; some of these default values may even
be the empty string (“”). Nonetheless, the object possesses these attributes. A given
object has a single value for each attribute it possesses, even if the attribute is a vendor-
specific attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additional vendor-
specific attributes whose meanings and values are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects take a template as one of their
arguments, where the template specifies attribute values. Cryptographic functions that
create objects (see Section 11.14) may also contribute some additional attribute values
themselves; which attributes have values contributed by a cryptographic function call
depends on which cryptographic mechanism is being performed (see Section 12). In any
case, all the required attributes supported by an object class that do not have default
values must be specified when an object is created, either in the template or by the
function itself.

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see
Section 11.14). In addition, copying an existing object (with the function
C_CopyObject) also creates a new object, but we consider this type of object creation
separately in Section 10.1.3.

60 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Attempting to create an object with any of these functions requires an appropriate
template to be supplied.

1. If the supplied template specifies a value for an invalid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_TYPE_INVALID. An attribute
is valid if it is either one of the attributes described in the Cryptoki specification or an
additional vendor-specific attribute supported by the library and token.

2. If the supplied template specifies an invalid value for a valid attribute, then the
attempt should fail with the error code CKR_ATTRIBUTE_VALUE_INVALID.
The valid values for Cryptoki attributes are described in the Cryptoki specification.

3. If the supplied template specifies a value for a read-only attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE_READ_ONLY. Whether or not a
given Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification;
however, a particular library and token may be even more restrictive than Cryptoki
specifies. In other words, an attribute which Cryptoki says is not read-only may
nonetheless be read-only under certain circumstances (i.e., in conjunction with some
combinations of other attributes) for a particular library and token. Whether or not a
given non-Cryptoki attribute is read-only is obviously outside the scope of Cryptoki.

4. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are insufficient to fully specify the object to create, then the attempt
should fail with the error code CKR_TEMPLATE_INCOMPLETE.

5. If the attribute values in the supplied template, together with any default attribute
values and any attribute values contributed to the object by the object-creation
function itself, are inconsistent, then the attempt should fail with the error code
CKR_TEMPLATE_INCONSISTENT. A set of attribute values is inconsistent if not
all of its members can be satisfied simultaneously by the token, although each value
individually is valid in Cryptoki. One example of an inconsistent template would be
using a template which specifies two different values for the same attribute. Another
example would be trying to create a secret key object with an attribute which is
appropriate for various types of public keys or private keys, but not for secret keys.
A final example would be a template with an attribute that violates some token
specific requirement. Note that this final example of an inconsistent template is
token-dependent—on a different token, such a template might not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than
once (or the template specifies the same value for a particular attribute that the object-
creation function itself contributes to the object), then the behavior of Cryptoki is not
completely specified. The attempt to create an object can either succeed—thereby
creating the same object that would have been created if the multiply-specified
attribute had only appeared once—or it can fail with error code
CKR_TEMPLATE_INCONSISTENT. Library developers are encouraged to make
their libraries behave as though the attribute had only appeared once in the template;

10. OBJECTS 61

April 2009 Copyright © 2009 RSA Security Inc.

application developers are strongly encouraged never to put a particular attribute into
a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object,
then the error code returned from the attempt can be any of the error codes from above
that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section
11.7). The template supplied to C_SetAttributeValue can contain new values for
attributes which the object already possesses; values for attributes which the object does
not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some
may not. In addition, attributes which Cryptoki specifies are modifiable may actually not
be modifiable on some tokens. That is, if a Cryptoki attribute is described as being
modifiable, that really means only that it is modifiable insofar as the Cryptoki
specification is concerned. A particular token might not actually support modification of
some such attributes. Furthermore, whether or not a particular attribute of an object on a
particular token is modifiable might depend on the values of certain attributes of the
object. For example, a secret key object’s CKA_SENSITIVE attribute can be changed
from CK_FALSE to CK_TRUE, but not the other way around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objects with C_SetAttributeValue, except for the possibility of a template being
incomplete.

10.1.3 Copying objects

Unless an object's CKA_COPYABLE (see table 21) attribute is set to

CK_FALSE, it may be copied with the Cryptoki function C_CopyObject (see Section
11.7). In the process of copying an object, C_CopyObject also modifies the attributes of
the newly-created copy according to an application-supplied template.

The Cryptoki attributes which can be modified during the course of a C_CopyObject
operation are the same as the Cryptoki attributes which are described as being
modifiable, plus the three special attributes CKA_TOKEN, CKA_PRIVATE, and
CKA_MODIFIABLE. To be more precise, these attributes are modifiable during the
course of a C_CopyObject operation insofar as the Cryptoki specification is concerned.
A particular token might not actually support modification of some such attributes during
the course of a C_CopyObject operation. Furthermore, whether or not a particular
attribute of an object on a particular token is modifiable during the course of a
C_CopyObject operation might depend on the values of certain attributes of the object.
For example, a secret key object’s CKA_SENSITIVE attribute can be changed from

62 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_FALSE to CK_TRUE during the course of a C_CopyObject operation, but not the
other way around.

If the CKA_COPYABLE attribute of the object to be copied is set to
CK_FALSE, C_CopyObject returns CKR_COPY_PROHIBITED. Otherwise, the
scenarios described in 10.1.1 - and the error codes they return - apply
to copying objects with C_CopyObject, except for the possibility of a

template being incomplete.

10.2 Common attributes

Table 15, Common footnotes for object attribute tables
1 Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or
C_GenerateKeyPair.

5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to CK_TRUE or
its CKA_EXTRACTABLE attribute set to CK_FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the
process of copying object with a C_CopyObject call. However, it is possible that a
particular token may not permit modification of the attribute during the course of a
C_CopyObject call.

9 Default value is token-specific, and may depend on the values of other attributes.

10 Can only be set to CK_TRUE by the SO user.

11 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.

12 Attribute cannot be changed once set to CK_FALSE. It becomes a read only
attribute.

10. OBJECTS 63

April 2009 Copyright © 2009 RSA Security Inc.

Table 16, Common Object Attributes

Attribute Data Type Meaning
CKA_CLASS1 CK_OBJECT_CLASS Object class (type)

- Refer to table Table 15 for footnotes

The above table defines the attributes common to all objects.

10.3 Hardware Feature Objects

10.3.1 Definitions

This section defines the object class CKO_HW_FEATURE for type
CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

10.3.2 Overview

Hardware feature objects (CKO_HW_FEATURE) represent features of the device.
They provide an easily expandable method for introducing new value-based features to
the cryptoki interface.

When searching for objects using C_FindObjectsInit and C_FindObjects, hardware
feature objects are not returned unless the CKA_CLASS attribute in the template has the
value CKO_HW_FEATURE. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 17, Hardware Feature Common Attributes

Attribute Data Type Meaning
CKA_HW_FEATURE_TYPE1 CK_HW_FEATURE Hardware feature (type)

- Refer to table Table 15 for footnotes

10.3.3 Clock

10.3.3.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value CKH_CLOCK of type
CK_HW_FEATURE.

64 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

10.3.3.2 Description

Clock objects represent real-time clocks that exist on the device. This represents the same
clock source as the utcTime field in the CK_TOKEN_INFO structure.

Table 18, Clock Object Attributes

Attribute Data Type Meaning
CKA_VALUE CK_CHAR[16] Current time as a character-string of length 16,

represented in the format YYYYMMDDhhmmssxx
(4 characters for the year; 2 characters each for the
month, the day, the hour, the minute, and the
second; and 2 additional reserved ‘0’ characters).

The CKA_VALUE attribute may be set using the C_SetAttributeValue function if
permitted by the device. The session used to set the time must be logged in. The device
may require the SO to be the user logged in to modify the time value.
C_SetAttributeValue will return the error CKR_USER_NOT_LOGGED_IN to indicate
that a different user type is required to set the value.

10.3.4 Monotonic Counter Objects

10.3.4.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value
CKH_MONOTONIC_COUNTER of type CK_HW_FEATURE.

10.3.4.2 Description

Monotonic counter objects represent hardware counters that exist on the device. The
counter is guaranteed to increase each time its value is read, but not necessarily by one.
This might be used by an application for generating serial numbers to get some assurance
of uniqueness per token.

10. OBJECTS 65

April 2009 Copyright © 2009 RSA Security Inc.

Table 19, Monotonic Counter Attributes

Attribute Data Type Meaning
CKA_RESET_ON_INIT1 CK_BBOOL The value of the counter will reset to a

previously returned value if the token is
initialized using C_InitToken.

CKA_HAS_RESET1 CK_BBOOL The value of the counter has been reset at
least once at some point in time.

CKA_VALUE1 Byte Array The current version of the monotonic
counter. The value is returned in big endian
order.

1Read Only

The CKA_VALUE attribute may not be set by the client.

10.3.5 User Interface Objects

10.3.5.1 Definition

The CKA_HW_FEATURE_TYPE attribute takes the value
CKH_USER_INTERFACE of type CK_HW_FEATURE.

10.3.5.2 Description

User interface objects represent the presentation capabilities of the device.

66 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Table 20, User Interface Object Attributes

Attribute Data type Meaning
CKA_PIXEL_X CK_ULONG Screen resolution (in pixels) in X-axis

(e.g. 1280)
CKA_PIXEL_Y CK_ULONG Screen resolution (in pixels) in Y-axis

(e.g. 1024)
CKA_RESOLUTION CK_ULONG DPI, pixels per inch
CKA_CHAR_ROWS CK_ULONG For character-oriented displays;

number of character rows (e.g. 24)
CKA_CHAR_COLUMNS CK_ULONG For character-oriented displays:

number of character columns (e.g.
80). If display is of proportional-font
type, this is the width of the display in
“em”-s (letter “M”), see CC/PP
Struct.

CKA_COLOR CK_BBOOL Color support
CKA_BITS_PER_PIXEL CK_ULONG The number of bits of color or

grayscale information per pixel.
CKA_CHAR_SETS RFC 2279

string
String indicating supported character
sets, as defined by IANA MIBenum
sets (www.iana.org). Supported
character sets are separated with “;”.
E.g. a token supporting iso-8859-1
and us-ascii would set the attribute
value to “4;3”.

CKA_ENCODING_METHODS RFC 2279
string

String indicating supported content
transfer encoding methods, as defined
by IANA (www.iana.org). Supported
methods are separated with “;”. E.g. a
token supporting 7bit, 8bit and
base64 could set the attribute value to
“7bit;8bit;base64”.

CKA_MIME_TYPES RFC 2279
string

String indicating supported
(presentable) MIME-types, as defined
by IANA (www.iana.org). Supported
types are separated with “;”. E.g. a
token supporting MIME types "a/b",
"a/c" and "a/d" would set the attribute
value to “a/b;a/c;a/d”.

The selection of attributes, and associated data types, has been done in an attempt to stay
as aligned with RFC 2534 and CC/PP Struct as possible. The special value

10. OBJECTS 67

April 2009 Copyright © 2009 RSA Security Inc.

CK_UNAVAILABLE_INFORMATION may be used for CK_ULONG-based attributes
when information is not available or applicable.

None of the attribute values may be set by an application.

The value of the CKA_ENCODING_METHODS attribute may be used when the
application needs to send MIME objects with encoded content to the token.

10.4 Storage Objects

This is not an object class, hence no CKO_ definition is required. It is a category of
object classes with common attributes for the object classes that follow.

Table 21, Common Storage Object Attributes

Attribute Data Type Meaning
CKA_TOKEN CK_BBOOL CK_TRUE if object is a token object;

CK_FALSE if object is a session
object. Default is CK_FALSE.

CKA_PRIVATE CK_BBOOL CK_TRUE if object is a private
object; CK_FALSE if object is a
public object. Default value is token-
specific, and may depend on the
values of other attributes of the object.

CKA_MODIFIABLE CK_BBOOL CK_TRUE if object can be modified
Default is CK_TRUE.

CKA_LABEL RFC2279 string Description of the object (default
empty).

CKA_COPYABLE CK_BBOOL CK_TRUE if object can be copied
using C_CopyObject. Defaults to

CK_TRUE. Can’t be set to TRUE once
it is set to FALSE.

Only the CKA_LABEL attribute can be modified after the object is created. (The
CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE attributes can be changed
in the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a session
object.

When the CKA_PRIVATE attribute is CK_TRUE, a user may not access the object
until the user has been authenticated to the token.

The value of the CKA_MODIFIABLE attribute determines whether or not an object is
read-only. It may or may not be the case that an unmodifiable object can be deleted.

68 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The CKA_LABEL attribute is intended to assist users in browsing.

The value of the CKA_COPYABLE attribute determines whether or not an
object can be copied. This attribute can be used in conjunction with
CKA_MODIFIABLE to prevent changes to the permitted usages of keys and
other objects.

10.5 Data objects

10.5.1 Definitions

This section defines the object class CKO_DATA for type CK_OBJECT_CLASS as used
in the CKA_CLASS attribute of objects.

10.5.2 Overview

Data objects (object class CKO_DATA) hold information defined by an application.
Other than providing access to it, Cryptoki does not attach any special meaning to a data
object. The following table lists the attributes supported by data objects, in addition to the
common attributes defined for this object class:

Table 22, Data Object Attributes

Attribute Data type Meaning
CKA_APPLICATION RFC2279

string
Description of the application that manages the
object (default empty)

CKA_OBJECT_ID Byte Array DER-encoding of the object identifier indicating
the data object type (default empty)

CKA_VALUE Byte array Value of the object (default empty)

The CKA_APPLICATION attribute provides a means for applications to indicate
ownership of the data objects they manage. Cryptoki does not provide a means of
ensuring that only a particular application has access to a data object, however.

The CKA_OBJECT_ID attribute provides an application independent and expandable
way to indicate the type of the data object value. Cryptoki does not provide a means of
insuring that the data object identifier matches the data value.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS class = CKO_DATA;
CK_UTF8CHAR label[] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK_BYTE data[] = “Sample data”;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {

10. OBJECTS 69

April 2009 Copyright © 2009 RSA Security Inc.

 {CKA_CLASS, &class, sizeof(class)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_APPLICATION, application, sizeof(application)-1},
 {CKA_VALUE, data, sizeof(data)}
};

10.6 Certificate objects

10.6.1 Definitions

This section defines the object class CKO_CERTIFICATE for type
CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

10.6.2 Overview

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not attach
any special meaning to certificates. The following table defines the common certificate
object attributes, in addition to the common attributes defined for this object class:

Table 23, Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE1 CK_CERTIFICATE_TYPE Type of certificate
CKA_TRUSTED10 CK_BBOOL The certificate can be

trusted for the application
that it was created.

CKA_CERTIFICATE_CATEGORY CK_ULONG Categorization of the
certificate:
0 = unspecified (default
value), 1 = token user, 2 =
authority, 3 = other entity

CKA_CHECK_VALUE Byte array Checksum
CKA_START_DATE CK_DATE Start date for the certificate

(default empty)
CKA_END_DATE CK_DATE End date for the certificate

(default empty)
- Refer to table Table 15 for footnotes

The CKA_CERTIFICATE_TYPE attribute may not be modified after an object is
created. This version of Cryptoki supports the following certificate types:

• X.509 public key certificate
• WTLS public key certificate

70 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

• X.509 attribute certificate

The CKA_TRUSTED attribute cannot be set to CK_TRUE by an application. It must be
set by a token initialization application or by the token’s SO. Trusted certificates cannot
be modified.

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored
certificate is a user certificate for which the corresponding private key is available on the
token (“token user”), a CA certificate (“authority”), or an other end-entity certificate
(“other entity”). This attribute may not be modified after an object is created.

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will
together be used to map to the categorization of the certificates. A certificate in the
certificates CDF will be marked with category “token user”. A certificate in the
trustedCertificates CDF or in the usefulCertificates CDF will be marked with category
“authority” or “other entity” depending on the CommonCertificateAttribute.authority
attribute and the CKA_TRUSTED attribute indicates if it belongs to the
trustedCertificates or usefulCertificates CDF.

CKA_CHECK_VALUE: The value of this attribute is derived from the certificate by
taking the first three bytes of the SHA-1 hash of the certificate object’s CKA_VALUE
attribute.

The CKA_START_DATE and CKA_END_DATE attributes are for reference only;
Cryptoki does not attach any special meaning to them. When present, the application is
responsible to set them to values that match the certificate’s encoded “not before” and
“not after” fields (if any).

10.6.3 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key
certificates. The following table defines the X.509 certificate object attributes, in
addition to the common attributes defined for this object class:

10. OBJECTS 71

April 2009 Copyright © 2009 RSA Security Inc.

Table 24, X.509 Certificate Object Attributes

Attribute Data type Meaning
CKA_SUBJECT1 Byte array DER-encoding of the certificate

subject name
CKA_ID Byte array Key identifier for public/private

key pair (default empty)
CKA_ISSUER Byte array DER-encoding of the certificate

issuer name (default empty)
CKA_SERIAL_NUMBER Byte array DER-encoding of the certificate

serial number (default empty)
CKA_VALUE2 Byte array BER-encoding of the certificate
CKA_URL3 RFC2279

string
If not empty this attribute gives the
URL where the complete
certificate can be obtained (default
empty)

CKA_HASH_OF_SUBJECT_
PUBLIC_KEY4

Byte array Hash of the subject public key
(default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_PUBLI
C_KEY4

Byte array Hash of the issuer public key
(default empty). Hash algorithm is
defined by
CKA_NAME_HASH_ALGORITHM

CKA_JAVA_MIDP_SECURITY
_DOMAIN

CK_ULONG Java MIDP security domain: 0 =
unspecified (default value), 1 =
manufacturer, 2 = operator, 3 =
third party

CKA_NAME_HASH_ALGORITHM CK_MECHA
NISM_TYPE

Defines the mechanism used to
calculate
CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY. If
the attribute is not present then the
type defaults to SHA-1.

1Must be specified when the object is created.
2Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.
4Can only be empty if CKA_URL is empty.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

72 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The CKA_ID attribute is intended as a means of distinguishing multiple public-
key/private-key pairs held by the same subject (whether stored in the same token or not).
(Since the keys are distinguished by subject name as well as identifier, it is possible that
keys for different subjects may have the same CKA_ID value without introducing any
ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier
for a certificate will be the same as those for the corresponding public and private keys
(though it is not required that all be stored in the same token). However, Cryptoki does
not enforce this association, or even the uniqueness of the key identifier for a given
subject; in particular, an application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3
extensions to X.509 certificates, the key identifier may be carried in the certificate. It is
intended that the CKA_ID value be identical to the key identifier in such a certificate
extension, although this will not be enforced by Cryptoki.

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of
the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.
The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with
a Java MIDP security domain.

The following is a sample template for creating an X.509 certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

10. OBJECTS 73

April 2009 Copyright © 2009 RSA Security Inc.

10.6.4 WTLS public key certificate objects

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key
certificates. The following table defines the WTLS certificate object attributes, in
addition to the common attributes defined for this object class.

Table 25: WTLS Certificate Object Attributes

Attribute Data type Meaning
CKA_SUBJECT1 Byte array WTLS-encoding (Identifier type)

of the certificate subject
CKA_ISSUER Byte array WTLS-encoding (Identifier type)

of the certificate issuer (default
empty)

CKA_VALUE2 Byte array WTLS-encoding of the certificate
CKA_URL3 RFC2279

string
If not empty this attribute gives
the URL where the complete
certificate can be obtained

CKA_HASH_OF_SUBJECT
_PUBLIC_KEY4

Byte array SHA-1 hash of the subject public
key (default empty). Hash
algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_HASH_OF_ISSUER_P
UBLIC_KEY4

Byte array SHA-1 hash of the issuer public
key (default empty). Hash
algorithm is defined by
CKA_NAME_HASH_ALGORITHM

CKA_NAME_HASH_ALGORITHM CK_MECHANIS
M_TYPE Defines the mechanism used to

calculate
CKA_HASH_OF_SUBJECT_PUBLIC_KEY
and CKA_HASH_OF_ISSUER_PUBLIC_KEY.
If the attribute is not present then
the type defaults to SHA-1.

1Must be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.
4Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The encoding for the CKA_SUBJECT, CKA_ISSUER, and CKA_VALUE attributes
can be found in [WTLS] (see References).

The CKA_URL attribute enables the support for storage of the URL where the certificate
can be found instead of the certificate itself. Storage of a URL instead of the complete
certificate is often used in mobile environments.

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of

74 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

the public keys of the subject and the issuer. They are particularly important when only
the URL is available to be able to correlate a certificate with a private key and when
searching for the certificate of the issuer. The hash algorithm is defined by
CKA_NAME_HASH_ALGORITHM.
The following is a sample template for creating a WTLS certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_WTLS;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] =
{
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

10.6.5 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC_X_509_ATTR_CERT) hold
X.509 attribute certificates. The following table defines the X.509 attribute certificate
object attributes, in addition to the common attributes defined for this object class:

10. OBJECTS 75

April 2009 Copyright © 2009 RSA Security Inc.

Table 26, X.509 Attribute Certificate Object Attributes

Attribute Data Type Meaning
CKA_OWNER1 Byte Array DER-encoding of the attribute certificate's

subject field. This is distinct from the
CKA_SUBJECT attribute contained in
CKC_X_509 certificates because the ASN.1
syntax and encoding are different.

CKA_AC_ISSUER Byte Array DER-encoding of the attribute certificate's
issuer field. This is distinct from the
CKA_ISSUER attribute contained in
CKC_X_509 certificates because the ASN.1
syntax and encoding are different. (default
empty)

CKA_SERIAL_NUMBER Byte Array DER-encoding of the certificate serial number.
(default empty)

CKA_ATTR_TYPES Byte Array BER-encoding of a sequence of object
identifier values corresponding to the attribute
types contained in the certificate. When
present, this field offers an opportunity for
applications to search for a particular attribute
certificate without fetching and parsing the
certificate itself. (default empty)

CKA_VALUE1 Byte Array BER-encoding of the certificate.
1Must be specified when the object is created

Only the CKA_AC_ISSUER, CKA_SERIAL_NUMBER and CKA_ATTR_TYPES
attributes may be modified after the object is created.

The following is a sample template for creating an X.509 attribute certificate object:

CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509_ATTR_CERT;
CK_UTF8CHAR label[] = "An attribute certificate object";
CK_BYTE owner[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_OWNER, owner, sizeof(owner)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

76 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

10.7 Key objects

10.7.1 Definitions

There is no CKO_ definition for the base key object class, only for the key types derived
from it.

This section defines the object class CKO_PUBLIC_KEY, CKO_PRIVATE_KEY and
CKO_SECRET_KEY for type CK_OBJECT_CLASS as used in the CKA_CLASS
attribute of objects.

10.7.2 Overview

Key objects hold encryption or authentication keys, which can be public keys, private
keys, or secret keys. The following common footnotes apply to all the tables describing
attributes of keys:

The following table defines the attributes common to public key, private key and secret
key classes, in addition to the common attributes defined for this object class:

Table 27, Common Key Attributes

Attribute Data Type Meaning
CKA_KEY_TYPE1,5 CK_KEY_TYPE Type of key
CKA_ID8 Byte array Key identifier for key (default empty)
CKA_START_DATE8 CK_DATE Start date for the key (default empty)
CKA_END_DATE8 CK_DATE End date for the key (default empty)
CKA_DERIVE8 CK_BBOOL CK_TRUE if key supports key

derivation (i.e., if other keys can be
derived from this one (default
CK_FALSE)

CKA_LOCAL2,4,6 CK_BBOOL CK_TRUE only if key was either
• generated locally (i.e., on the

token) with a C_GenerateKey or
C_GenerateKeyPair call

• created with a C_CopyObject
call as a copy of a key which had
its CKA_LOCAL attribute set to
CK_TRUE

CKA_KEY_GEN_
MECHANISM2,4,6

CK_MECHANISM
_TYPE

Identifier of the mechanism used to
generate the key material.

10. OBJECTS 77

April 2009 Copyright © 2009 RSA Security Inc.

Attribute Data Type Meaning
CKA_ALLOWED_MECHANISMS CK_MECHANISM

_TYPE _PTR,
pointer to a
CK_MECHANISM
_TYPE array

A list of mechanisms allowed to be
used with this key. The number of
mechanisms in the array is the
ulValueLen component of the
attribute divided by the size
of CK_MECHANISM_TYPE.

- Refer to table Table 15 for footnotes

The CKA_ID field is intended to distinguish among multiple keys. In the case of public
and private keys, this field assists in handling multiple keys held by the same subject; the
key identifier for a public key and its corresponding private key should be the same. The
key identifier should also be the same as for the corresponding certificate, if one exists.
Cryptoki does not enforce these associations, however. (See Section 10.6 for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START_DATE and CKA_END_DATE attributes are for reference
only; Cryptoki does not attach any special meaning to them. In particular, it does not
restrict usage of a key according to the dates; doing this is up to the application.

The CKA_DERIVE attribute has the value CK_TRUE if and only if it is possible to
derive other keys from the key.

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the key
was originally generated on the token by a C_GenerateKey or C_GenerateKeyPair
call.

The CKA_KEY_GEN_MECHANISM attribute identifies the key generation
mechanism used to generate the key material. It contains a valid value only if the
CKA_LOCAL attribute has the value CK_TRUE. If CKA_LOCAL has the value
CK_FALSE, the value of the attribute is CK_UNAVAILABLE_INFORMATION.

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. The following
table defines the attributes common to all public keys, in addition to the common
attributes defined for this object class:

Table 28, Common Public Key Attributes

Attribute Data type Meaning
CKA_SUBJECT8 Byte array DER-encoding of the key subject name

(default empty)

78 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Attribute Data type Meaning
CKA_ENCRYPT8 CK_BBOOL CK_TRUE if key supports encryption9
CKA_VERIFY8 CK_BBOOL CK_TRUE if key supports verification

where the signature is an appendix to
the data9

CKA_VERIFY_RECOVER8 CK_BBOOL CK_TRUE if key supports verification
where the data is recovered from the
signature9

CKA_WRAP8 CK_BBOOL CK_TRUE if key supports wrapping
(i.e., can be used to wrap other keys)9

CKA_TRUSTED10 CK_BBOOL The key can be trusted for the
application that it was created.
The wrapping key can be used to wrap
keys with
CKA_WRAP_WITH_TRUSTED set to
CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to match against any keys
wrapped using this wrapping key. Keys
that do not match cannot be wrapped.
The number of attributes in the array is
the ulValueLen component of the
attribute divided by the size of
CK_ATTRIBUTE.

- Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a public key will be the same as those for the corresponding certificate and private
key. However, Cryptoki does not enforce this, and it is not required that the certificate
and private key also be stored on the token.

To map between ISO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

10. OBJECTS 79

April 2009 Copyright © 2009 RSA Security Inc.

Table 29, Mapping of X.509 key usage flags to cryptoki attributes for public keys

Key usage flags for public keys in X.509
public key certificates

Corresponding cryptoki attributes for
public keys.

dataEncipherment CKA_ENCRYPT
digitalSignature, keyCertSign, cRLSign CKA_VERIFY
digitalSignature, keyCertSign, cRLSign CKA_VERIFY_RECOVER
keyAgreement CKA_DERIVE
keyEncipherment CKA_WRAP
nonRepudiation CKA_VERIFY
nonRepudiation CKA_VERIFY_RECOVER

10.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. The
following table defines the attributes common to all private keys, in addition to the
common attributes defined for this object class:

Table 30, Common Private Key Attributes

Attribute Data type Meaning
CKA_SUBJECT8 Byte array DER-encoding of certificate

subject name (default empty)
CKA_SENSITIVE8,11 CK_BBOOL CK_TRUE if key is sensitive9
CKA_DECRYPT8 CK_BBOOL CK_TRUE if key supports

decryption9
CKA_SIGN8 CK_BBOOL CK_TRUE if key supports

signatures where the signature
is an appendix to the data9

CKA_SIGN_RECOVER8 CK_BBOOL CK_TRUE if key supports
signatures where the data can
be recovered from the
signature9

CKA_UNWRAP8 CK_BBOOL CK_TRUE if key supports
unwrapping (i.e., can be used
to unwrap other keys)9

CKA_EXTRACTABLE8,12 CK_BBOOL CK_TRUE if key is
extractable and can be
wrapped 9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOOL CK_TRUE if key has always
had the CKA_SENSITIVE
attribute set to CK_TRUE

CKA_NEVER_EXTRACTABLE2,4,6 CK_BBOOL CK_TRUE if key has never

80 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Attribute Data type Meaning
had the
CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_WRAP_WITH_TRUSTED11 CK_BBOOL CK_TRUE if the key can only
be wrapped with a wrapping
key that has CKA_TRUSTED
set to CK_TRUE.
Default is CK_FALSE.

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_
PTR

For wrapping keys. The
attribute template to apply to
any keys unwrapped using this
wrapping key. Any user
supplied template is applied
after this template as if the
object has already been
created. The number of
attributes in the array is the
ulValueLen component of the
attribute divided by the size of
CK_ATTRIBUTE.

CKA_ALWAYS_AUTHENTICATE CK_BBOOL If CK_TRUE, the user has to
supply the PIN for each use
(sign or decrypt) with the key.
Default is CK_FALSE.

- Refer to table Table 15 for footnotes

It is intended in the interests of interoperability that the subject name and key identifier
for a private key will be the same as those for the corresponding certificate and public
key. However, this is not enforced by Cryptoki, and it is not required that the certificate
and public key also be stored on the token.

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the private key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of
private key in the attribute table in the section describing that type of key.

The CKA_ALWAYS_AUTHENTICATE attribute can be used to force re-
authentication (i.e. force the user to provide a PIN) for each use of a private key. “Use” in
this case means a cryptographic operation such as sign or decrypt. This attribute may
only be set to CK_TRUE when CKA_PRIVATE is also CK_TRUE.

Re-authentication occurs by calling C_Login with userType set to
CKU_CONTEXT_SPECIFIC immediately after a cryptographic operation using the
key has been initiated (e.g. after C_SignInit). In this call, the actual user type is

10. OBJECTS 81

April 2009 Copyright © 2009 RSA Security Inc.

implicitly given by the usage requirements of the active key. If C_Login returns
CKR_OK the user was successfully authenticated and this sets the active key in an
authenticated state that lasts until the cryptographic operation has successfully or
unsuccessfully been completed (e.g. by C_Sign, C_SignFinal,..). A return value
CKR_PIN_INCORRECT from C_Login means that the user was denied permission to
use the key and continuing the cryptographic operation will result in a behavior as if
C_Login had not been called. In both of these cases the session state will remain the
same, however repeated failed re-authentication attempts may cause the PIN to be
locked. C_Login returns in this case CKR_PIN_LOCKED and this also logs the user out
from the token. Failing or omitting to re-authenticate when
CKA_ALWAYS_AUTHENTICATE is set to CK_TRUE will result in
CKR_USER_NOT_LOGGED_IN to be returned from calls using the key. C_Login will
return CKR_OPERATION_NOT_INITIALIZED, but the active cryptographic operation
will not be affected, if an attempt is made to re-authenticate when
CKA_ALWAYS_AUTHENTICATE is set to CK_FALSE.

10.10 Secret key objects

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. The following
table defines the attributes common to all secret keys, in addition to the common
attributes defined for this object class:

82 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Table 31, Common Secret Key Attributes

Attribute Data type Meaning
CKA_SENSITIVE8,11 CK_BBOOL CK_TRUE if object is sensitive

(default CK_FALSE)
CKA_ENCRYPT8 CK_BBOOL CK_TRUE if key supports

encryption9
CKA_DECRYPT8 CK_BBOOL CK_TRUE if key supports

decryption9
CKA_SIGN8 CK_BBOOL CK_TRUE if key supports

signatures (i.e., authentication
codes) where the signature is an
appendix to the data9

CKA_VERIFY8 CK_BBOOL CK_TRUE if key supports
verification (i.e., of authentication
codes) where the signature is an
appendix to the data9

CKA_WRAP8 CK_BBOOL CK_TRUE if key supports
wrapping (i.e., can be used to
wrap other keys)9

CKA_UNWRAP8 CK_BBOOL CK_TRUE if key supports
unwrapping (i.e., can be used to
unwrap other keys)9

CKA_EXTRACTABLE8,12 CK_BBOOL CK_TRUE if key is extractable
and can be wrapped 9

CKA_ALWAYS_SENSITIVE2,4,6 CK_BBOOL CK_TRUE if key has always had
the CKA_SENSITIVE attribute
set to CK_TRUE

CKA_NEVER_EXTRACTABLE2,4,

6
CK_BBOOL CK_TRUE if key has never had

the CKA_EXTRACTABLE
attribute set to CK_TRUE

CKA_CHECK_VALUE Byte array Key checksum
CKA_WRAP_WITH_TRUSTED11 CK_BBOOL CK_TRUE if the key can only be

wrapped with a wrapping key that
has CKA_TRUSTED set to
CK_TRUE.
Default is CK_FALSE.

CKA_TRUSTED10 CK_BBOOL The wrapping key can be used to
wrap keys with
CKA_WRAP_WITH_TRUSTED
set to CK_TRUE.

CKA_WRAP_TEMPLATE CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to match against any

10. OBJECTS 83

April 2009 Copyright © 2009 RSA Security Inc.

Attribute Data type Meaning
keys wrapped using this wrapping
key. Keys that do not match
cannot be wrapped. The number
of attributes in the array is the
ulValueLen component of the
attribute divided by the size of
CK_ATTRIBUTE

CKA_UNWRAP_TEMPLATE CK_ATTRIBUTE_
PTR

For wrapping keys. The attribute
template to apply to any keys
unwrapped using this wrapping
key. Any user supplied template
is applied after this template as if
the object has already been
created. The number of attributes
in the array is the ulValueLen
component of the attribute
divided by the size of
CK_ATTRIBUTE.

- Refer to table Table 15 for footnotes

If the CKA_SENSITIVE attribute is CK_TRUE, or if the CKA_EXTRACTABLE
attribute is CK_FALSE, then certain attributes of the secret key cannot be revealed in
plaintext outside the token. Which attributes these are is specified for each type of secret
key in the attribute table in the section describing that type of key.

The key check value (KCV) attribute for symmetric key objects to be called
CKA_CHECK_VALUE, of type byte array, length 3 bytes, operates like a fingerprint,
or checksum of the key. They are intended to be used to cross-check symmetric keys
against other systems where the same key is shared, and as a validity check after manual
key entry or restore from backup. Refer to object definitions of specific key types for
KCV algorithms.

Properties:

1. For two keys that are cryptographically identical the value of this attribute should
be identical.

2. CKA_CHECK_VALUE should not be usable to obtain any part of the key value.

3. Non-uniqueness. Two different keys can have the same CKA_CHECK_VALUE.
This is unlikely (the probability can easily be calculated) but possible.

The attribute is optional but if supported the value of the attribute is always supplied by
the library regardless of how the key object is created or derived. It shall be supplied

84 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

even if the encryption operation for the key is forbidden (i.e. when CKA_ENCRYPT is
set to CK_FALSE).

If a value is supplied in the application template (allowed but never necessary) then, if
supported, it must match what the library calculates it to be or the library returns a
CKR_ATTRIBUTE_VALUE_INVALID. If the library does not support the attribute
then it should ignore it. Allowing the attribute in the template this way does no harm and
allows the attribute to be treated like any other attribute for the purposes of key wrap and
unwrap where the attributes are preserved also.

The generation of the KCV may be prevented by the application supplying the attribute
in the template as a no-value (0 length) entry. The application can query the value at any
time like any other attribute using C_GetAttributeValue. C_SetAttributeValue may be
used to destroy the attribute, by supplying no-value.

Unless otherwise specified for the object definition, the value of this attribute is derived
from the key object by taking the first three bytes of an encryption of a single block of
null (0x00) bytes, using the default cipher and mode (e.g. ECB) associated with the key
type of the secret key object.

10.11 Domain parameter objects

10.11.1 Definitions

This section defines the object class CKO_DOMAIN_PARAMETERS for type
CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

10.11.2 Overview

This object class was created to support the storage of certain algorithm's extended
parameters. DSA and DH both use domain parameters in the key-pair generation step. In
particular, some libraries support the generation of domain parameters (originally out of
scope for PKCS11) so the object class was added.

To use a domain parameter object you must extract the attributes into a template and
supply them (still in the template) to the corresponding key-pair generation function.

Domain parameter objects (object class CKO_DOMAIN_PARAMETERS) hold public
domain parameters.

The following table defines the attributes common to domain parameter objects in
addition to the common attributes defined for this object class:

10. OBJECTS 85

April 2009 Copyright © 2009 RSA Security Inc.

Table 32, Common Domain Parameter Attributes

Attribute Data Type Meaning
CKA_KEY_TYPE1 CK_KEY_TYPE Type of key the domain parameters can

be used to generate.
CKA_LOCAL2,4 CK_BBOOL CK_TRUE only if domain parameters

were either
• generated locally (i.e., on the token)

with a C_GenerateKey
• created with a C_CopyObject call

as a copy of domain parameters
which had its CKA_LOCAL
attribute set to CK_TRUE

- Refer to table Table 15 for footnotes

The CKA_LOCAL attribute has the value CK_TRUE if and only if the value of the
domain parameters were originally generated on the token by a C_GenerateKey call.

10.12 Mechanism objects

10.12.1 Definitions

This section defines the object class CKO_MECHANISM for type
CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

10.12.2 Overview

Mechanism objects provide information about mechanisms supported by a device beyond
that given by the CK_MECHANISM_INFO structure.

When searching for objects using C_FindObjectsInit and C_FindObjects, mechanism
objects are not returned unless the CKA_CLASS attribute in the template has the value
CKO_MECHANISM. This protects applications written to previous versions of
cryptoki from finding objects that they do not understand.

Table 33, Common Mechanism Attributes

Attribute Data Type Meaning
CKA_MECHANISM_TYPE CK_MECHANISM_TYPE The type of mechanism

object

The CKA_MECHANISM_TYPE attribute may not be set.

86 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

11 Functions

Cryptoki's functions are organized into the following categories:

• general-purpose functions (4 functions)

• slot and token management functions (9 functions)

• session management functions (8 functions)

• object management functions (9 functions)

• encryption functions (4 functions)

• decryption functions (4 functions)

• message digesting functions (5 functions)

• signing and MACing functions (6 functions)

• functions for verifying signatures and MACs (6 functions)

• dual-purpose cryptographic functions (4 functions)

• key management functions (5 functions)

• random number generation functions (2 functions)

• parallel function management functions (2 functions)

In addition to these functions, Cryptoki can use application-supplied callback functions to
notify an application of certain events, and can also use application-supplied functions to
handle mutex objects for safe multi-threaded library access.

Execution of a Cryptoki function call is in general an all-or-nothing affair, i.e., a function
call accomplishes either its entire goal, or nothing at all.

• If a Cryptoki function executes successfully, it returns the value CKR_OK.

• If a Cryptoki function does not execute successfully, it returns some value other than
CKR_OK, and the token is in the same state as it was in prior to the function call. If
the function call was supposed to modify the contents of certain memory addresses on
the host computer, these memory addresses may have been modified, despite the
failure of the function.

11. FUNCTIONS 87

April 2009 Copyright © 2009 RSA Security Inc.

• In unusual (and extremely unpleasant!) circumstances, a function can fail with the
return value CKR_GENERAL_ERROR. When this happens, the token and/or host
computer may be in an inconsistent state, and the goals of the function may have been
partially achieved.

There are a small number of Cryptoki functions whose return values do not behave
precisely as described above; these exceptions are documented individually with the
description of the functions themselves.

A Cryptoki library need not support every function in the Cryptoki API. However, even
an unsupported function must have a “stub” in the library which simply returns the value
CKR_FUNCTION_NOT_SUPPORTED. The function’s entry in the library’s
CK_FUNCTION_LIST structure (as obtained by C_GetFunctionList) should point to
this stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In
Section 11.1, we enumerate the various possible return values for Cryptoki functions;
most of the remainder of Section 10.12 details the behavior of Cryptoki functions,
including what values each of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki
applications attempt to give some leeway when interpreting Cryptoki functions’ return
values. We have attempted to specify the behavior of Cryptoki functions as completely
as was feasible; nevertheless, there are presumably some gaps. For example, it is
possible that a particular error code which might apply to a particular Cryptoki function
is unfortunately not actually listed in the description of that function as a possible error
code. It is conceivable that the developer of a Cryptoki library might nevertheless permit
his/her implementation of that function to return that error code. It would clearly be
somewhat ungraceful if a Cryptoki application using that library were to terminate by
abruptly dumping core upon receiving that error code for that function. It would be far
preferable for the application to examine the function’s return value, see that it indicates
some sort of error (even if the application doesn’t know precisely what kind of error), and
behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make
an application that accommodates a range of behaviors from Cryptoki libraries.

11.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:

88 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

• CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
worst case, it is possible that the function only partially succeeded, and that the
computer and/or token is in an inconsistent state.

• CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

• CKR_FUNCTION_FAILED: The requested function could not be performed, but
detailed information about why not is not available in this error return. If the failed
function uses a session, it is possible that the CK_SESSION_INFO structure that
can be obtained by calling C_GetSessionInfo will hold useful information about
what happened in its ulDeviceError field. In any event, although the function call
failed, the situation is not necessarily totally hopeless, as it is likely to be when
CKR_GENERAL_ERROR is returned. Depending on what the root cause of the
error actually was, it is possible that an attempt to make the exact same function call
again would succeed.

• CKR_OK: The function executed successfully. Technically, CKR_OK is not quite a
“universal” return value; in particular, the legacy functions C_GetFunctionStatus
and C_CancelFunction (see Section 11.16) cannot return CKR_OK.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_GENERAL_ERROR or CKR_HOST_MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

11.1.2 Cryptoki function return values for functions that use a session
handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any
Cryptoki function except for C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList,
C_GetSlotList, C_GetSlotInfo, C_GetTokenInfo, C_WaitForSlotEvent,
C_GetMechanismList, C_GetMechanismInfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following values:

• CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at
the time that the function was invoked. Note that this can happen if the session’s
token is removed before the function invocation, since removing a token closes all
sessions with it.

• CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

• CKR_SESSION_CLOSED: The session was closed during the execution of the
function. Note that, as stated in Section 6.7.6, the behavior of Cryptoki is undefined
if multiple threads of an application attempt to access a common Cryptoki session
simultaneously. Therefore, there is actually no guarantee that a function invocation

11. FUNCTIONS 89

April 2009 Copyright © 2009 RSA Security Inc.

could ever return the value CKR_SESSION_CLOSED—if one thread is using a
session when another thread closes that session, that is an instance of multiple threads
accessing a common session simultaneously.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE_REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for
C_Initialize, C_Finalize, C_GetInfo, C_GetFunctionList, C_GetSlotList,
C_GetSlotInfo, or C_WaitForSlotEvent) can return any of the following values:

• CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform
the requested function.

• CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot.
This error code can be returned by more than just the functions mentioned above; in
particular, it is possible for C_GetSlotInfo to return CKR_DEVICE_ERROR.

• CKR_TOKEN_NOT_PRESENT: The token was not present in its slot at the time
that the function was invoked.

• CKR_DEVICE_REMOVED: The token was removed from its slot during the
execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of
CKR_DEVICE_MEMORY or CKR_DEVICE_ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token
being removed during a function execution.

11.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual
Cryptoki API, but which may be returned by an application-supplied callback function.
It is:

90 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

• CKR_CANCEL: When a function executing in serial with an application decides to
give the application a chance to do some work, it calls an application-supplied
function with a CKN_SURRENDER callback (see Section 11.17). If the callback
returns the value CKR_CANCEL, then the function aborts and returns
CKR_FUNCTION_CANCELED.

11.1.5 Special return values for mutex-handling functions

There are two other special-purpose return values which are not returned by any actual
Cryptoki functions. These values may be returned by application-supplied mutex-
handling functions, and they may safely be ignored by application developers who are
not using their own threading model. They are:

• CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions
who are passed a bad mutex object as an argument. Unfortunately, it is possible for
such a function not to recognize a bad mutex object. There is therefore no guarantee
that such a function will successfully detect bad mutex objects and return this value.

• CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-
unlocking functions. It indicates that the mutex supplied to the mutex-unlocking
function was not locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in
the descriptions of particular error codes, there are in general no particular priorities
among the errors listed below, i.e., if more than one error code might apply to an
execution of a function, then the function may return any applicable error code.

• CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that
the arguments supplied to the Cryptoki function were in some way not appropriate.

• CKR_ATTRIBUTE_READ_ONLY: An attempt was made to set a value for an
attribute which may not be set by the application, or which may not be modified by
the application. See Section 10.1 for more information.

• CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an
attribute of an object which cannot be satisfied because the object is either sensitive
or unextractable.

• CKR_ATTRIBUTE_TYPE_INVALID: An invalid attribute type was specified in a
template. See Section 10.1 for more information.

• CKR_ATTRIBUTE_VALUE_INVALID: An invalid value was specified for a
particular attribute in a template. See Section 10.1 for more information.

11. FUNCTIONS 91

April 2009 Copyright © 2009 RSA Security Inc.

• CKR_BUFFER_TOO_SMALL: The output of the function is too large to fit in the
supplied buffer.

• CKR_CANT_LOCK: This value can only be returned by C_Initialize. It means that
the type of locking requested by the application for thread-safety is not available in
this library, and so the application cannot make use of this library in the specified
fashion.

• CKR_CRYPTOKI_ALREADY_INITIALIZED: This value can only be returned by
C_Initialize. It means that the Cryptoki library has already been initialized (by a
previous call to C_Initialize which did not have a matching C_Finalize call).

• CKR_CRYPTOKI_NOT_INITIALIZED: This value can be returned by any function
other than C_Initialize and C_GetFunctionList. It indicates that the function cannot
be executed because the Cryptoki library has not yet been initialized by a call to
C_Initialize.

• CKR_DATA_INVALID: The plaintext input data to a cryptographic operation is
invalid. This return value has lower priority than CKR_DATA_LEN_RANGE.

• CKR_DATA_LEN_RANGE: The plaintext input data to a cryptographic operation
has a bad length. Depending on the operation’s mechanism, this could mean that the
plaintext data is too short, too long, or is not a multiple of some particular blocksize.
This return value has higher priority than CKR_DATA_INVALID.

• CKR_DOMAIN_PARAMS_INVALID: Invalid or unsupported domain parameters
were supplied to the function. Which representation methods of domain parameters
are supported by a given mechanism can vary from token to token.

• CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption
operation has been determined to be invalid ciphertext. This return value has lower
priority than CKR_ENCRYPTED_DATA_LEN_RANGE.

• CKR_ENCRYPTED_DATA_LEN_RANGE: The ciphertext input to a decryption
operation has been determined to be invalid ciphertext solely on the basis of its
length. Depending on the operation’s mechanism, this could mean that the ciphertext
is too short, too long, or is not a multiple of some particular blocksize. This return
value has higher priority than CKR_ENCRYPTED_DATA_INVALID.

• CKR_EXCEEDED_MAX_ITERATIONS: An iterative algorithm (for key
pair generation, domain parameter generation etc.) failed because we
have exceeded the maximum number of iterations. This error code has
precedence over CKR_FUNCTION_FAILED. Examples of iterative algorithms
include DSA signature generation (retry if either r = 0 or s = 0) and
generation of DSA primes p and q specified in FIPS 186-2.

• CKR_FIPS_SELF_TEST_FAILED: A FIPS 140-2 power-up self-test or
conditional self-test failed. The token entered an error state.

92 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Future calls to cryptographic functions on the token will return
CKR_GENERAL_ERROR. CKR_FIPS_SELF_TEST_FAILED has a higher precedence
over CKR_GENERAL_ERROR. This error may be returned by C_Initialize,
if a power-up self-test failed, by C_GenerateRandom or C_SeedRandom,
if the continuous random number generator test failed, or by
C_GenerateKeyPair, if the pair-wise consistency test failed.

• CKR_FUNCTION_CANCELED: The function was canceled in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR_CANCEL (see CKR_CANCEL). It also
happens to a function that performs PIN entry through a protected path. The method
used to cancel a protected path PIN entry operation is device dependent.

• CKR_FUNCTION_NOT_PARALLEL: There is currently no function executing in
parallel in the specified session. This is a legacy error code which is only returned by
the legacy functions C_GetFunctionStatus and C_CancelFunction.

• CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by
this Cryptoki library. Even unsupported functions in the Cryptoki API should have a
“stub” in the library; this stub should simply return the value
CKR_FUNCTION_NOT_SUPPORTED.

• CKR_FUNCTION_REJECTED: The signature request is rejected by the user.

• CKR_INFORMATION_SENSITIVE: The information requested could not be
obtained because the token considers it sensitive, and is not able or willing to reveal
it.

• CKR_KEY_CHANGED: This value is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
original saved session.

• CKR_KEY_FUNCTION_NOT_PERMITTED: An attempt has been made to use a
key for a cryptographic purpose that the key’s attributes are not set to allow it to do.
For example, to use a key for performing encryption, that key must have its
CKA_ENCRYPT attribute set to CK_TRUE (the fact that the key must have a
CKA_ENCRYPT attribute implies that the key cannot be a private key). This return
value has lower priority than CKR_KEY_TYPE_INCONSISTENT.

• CKR_KEY_HANDLE_INVALID: The specified key handle is not valid. It may be
the case that the specified handle is a valid handle for an object which is not a key.
We reiterate here that 0 is never a valid key handle.

• CKR_KEY_INDIGESTIBLE: This error code can only be returned by C_DigestKey.
It indicates that the value of the specified key cannot be digested for some reason
(perhaps the key isn’t a secret key, or perhaps the token simply can’t digest this kind
of key).

11. FUNCTIONS 93

April 2009 Copyright © 2009 RSA Security Inc.

• CKR_KEY_NEEDED: This value is only returned by C_SetOperationState. It
indicates that the session state cannot be restored because C_SetOperationState
needs to be supplied with one or more keys that were being used in the original saved
session.

• CKR_KEY_NOT_NEEDED: An extraneous key was supplied to
C_SetOperationState. For example, an attempt was made to restore a session that
had been performing a message digesting operation, and an encryption key was
supplied.

• CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does
not have its CKA_EXTRACTABLE attribute set to CK_FALSE, Cryptoki (or the
token) is unable to wrap the key as requested (possibly the token can only wrap a
given key with certain types of keys, and the wrapping key specified is not one of
these types). Compare with CKR_KEY_UNEXTRACTABLE.

• CKR_KEY_SIZE_RANGE: Although the requested keyed cryptographic operation
could in principle be carried out, this Cryptoki library (or the token) is unable to
actually do it because the supplied key‘s size is outside the range of key sizes that it
can handle.

• CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of
key to use with the specified mechanism. This return value has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

• CKR_KEY_UNEXTRACTABLE: The specified private or secret key can’t be
wrapped because its CKA_EXTRACTABLE attribute is set to CK_FALSE.
Compare with CKR_KEY_NOT_WRAPPABLE.

• CKR_LIBRARY_LOAD_FAILED: The Cryptoki library could not load a
dependent shared library.

• CKR_MECHANISM_INVALID: An invalid mechanism was specified to the
cryptographic operation. This error code is an appropriate return value if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected
token with the selected function.

• CKR_MECHANISM_PARAM_INVALID: Invalid parameters were supplied to the
mechanism specified to the cryptographic operation. Which parameter values are
supported by a given mechanism can vary from token to token.

• CKR_NEED_TO_CREATE_THREADS: This value can only be returned by
C_Initialize. It is returned when two conditions hold:

1. The application called C_Initialize in a way which tells the Cryptoki library
that application threads executing calls to the library cannot use native
operating system methods to spawn new threads.

94 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

2. The library cannot function properly without being able to spawn new threads
in the above fashion.

• CKR_NO_EVENT: This value can only be returned by C_GetSlotEvent. It is
returned when C_GetSlotEvent is called in non-blocking mode and there are no new
slot events to return.

• CKR_OBJECT_HANDLE_INVALID: The specified object handle is not valid. We
reiterate here that 0 is never a valid object handle.

• CKR_OPERATION_ACTIVE: There is already an active operation (or combination
of active operations) which prevents Cryptoki from activating the specified operation.
For example, an active object-searching operation would prevent Cryptoki from
activating an encryption operation with C_EncryptInit. Or, an active digesting
operation and an active encryption operation would prevent Cryptoki from activating
a signature operation. Or, on a token which doesn’t support simultaneous dual
cryptographic operations in a session (see the description of the
CKF_DUAL_CRYPTO_OPERATIONS flag in the CK_TOKEN_INFO
structure), an active signature operation would prevent Cryptoki from activating an
encryption operation.

• CKR_OPERATION_NOT_INITIALIZED: There is no active operation of an
appropriate type in the specified session. For example, an application cannot call
C_Encrypt in a session without having called C_EncryptInit first to activate an
encryption operation.

• CKR_PIN_EXPIRED: The specified PIN has expired, and the requested operation
cannot be carried out unless C_SetPIN is called to change the PIN value. Whether or
not the normal user’s PIN on a token ever expires varies from token to token.

• CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN
stored on the token. More generally-- when authentication to the token involves
something other than a PIN-- the attempt to authenticate the user has failed.

• CKR_PIN_INVALID: The specified PIN has invalid characters in it. This return
code only applies to functions which attempt to set a PIN.

• CKR_PIN_LEN_RANGE: The specified PIN is too long or too short. This return
code only applies to functions which attempt to set a PIN.

• CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached,
the token is unwilling to permit further attempts at authentication. Depending on the
token, the specified PIN may or may not remain locked indefinitely.

• CKR_PIN_TOO_WEAK: The specified PIN is too weak so that it could
be easy to guess. If the PIN is too short, CKR_PIN_LEN_RANGE should

11. FUNCTIONS 95

April 2009 Copyright © 2009 RSA Security Inc.

be returned instead. This return code only applies to functions which
attempt to set a PIN.

• CKR_PUBLIC_KEY_INVALID: The public key fails a public key
validation. For example, an EC public key fails the public key
validation specified in Section 5.2.2 of ANSI X9.62. This error code
may be returned by C_CreateObject, when the public key is created, or
by C_VerifyInit or C_VerifyRecoverInit, when the public key is used.
It may also be returned by C_DeriveKey, in preference to
CKR_MECHANISM_PARAM_INVALID, if the other party's public key
specified in the mechanism's parameters is invalid.

• CKR_RANDOM_NO_RNG: This value can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random
number generator. This return value has higher priority than
CKR_RANDOM_SEED_NOT_SUPPORTED.

• CKR_RANDOM_SEED_NOT_SUPPORTED: This value can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not
accept seeding from an application. This return value has lower priority than
CKR_RANDOM_NO_RNG.

• CKR_SAVED_STATE_INVALID: This value can only be returned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations
state is invalid, and so it cannot be restored to the specified session.

• CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too
many sessions already open, or because the token has too many read/write sessions
already open.

• CKR_SESSION_EXISTS: This value can only be returned by C_InitToken. It
indicates that a session with the token is already open, and so the token cannot be
initialized.

• CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support parallel sessions. This is a legacy error code—in Cryptoki Version 2.01 and
up, no token supports parallel sessions.
CKR_SESSION_PARALLEL_NOT_SUPPORTED can only be returned by
C_OpenSession, and it is only returned when C_OpenSession is called in a
particular [deprecated] way.

• CKR_SESSION_READ_ONLY: The specified session was unable to accomplish the
desired action because it is a read-only session. This return value has lower priority
than CKR_TOKEN_WRITE_PROTECTED.

• CKR_SESSION_READ_ONLY_EXISTS: A read-only session already exists, and so
the SO cannot be logged in.

96 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

• CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO session already
exists, and so a read-only session cannot be opened.

• CKR_SIGNATURE_LEN_RANGE: The provided signature/MAC can be seen to be
invalid solely on the basis of its length. This return value has higher priority than
CKR_SIGNATURE_INVALID.

• CKR_SIGNATURE_INVALID: The provided signature/MAC is invalid. This return
value has lower priority than CKR_SIGNATURE_LEN_RANGE.

• CKR_SLOT_ID_INVALID: The specified slot ID is not valid.

• CKR_STATE_UNSAVEABLE: The cryptographic operations state of the specified
session cannot be saved for some reason (possibly the token is simply unable to save
the current state). This return value has lower priority than
CKR_OPERATION_NOT_INITIALIZED.

• CKR_TEMPLATE_INCOMPLETE: The template specified for creating an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more
information.

• CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object
has conflicting attributes. See Section 10.1 for more information.

• CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or slot does not
recognize the token in the slot.

• CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return value has higher priority than
CKR_SESSION_READ_ONLY.

• CKR_UNWRAPPING_KEY_HANDLE_INVALID: This value can only be returned
by C_UnwrapKey. It indicates that the key handle specified to be used to unwrap
another key is not valid.

• CKR_UNWRAPPING_KEY_SIZE_RANGE: This value can only be returned by
C_UnwrapKey. It indicates that although the requested unwrapping operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actually do
it because the supplied key’s size is outside the range of key sizes that it can handle.

• CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be
returned by C_UnwrapKey. It indicates that the type of the key specified to unwrap
another key is not consistent with the mechanism specified for unwrapping.

• CKR_USER_ALREADY_LOGGED_IN: This value can only be returned by
C_Login. It indicates that the specified user cannot be logged into the session,

11. FUNCTIONS 97

April 2009 Copyright © 2009 RSA Security Inc.

because it is already logged into the session. For example, if an application has an
open SO session, and it attempts to log the SO into it, it will receive this error code.

• CKR_USER_ANOTHER_ALREADY_LOGGED_IN: This value can only be
returned by C_Login. It indicates that the specified user cannot be logged into the
session, because another user is already logged into the session. For example, if an
application has an open SO session, and it attempts to log the normal user into it, it
will receive this error code.

• CKR_USER_NOT_LOGGED_IN: The desired action cannot be performed because
the appropriate user (or an appropriate user) is not logged in. One example is that a
session cannot be logged out unless it is logged in. Another example is that a private
object cannot be created on a token unless the session attempting to create it is logged
in as the normal user. A final example is that cryptographic operations on certain
tokens cannot be performed unless the normal user is logged in.

• CKR_USER_PIN_NOT_INITIALIZED: This value can only be returned by
C_Login. It indicates that the normal user’s PIN has not yet been initialized with
C_InitPIN.

• CKR_USER_TOO_MANY_TYPES: An attempt was made to have more distinct
users simultaneously logged into the token than the token and/or library permits. For
example, if some application has an open SO session, and another application
attempts to log the normal user into a session, the attempt may return this error. It is
not required to, however. Only if the simultaneous distinct users cannot be supported
does C_Login have to return this value. Note that this error code generalizes to true
multi-user tokens.

• CKR_USER_TYPE_INVALID: An invalid value was specified as a
CK_USER_TYPE. Valid types are CKU_SO, CKU_USER, and
CKU_CONTEXT_SPECIFIC.

• CKR_WRAPPED_KEY_INVALID: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key is not valid. If a call is
made to C_UnwrapKey to unwrap a particular type of key (i.e., some particular key
type is specified in the template provided to C_UnwrapKey), and the wrapped key
provided to C_UnwrapKey is recognizably not a wrapped key of the proper type,
then C_UnwrapKey should return CKR_WRAPPED_KEY_INVALID. This return
value has lower priority than CKR_WRAPPED_KEY_LEN_RANGE.

• CKR_WRAPPED_KEY_LEN_RANGE: This value can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
solely on the basis of its length. This return value has higher priority than
CKR_WRAPPED_KEY_INVALID.

98 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

• CKR_WRAPPING_KEY_HANDLE_INVALID: This value can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another
key is not valid.

• CKR_WRAPPING_KEY_SIZE_RANGE: This value can only be returned by
C_WrapKey. It indicates that although the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actually do it
because the supplied wrapping key’s size is outside the range of key sizes that it can
handle.

• CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned
by C_WrapKey. It indicates that the type of the key specified to wrap another key is
not consistent with the mechanism specified for wrapping.

11.1.7 More on relative priorities of Cryptoki errors

In general, when a Cryptoki call is made, error codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from
Section 11.1.6. One minor implication of this is that functions that use a session handle
(i.e., most functions!) never return the error code CKR_TOKEN_NOT_PRESENT (they
return CKR_SESSION_HANDLE_INVALID instead). Other than these precedences, if
more than one error code applies to the result of a Cryptoki call, any of the applicable
error codes may be returned. Exceptions to this rule will be explicitly mentioned in the
descriptions of functions.

11.1.8 Error code “gotchas”

Here is a short list of a few particular things about return values that Cryptoki developers
might want to be aware of:

1. As mentioned in Sections 11.1.2 and 11.1.3, a Cryptoki library may not be able to
make a distinction between a token being removed before a function invocation and a
token being removed during a function invocation.

2. As mentioned in Section 11.1.2, an application should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE
can be somewhat subtle. Unless an application needs to be able to distinguish
between these return values, it is best to always treat them equivalently.

4. Similarly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED_DATA_LEN_RANGE, and between

11. FUNCTIONS 99

April 2009 Copyright © 2009 RSA Security Inc.

CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED_KEY_LEN_RANGE,
can be subtle, and it may be best to treat these return values equivalently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library
developer to know which of CKR_ATTRIBUTE_VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, or CKR_TEMPLATE_INCONSISTENT to
return. When possible, it is recommended that application developers be generous in
their interpretations of these error codes.

11.2 Conventions for functions returning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some
cryptographic mechanism. The amount of output returned by these functions is returned
in a variable-length application-supplied buffer. An example of a function of this sort is
C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of
ciphertext.

These functions have some common calling conventions, which we describe here. Two
of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer
to a location which will hold the length of the output produced (say pulBufLen). There
are two ways for an application to call such a function:

1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a
number of bytes which would suffice to hold the cryptographic output produced from
the input to the function. This number may somewhat exceed the precise number of
bytes needed, but should not exceed it by a large amount. CKR_OK is returned by
the function.

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the size in bytes of the
buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic
output produced from the input to the function, then that cryptographic output is
placed there, and CKR_OK is returned by the function. If the buffer is not large
enough, then CKR_BUFFER_TOO_SMALL is returned. In either case, *pulBufLen
is set to hold the exact number of bytes needed to hold the cryptographic output
produced from the input to the function.

All functions which use the above convention will explicitly say so.

Cryptographic functions which return output in a variable-length buffer should always
return as much output as can be computed from what has been passed in to them thus far.
As an example, consider a session which is performing a multiple-part decryption
operation with DES in cipher-block chaining mode with PKCS padding. Suppose that,
initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The
blocksize of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether
the ciphertext was produced from encrypting a 0-byte string, or from encrypting some
string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return 0

100 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

bytes of plaintext. If a single additional byte of ciphertext is supplied by a subsequent
call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES
block).

11.3 Disclaimer concerning sample code

For the remainder of this section, we enumerate the various functions defined in
Cryptoki. Most functions will be shown in use in at least one sample code snippet. For
the sake of brevity, sample code will frequently be somewhat incomplete. In particular,
sample code will generally ignore possible error returns from C library functions, and
also will not deal with Cryptoki error returns in a realistic fashion.

11.4 General-purpose functions

Cryptoki provides the following general-purpose functions:

♦ C_Initialize

CK_DEFINE_FUNCTION(CK_RV, C_Initialize)(
 CK_VOID_PTR pInitArgs
);
C_Initialize initializes the Cryptoki library. pInitArgs either has the value NULL_PTR
or points to a CK_C_INITIALIZE_ARGS structure containing information on how the
library should deal with multi-threaded access. If an application will not be accessing
Cryptoki through multiple threads simultaneously, it can generally supply the value
NULL_PTR to C_Initialize (the consequences of supplying this value will be explained
below).

If pInitArgs is non-NULL_PTR, C_Initialize should cast it to a
CK_C_INITIALIZE_ARGS_PTR and then dereference the resulting pointer to obtain
the CK_C_INITIALIZE_ARGS fields CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this version of Cryptoki, the value of pReserved
thereby obtained must be NULL_PTR; if it’s not, then C_Initialize should return with
the value CKR_ARGUMENTS_BAD.

If the CKF_LIBRARY_CANT_CREATE_OS_THREADS flag in the flags field is set,
that indicates that application threads which are executing calls to the Cryptoki library
are not permitted to use the native operation system calls to spawn off new threads. In
other words, the library’s code may not create its own threads. If the library is unable to
function properly under this restriction, C_Initialize should return with the value
CKR_NEED_TO_CREATE_THREADS.

A call to C_Initialize specifies one of four different ways to support multi-threaded
access via the value of the CKF_OS_LOCKING_OK flag in the flags field and the

11. FUNCTIONS 101

April 2009 Copyright © 2009 RSA Security Inc.

values of the CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer
fields:

1. If the flag isn’t set, and the function pointer fields aren’t supplied (i.e., they all have
the value NULL_PTR), that means that the application won’t be accessing the
Cryptoki library from multiple threads simultaneously.

2. If the flag is set, and the function pointer fields aren’t supplied (i.e., they all have the
value NULL_PTR), that means that the application will be performing multi-threaded
Cryptoki access, and the library needs to use the native operating system primitives to
ensure safe multi-threaded access. If the library is unable to do this, C_Initialize
should return with the value CKR_CANT_LOCK.

3. If the flag isn’t set, and the function pointer fields are supplied (i.e., they all have
non-NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use the supplied function pointers
for mutex-handling to ensure safe multi-threaded access. If the library is unable to do
this, C_Initialize should return with the value CKR_CANT_LOCK.

4. If the flag is set, and the function pointer fields are supplied (i.e., they all have non-
NULL_PTR values), that means that the application will be performing multi-
threaded Cryptoki access, and the library needs to use either the native operating
system primitives or the supplied function pointers for mutex-handling to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return
with the value CKR_CANT_LOCK.

If some, but not all, of the supplied function pointers to C_Initialize are non-
NULL_PTR, then C_Initialize should return with the value CKR_ARGUMENTS_BAD.

A call to C_Initialize with pInitArgs set to NULL_PTR is treated like a call to
C_Initialize with pInitArgs pointing to a CK_C_INITIALIZE_ARGS which has the
CreateMutex, DestroyMutex, LockMutex, UnlockMutex, and pReserved fields set to
NULL_PTR, and has the flags field set to 0.

C_Initialize should be the first Cryptoki call made by an application, except for calls to
C_GetFunctionList. What this function actually does is implementation-dependent;
typically, it might cause Cryptoki to initialize its internal memory buffers, or any other
resources it requires.

If several applications are using Cryptoki, each one should call C_Initialize. Every call
to C_Initialize should (eventually) be succeeded by a single call to C_Finalize. See
Section 6.6 for more details.

Return values: CKR_ARGUMENTS_BAD, CKR_CANT_LOCK,
CKR_CRYPTOKI_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_NEED_TO_CREATE_THREADS, CKR_OK.

102 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Example: see C_GetInfo.

♦ C_Finalize

CK_DEFINE_FUNCTION(CK_RV, C_Finalize)(
 CK_VOID_PTR pReserved
);
C_Finalize is called to indicate that an application is finished with the Cryptoki library.
It should be the last Cryptoki call made by an application. The pReserved parameter is
reserved for future versions; for this version, it should be set to NULL_PTR (if
C_Finalize is called with a non-NULL_PTR value for pReserved, it should return the
value CKR_ARGUMENTS_BAD.

If several applications are using Cryptoki, each one should call C_Finalize. Each
application’s call to C_Finalize should be preceded by a single call to C_Initialize; in
between the two calls, an application can make calls to other Cryptoki functions. See
Section 6.6 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for safe
multi-threaded access to a Cryptoki library, the behavior of C_Finalize is nevertheless
undefined if it is called by an application while other threads of the application are
making Cryptoki calls. The exception to this exceptional behavior of C_Finalize occurs
when a thread calls C_Finalize while another of the application’s threads is blocking on
Cryptoki’s C_WaitForSlotEvent function. When this happens, the blocked thread
becomes unblocked and returns the value CKR_CRYPTOKI_NOT_INITIALIZED. See
C_WaitForSlotEvent for more information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK.

Example: see C_GetInfo.

♦ C_GetInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetInfo)(
 CK_INFO_PTR pInfo
);
C_GetInfo returns general information about Cryptoki. pInfo points to the location that
receives the information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK.

11. FUNCTIONS 103

April 2009 Copyright © 2009 RSA Security Inc.

Example:

CK_INFO info;
CK_RV rv;
CK_C_INITIALIZE_ARGS InitArgs;

InitArgs.CreateMutex = &MyCreateMutex;
InitArgs.DestroyMutex = &MyDestroyMutex;
InitArgs.LockMutex = &MyLockMutex;
InitArgs.UnlockMutex = &MyUnlockMutex;
InitArgs.flags = CKF_OS_LOCKING_OK;
InitArgs.pReserved = NULL_PTR;

rv = C_Initialize((CK_VOID_PTR)&InitArgs);
assert(rv == CKR_OK);

rv = C_GetInfo(&info);
assert(rv == CKR_OK);
if(info.version.major == 2) {
 /* Do lots of interesting cryptographic things with the

token */
 .
 .
}

rv = C_Finalize(NULL_PTR);
assert(rv == CKR_OK);

♦ C_GetFunctionList

CK_DEFINE_FUNCTION(CK_RV, C_GetFunctionList)(
 CK_FUNCTION_LIST_PTR_PTR ppFunctionList
);
C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a value which will receive a pointer to the library’s
CK_FUNCTION_LIST structure, which in turn contains function pointers for all the
Cryptoki API routines in the library. The pointer thus obtained may point into memory
which is owned by the Cryptoki library, and which may or may not be writable. Whether
or not this is the case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an application may call before
calling C_Initialize. It is provided to make it easier and faster for applications to use
shared Cryptoki libraries and to use more than one Cryptoki library simultaneously.

Return values: CKR_ARGUMENTS_BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

104 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_FUNCTION_LIST_PTR pFunctionList;
CK_C_Initialize pC_Initialize;
CK_RV rv;

/* It’s OK to call C_GetFunctionList before calling

C_Initialize */
rv = C_GetFunctionList(&pFunctionList);
assert(rv == CKR_OK);
pC_Initialize = pFunctionList -> C_Initialize;

/* Call the C_Initialize function in the library */
rv = (*pC_Initialize)(NULL_PTR);

11.5 Slot and token management functions

Cryptoki provides the following functions for slot and token management:

♦ C_GetSlotList

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotList)(
 CK_BBOOL tokenPresent,
 CK_SLOT_ID_PTR pSlotList,
 CK_ULONG_PTR pulCount
);
C_GetSlotList is used to obtain a list of slots in the system. tokenPresent indicates
whether the list obtained includes only those slots with a token present (CK_TRUE), or
all slots (CK_FALSE); pulCount points to the location that receives the number of slots.

There are two ways for an application to call C_GetSlotList:

1. If pSlotList is NULL_PTR, then all that C_GetSlotList does is return (in *pulCount)
the number of slots, without actually returning a list of slots. The contents of the
buffer pointed to by pulCount on entry to C_GetSlotList has no meaning in this case,
and the call returns the value CKR_OK.

2. If pSlotList is not NULL_PTR, then *pulCount must contain the size (in terms of
CK_SLOT_ID elements) of the buffer pointed to by pSlotList. If that buffer is large
enough to hold the list of slots, then the list is returned in it, and CKR_OK is
returned. If not, then the call to C_GetSlotList returns the value
CKR_BUFFER_TOO_SMALL. In either case, the value *pulCount is set to hold the
number of slots.

Because C_GetSlotList does not allocate any space of its own, an application will often
call C_GetSlotList twice (or sometimes even more times—if an application is trying to
get a list of all slots with a token present, then the number of such slots can
(unfortunately) change between when the application asks for how many such slots there

11. FUNCTIONS 105

April 2009 Copyright © 2009 RSA Security Inc.

are and when the application asks for the slots themselves). However, multiple calls to
C_GetSlotList are by no means required.

All slots which C_GetSlotList reports must be able to be queried as valid slots by
C_GetSlotInfo. Furthermore, the set of slots accessible through a Cryptoki library is
checked at the time that C_GetSlotList, for list length prediction (NULL pSlotList
argument) is called. If an application calls C_GetSlotList with a non-NULL pSlotList,
and then the user adds or removes a hardware device, the changed slot list will only be
visible and effective if C_GetSlotList is called again with NULL. Even if C_
GetSlotList is successfully called this way, it may or may not be the case that the
changed slot list will be successfully recognized depending on the library
implementation. On some platforms, or earlier PKCS11 compliant libraries, it may be
necessary to successfully call C_Initialize or to restart the entire system.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_ULONG ulSlotCount, ulSlotWithTokenCount;
CK_SLOT_ID_PTR pSlotList, pSlotWithTokenList;
CK_RV rv;

/* Get list of all slots */
rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);
if (rv == CKR_OK) {
 pSlotList =
 (CK_SLOT_ID_PTR)

malloc(ulSlotCount*sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
 if (rv == CKR_OK) {
 /* Now use that list of all slots */
 .
 .
 }

 free(pSlotList);
}

/* Get list of all slots with a token present */
pSlotWithTokenList = (CK_SLOT_ID_PTR) malloc(0);
ulSlotWithTokenCount = 0;
while (1) {
 rv = C_GetSlotList(
 CK_TRUE, pSlotWithTokenList, ulSlotWithTokenCount);
 if (rv != CKR_BUFFER_TOO_SMALL)
 break;

106 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 pSlotWithTokenList = realloc(
 pSlotWithTokenList,
 ulSlotWithTokenList*sizeof(CK_SLOT_ID));
}

if (rv == CKR_OK) {
 /* Now use that list of all slots with a token present

*/
 .
 .
}

free(pSlotWithTokenList);

♦ C_GetSlotInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetSlotInfo)(
 CK_SLOT_ID slotID,
 CK_SLOT_INFO_PTR pInfo
);
C_GetSlotInfo obtains information about a particular slot in the system. slotID is the ID
of the slot; pInfo points to the location that receives the slot information.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_OK, CKR_SLOT_ID_INVALID.

Example: see C_GetTokenInfo.

♦ C_GetTokenInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetTokenInfo)(
 CK_SLOT_ID slotID,
 CK_TOKEN_INFO_PTR pInfo
);
C_GetTokenInfo obtains information about a particular token in the system. slotID is
the ID of the token’s slot; pInfo points to the location that receives the token information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_ULONG ulCount;

11. FUNCTIONS 107

April 2009 Copyright © 2009 RSA Security Inc.

CK_SLOT_ID_PTR pSlotList;
CK_SLOT_INFO slotInfo;
CK_TOKEN_INFO tokenInfo;
CK_RV rv;

rv = C_GetSlotList(CK_FALSE, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
 pSlotList = (CK_SLOT_ID_PTR)

malloc(ulCount*sizeof(CK_SLOT_ID));
 rv = C_GetSlotList(CK_FALSE, pSlotList, &ulCount);
 assert(rv == CKR_OK);

 /* Get slot information for first slot */
 rv = C_GetSlotInfo(pSlotList[0], &slotInfo);
 assert(rv == CKR_OK);

 /* Get token information for first slot */
 rv = C_GetTokenInfo(pSlotList[0], &tokenInfo);
 if (rv == CKR_TOKEN_NOT_PRESENT) {
 .
 .
 }
 .
 .
 free(pSlotList);
}

♦ C_WaitForSlotEvent

CK_DEFINE_FUNCTION(CK_RV, C_WaitForSlotEvent)(
 CK_FLAGS flags,
 CK_SLOT_ID_PTR pSlot,
 CK_VOID_PTR pReserved
);
C_WaitForSlotEvent waits for a slot event, such as token insertion or token removal, to
occur. flags determines whether or not the C_WaitForSlotEvent call blocks (i.e., waits
for a slot event to occur); pSlot points to a location which will receive the ID of the slot
that the event occurred in. pReserved is reserved for future versions; for this version of
Cryptoki, it should be NULL_PTR.

At present, the only flag defined for use in the flags argument is CKF_DONT_BLOCK:

Internally, each Cryptoki application has a flag for each slot which is used to track
whether or not any unrecognized events involving that slot have occurred. When an
application initially calls C_Initialize, every slot’s event flag is cleared. Whenever a slot
event occurs, the flag corresponding to the slot in which the event occurred is set.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and some slot’s event flag is set, then that event flag is cleared, and the call

108 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

returns with the ID of that slot in the location pointed to by pSlot. If more than one slot’s
event flag is set at the time of the call, one such slot is chosen by the library to have its
event flag cleared and to have its slot ID returned.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag set in the flags
argument, and no slot’s event flag is set, then the call returns with the value
CKR_NO_EVENT. In this case, the contents of the location pointed to by pSlot when
C_WaitForSlotEvent are undefined.

If C_WaitForSlotEvent is called with the CKF_DONT_BLOCK flag clear in the flags
argument, then the call behaves as above, except that it will block. That is, if no slot’s
event flag is set at the time of the call, C_WaitForSlotEvent will wait until some slot’s
event flag becomes set. If a thread of an application has a C_WaitForSlotEvent call
blocking when another thread of that application calls C_Finalize, the
C_WaitForSlotEvent call returns with the value
CKR_CRYPTOKI_NOT_INITIALIZED.

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous calls to C_WaitForSlotEvent.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_NO_EVENT, CKR_OK.

Example:

CK_FLAGS flags = 0;
CK_SLOT_ID slotID;
CK_SLOT_INFO slotInfo;

.
.
/* Block and wait for a slot event */
rv = C_WaitForSlotEvent(flags, &slotID, NULL_PTR);
assert(rv == CKR_OK);

/* See what’s up with that slot */
rv = C_GetSlotInfo(slotID, &slotInfo);
assert(rv == CKR_OK);
.
.

11. FUNCTIONS 109

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_GetMechanismList

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismList)(
 CK_SLOT_ID slotID,
 CK_MECHANISM_TYPE_PTR pMechanismList,
 CK_ULONG_PTR pulCount
);
C_GetMechanismList is used to obtain a list of mechanism types supported by a token.
SlotID is the ID of the token’s slot; pulCount points to the location that receives the
number of mechanisms.

There are two ways for an application to call C_GetMechanismList:

1. If pMechanismList is NULL_PTR, then all that C_GetMechanismList does is return
(in *pulCount) the number of mechanisms, without actually returning a list of
mechanisms. The contents of *pulCount on entry to C_GetMechanismList has no
meaning in this case, and the call returns the value CKR_OK.

2. If pMechanismList is not NULL_PTR, then *pulCount must contain the size (in terms
of CK_MECHANISM_TYPE elements) of the buffer pointed to by
pMechanismList. If that buffer is large enough to hold the list of mechanisms, then
the list is returned in it, and CKR_OK is returned. If not, then the call to
C_GetMechanismList returns the value CKR_BUFFER_TOO_SMALL. In either
case, the value *pulCount is set to hold the number of mechanisms.

Because C_GetMechanismList does not allocate any space of its own, an application
will often call C_GetMechanismList twice. However, this behavior is by no means
required.

Return values: CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;
CK_ULONG ulCount;
CK_MECHANISM_TYPE_PTR pMechanismList;
CK_RV rv;

.
.
rv = C_GetMechanismList(slotID, NULL_PTR, &ulCount);
if ((rv == CKR_OK) && (ulCount > 0)) {
 pMechanismList =

110 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 (CK_MECHANISM_TYPE_PTR)
 malloc(ulCount*sizeof(CK_MECHANISM_TYPE));
 rv = C_GetMechanismList(slotID, pMechanismList,

&ulCount);
 if (rv == CKR_OK) {
 .
 .
 }
 free(pMechanismList);
}

♦ C_GetMechanismInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetMechanismInfo)(
 CK_SLOT_ID slotID,
 CK_MECHANISM_TYPE type,
 CK_MECHANISM_INFO_PTR pInfo
);
C_GetMechanismInfo obtains information about a particular mechanism possibly
supported by a token. slotID is the ID of the token’s slot; type is the type of mechanism;
pInfo points to the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;
CK_MECHANISM_INFO info;
CK_RV rv;

.
.
/* Get information about the CKM_MD2 mechanism for this

token */
rv = C_GetMechanismInfo(slotID, CKM_MD2, &info);
if (rv == CKR_OK) {
 if (info.flags & CKF_DIGEST) {
 .
 .
 }
}

11. FUNCTIONS 111

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_InitToken

CK_DEFINE_FUNCTION(CK_RV, C_InitToken)(
 CK_SLOT_ID slotID,
 CK_UTF8CHAR_PTR pPin,
 CK_ULONG ulPinLen,
 CK_UTF8CHAR_PTR pLabel
);
C_InitToken initializes a token. slotID is the ID of the token’s slot; pPin points to the
SO’s initial PIN (which need not be null-terminated); ulPinLen is the length in bytes of
the PIN; pLabel points to the 32-byte label of the token (which must be padded with
blank characters, and which must not be null-terminated). This standard allows PIN
values to contain any valid UTF8 character, but the token may impose subset restrictions.

If the token has not been initialized (i.e. new from the factory), then the pPin parameter
becomes the initial value of the SO PIN. If the token is being reinitialized, the pPin
parameter is checked against the existing SO PIN to authorize the initialization operation.
In both cases, the SO PIN is the value pPin after the function completes successfully. If
the SO PIN is lost, then the card must be reinitialized using a mechanism outside the
scope of this standard. The CKF_TOKEN_INITIALIZED flag in the
CK_TOKEN_INFO structure indicates the action that will result from calling
C_InitToken. If set, the token will be reinitialized, and the client must supply the
existing SO password in pPin.

When a token is initialized, all objects that can be destroyed are destroyed (i.e., all except
for “indestructible” objects such as keys built into the token). Also, access by the normal
user is disabled until the SO sets the normal user’s PIN. Depending on the token, some
“default” objects may be created, and attributes of some objects may be set to default
values.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize a token with such a protected authentication path, the pPin
parameter to C_InitToken should be NULL_PTR. During the execution of
C_InitToken, the SO’s PIN will be entered through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitToken can be used to initialize the token.

A token cannot be initialized if Cryptoki detects that any application has an open session
with it; when a call to C_InitToken is made under such circumstances, the call fails with
error CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is
called that some other application does have an open session with the token, but Cryptoki

112 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

cannot detect this, because it cannot detect anything about other applications using the
token. If this is the case, then the consequences of the C_InitToken call are undefined.

The C_InitToken function may not be sufficient to properly initialize complex tokens. In
these situations, an initialization mechanism outside the scope of Cryptoki must be
employed. The definition of “complex token” is product specific.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_TOKEN_WRITE_PROTECTED,
CKR_ARGUMENTS_BAD.

Example:

CK_SLOT_ID slotID;
CK_UTF8CHAR_PTR pin = “MyPIN”;
CK_UTF8CHAR label[32];
CK_RV rv;

.
.
memset(label, ‘ ’, sizeof(label));
memcpy(label, “My first token”, strlen(“My first

token”));
rv = C_InitToken(slotID, pin, strlen(pin), label);
if (rv == CKR_OK) {
 .
 .
}

♦ C_InitPIN

CK_DEFINE_FUNCTION(CK_RV, C_InitPIN)(
 CK_SESSION_HANDLE hSession,
 CK_UTF8CHAR_PTR pPin,
 CK_ULONG ulPinLen
);
C_InitPIN initializes the normal user’s PIN. hSession is the session’s handle; pPin
points to the normal user’s PIN; ulPinLen is the length in bytes of the PIN. This standard
allows PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

C_InitPIN can only be called in the “R/W SO Functions” state. An attempt to call it
from a session in any other state fails with error CKR_USER_NOT_LOGGED_IN.

11. FUNCTIONS 113

April 2009 Copyright © 2009 RSA Security Inc.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To initialize the normal user’s PIN on a token with such a protected
authentication path, the pPin parameter to C_InitPIN should be NULL_PTR. During the
execution of C_InitPIN, the SO will enter the new PIN through the protected
authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_InitPIN can be used to initialize the normal user’s token
access.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE_INVALID, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;
CK_UTF8CHAR newPin[]= {“NewPIN”};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newPin)-1);
if (rv == CKR_OK) {
 .
 .
}

♦ C_SetPIN

CK_DEFINE_FUNCTION(CK_RV, C_SetPIN)(
 CK_SESSION_HANDLE hSession,
 CK_UTF8CHAR_PTR pOldPin,
 CK_ULONG ulOldLen,
 CK_UTF8CHAR_PTR pNewPin,
 CK_ULONG ulNewLen
);
C_SetPIN modifies the PIN of the user that is currently logged in, or the CKU_USER
PIN if the session is not logged in. hSession is the session’s handle; pOldPin points to
the old PIN; ulOldLen is the length in bytes of the old PIN; pNewPin points to the new
PIN; ulNewLen is the length in bytes of the new PIN. This standard allows PIN values to
contain any valid UTF8 character, but the token may impose subset restrictions.

114 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C_SetPIN can only be called in the “R/W Public Session” state, “R/W SO Functions”
state, or “R/W User Functions” state. An attempt to call it from a session in any other
state fails with error CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
set, then that means that there is some way for a user to be authenticated to the token
without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. To modify the current user’s PIN on a token with such a protected authentication
path, the pOldPin and pNewPin parameters to C_SetPIN should be NULL_PTR. During
the execution of C_SetPIN, the current user will enter the old PIN and the new PIN
through the protected authentication path. It is not specified how the PINpad should be
used to enter two PINs; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-
dependent whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;
CK_UTF8CHAR oldPin[] = {“OldPIN”};
CK_UTF8CHAR newPin[] = {“NewPIN”};
CK_RV rv;

rv = C_SetPIN(
 hSession, oldPin, sizeof(oldPin)-1, newPin,

sizeof(newPin)-1);
if (rv == CKR_OK) {
 .
 .
}

11. FUNCTIONS 115

April 2009 Copyright © 2009 RSA Security Inc.

11.6 Session management functions

A typical application might perform the following series of steps to make use of a token
(note that there are other reasonable sequences of events that an application might
perform):

1. Select a token.

2. Make one or more calls to C_OpenSession to obtain one or more sessions with the
token.

3. Call C_Login to log the user into the token. Since all sessions an application has
with a token have a shared login state, C_Login only needs to be called for one of the
sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Call C_CloseSession once for each session that the application has with the token, or
call C_CloseAllSessions to close all the application’s sessions simultaneously.

As has been observed, an application may have concurrent sessions with more than one
token. It is also possible for a token to have concurrent sessions with more than one
application.

Cryptoki provides the following functions for session management:

♦ C_OpenSession

CK_DEFINE_FUNCTION(CK_RV, C_OpenSession)(
 CK_SLOT_ID slotID,
 CK_FLAGS flags,
 CK_VOID_PTR pApplication,
 CK_NOTIFY Notify,
 CK_SESSION_HANDLE_PTR phSession
);
C_OpenSession opens a session between an application and a token in a particular slot.
slotID is the slot’s ID; flags indicates the type of session; pApplication is an application-
defined pointer to be passed to the notification callback; Notify is the address of the
notification callback function (see Section 11.17); phSession points to the location that
receives the handle for the new session.

When opening a session with C_OpenSession, the flags parameter consists of the logical
OR of zero or more bit flags defined in the CK_SESSION_INFO data type. For legacy
reasons, the CKF_SERIAL_SESSION bit must always be set; if a call to
C_OpenSession does not have this bit set, the call should return unsuccessfully with the
error code CKR_SESSION_PARALLEL_NOT_SUPPORTED.

116 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

There may be a limit on the number of concurrent sessions an application may have with
the token, which may depend on whether the session is “read-only” or “read/write”. An
attempt to open a session which does not succeed because there are too many existing
sessions of some type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO structure), then
only read-only sessions may be opened with it.

If the application calling C_OpenSession already has a R/W SO session open with the
token, then any attempt to open a R/O session with the token fails with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 6.7.7).

The Notify callback function is used by Cryptoki to notify the application of certain
events. If the application does not wish to support callbacks, it should pass a value of
NULL_PTR as the Notify parameter. See Section 11.17 for more information about
application callbacks.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ_WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR_TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR_ARGUMENTS_BAD.

Example: see C_CloseSession.

♦ C_CloseSession

CK_DEFINE_FUNCTION(CK_RV, C_CloseSession)(
 CK_SESSION_HANDLE hSession
);
C_CloseSession closes a session between an application and a token. hSession is the
session’s handle.

When a session is closed, all session objects created by the session are destroyed
automatically, even if the application has other sessions “using” the objects (see Sections
6.7.5-6.7.7 for more details).

If this function is successful and it closes the last session between the application and the
token, the login state of the token for the application returns to public sessions. Any new
sessions to the token opened by the application will be either R/O Public or R/W Public
sessions.

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

11. FUNCTIONS 117

April 2009 Copyright © 2009 RSA Security Inc.

Despite the fact this C_CloseSession is supposed to close a session, the return value
CKR_SESSION_CLOSED is an error return. It actually indicates the (probably
somewhat unlikely) event that while this function call was executing, another call was
made to C_CloseSession to close this particular session, and that call finished executing
first. Such uses of sessions are a bad idea, and Cryptoki makes little promise of what will
occur in general if an application indulges in this sort of behavior.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SLOT_ID slotID;
CK_BYTE application;
CK_NOTIFY MyNotify;
CK_SESSION_HANDLE hSession;
CK_RV rv;

.
.
application = 17;
MyNotify = &EncryptionSessionCallback;
rv = C_OpenSession(
 slotID, CKF_SERIAL_SESSION | CKF_RW_SESSION,
 (CK_VOID_PTR) &application, MyNotify,
 &hSession);
if (rv == CKR_OK) {
 .
 .
 C_CloseSession(hSession);
}

♦ C_CloseAllSessions

CK_DEFINE_FUNCTION(CK_RV, C_CloseAllSessions)(
 CK_SLOT_ID slotID
);
C_CloseAllSessions closes all sessions an application has with a token. slotID specifies
the token’s slot.

When a session is closed, all session objects created by the session are destroyed
automatically.

After successful execution of this function, the login state of the token for the application
returns to public sessions. Any new sessions to the token opened by the application will
be either R/O Public or R/W Public sessions.

118 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

Depending on the token, when the last open session any application has with the token is
closed, the token may be “ejected” from its reader (if this capability exists).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SLOT_ID_INVALID, CKR_TOKEN_NOT_PRESENT.

Example:

CK_SLOT_ID slotID;
CK_RV rv;

.
.
rv = C_CloseAllSessions(slotID);

♦ C_GetSessionInfo

CK_DEFINE_FUNCTION(CK_RV, C_GetSessionInfo)(
 CK_SESSION_HANDLE hSession,
 CK_SESSION_INFO_PTR pInfo
);
C_GetSessionInfo obtains information about a session. hSession is the session’s handle;
pInfo points to the location that receives the session information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;
CK_SESSION_INFO info;
CK_RV rv;

.
.
rv = C_GetSessionInfo(hSession, &info);
if (rv == CKR_OK) {
 if (info.state == CKS_RW_USER_FUNCTIONS) {
 .
 .
 }
 .
 .
}

11. FUNCTIONS 119

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_GetOperationState

CK_DEFINE_FUNCTION(CK_RV, C_GetOperationState)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pOperationState,
 CK_ULONG_PTR pulOperationStateLen
);
C_GetOperationState obtains a copy of the cryptographic operations state of a session,
encoded as a string of bytes. hSession is the session’s handle; pOperationState points to
the location that receives the state; pulOperationStateLen points to the location that
receives the length in bytes of the state.

Although the saved state output by C_GetOperationState is not really produced by a
“cryptographic mechanism”, C_GetOperationState nonetheless uses the convention
described in Section 11.2 on producing output.

Precisely what the “cryptographic operations state” this function saves is varies from
token to token; however, this state is what is provided as input to C_SetOperationState
to restore the cryptographic activities of a session.

Consider a session which is performing a message digest operation using SHA-1 (i.e., the
session is using the CKM_SHA_1 mechanism). Suppose that the message digest
operation was initialized properly, and that precisely 80 bytes of data have been supplied
so far as input to SHA-1. The application now wants to “save the state” of this digest
operation, so that it can continue it later. In this particular case, since SHA-1 processes
512 bits (64 bytes) of input at a time, the cryptographic operations state of the session
most likely consists of three distinct parts: the state of SHA-1’s 160-bit internal chaining
variable; the 16 bytes of unprocessed input data; and some administrative data indicating
that this saved state comes from a session which was performing SHA-1 hashing. Taken
together, these three pieces of information suffice to continue the current hashing
operation at a later time.

Consider next a session which is performing an encryption operation with DES (a block
cipher with a block size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the session
is using the CKM_DES_CBC mechanism). Suppose that precisely 22 bytes of data (in
addition to an IV for the CBC mode) have been supplied so far as input to DES, which
means that the first two 8-byte blocks of ciphertext have already been produced and
output. In this case, the cryptographic operations state of the session most likely consists
of three or four distinct parts: the second 8-byte block of ciphertext (this will be used for
cipher-block chaining to produce the next block of ciphertext); the 6 bytes of data still
awaiting encryption; some administrative data indicating that this saved state comes from
a session which was performing DES encryption in CBC mode; and possibly the DES
key being used for encryption (see C_SetOperationState for more information on
whether or not the key is present in the saved state).

120 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

If a session is performing two cryptographic operations simultaneously (see Section
11.13), then the cryptographic operations state of the session will contain all the
necessary information to restore both operations.

An attempt to save the cryptographic operations state of a session which does not
currently have some active savable cryptographic operation(s) (encryption, decryption,
digesting, signing without message recovery, verification without message recovery, or
some legal combination of two of these) should fail with the error
CKR_OPERATION_NOT_INITIALIZED.

An attempt to save the cryptographic operations state of a session which is performing an
appropriate cryptographic operation (or two), but which cannot be satisfied for any of
various reasons (certain necessary state information and/or key information can’t leave
the token, for example) should fail with the error CKR_STATE_UNSAVEABLE.

Return values: CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_STATE_UNSAVEABLE,
CKR_ARGUMENTS_BAD.

Example: see C_SetOperationState.

♦ C_SetOperationState

CK_DEFINE_FUNCTION(CK_RV, C_SetOperationState)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pOperationState,
 CK_ULONG ulOperationStateLen,
 CK_OBJECT_HANDLE hEncryptionKey,
 CK_OBJECT_HANDLE hAuthenticationKey
);

C_SetOperationState restores the cryptographic operations state of a session from a
string of bytes obtained with C_GetOperationState. hSession is the session’s handle;
pOperationState points to the location holding the saved state; ulOperationStateLen
holds the length of the saved state; hEncryptionKey holds a handle to the key which will
be used for an ongoing encryption or decryption operation in the restored session (or 0 if
no encryption or decryption key is needed, either because no such operation is ongoing in
the stored session or because all the necessary key information is present in the saved
state); hAuthenticationKey holds a handle to the key which will be used for an ongoing
signature, MACing, or verification operation in the restored session (or 0 if no such key
is needed, either because no such operation is ongoing in the stored session or because all
the necessary key information is present in the saved state).

11. FUNCTIONS 121

April 2009 Copyright © 2009 RSA Security Inc.

The state need not have been obtained from the same session (the “source session”) as it
is being restored to (the “destination session”). However, the source session and
destination session should have a common session state (e.g.,
CKS_RW_USER_FUNCTIONS), and should be with a common token. There is also no
guarantee that cryptographic operations state may be carried across logins, or across
different Cryptoki implementations.

If C_SetOperationState is supplied with alleged saved cryptographic operations state
which it can determine is not valid saved state (or is cryptographic operations state from
a session with a different session state, or is cryptographic operations state from a
different token), it fails with the error CKR_SAVED_STATE_INVALID.

Saved state obtained from calls to C_GetOperationState may or may not contain
information about keys in use for ongoing cryptographic operations. If a saved
cryptographic operations state has an ongoing encryption or decryption operation, and the
key in use for the operation is not saved in the state, then it must be supplied to
C_SetOperationState in the hEncryptionKey argument. If it is not, then
C_SetOperationState will fail and return the error CKR_KEY_NEEDED. If the key in
use for the operation is saved in the state, then it can be supplied in the hEncryptionKey
argument, but this is not required.

Similarly, if a saved cryptographic operations state has an ongoing signature, MACing,
or verification operation, and the key in use for the operation is not saved in the state,
then it must be supplied to C_SetOperationState in the hAuthenticationKey argument.
If it is not, then C_SetOperationState will fail with the error CKR_KEY_NEEDED. If
the key in use for the operation is saved in the state, then it can be supplied in the
hAuthenticationKey argument, but this is not required.

If an irrelevant key is supplied to C_SetOperationState call (e.g., a nonzero key handle
is submitted in the hEncryptionKey argument, but the saved cryptographic operations
state supplied does not have an ongoing encryption or decryption operation, then
C_SetOperationState fails with the error CKR_KEY_NOT_NEEDED.

If a key is supplied as an argument to C_SetOperationState, and C_SetOperationState
can somehow detect that this key was not the key being used in the source session for the
supplied cryptographic operations state (it may be able to detect this if the key or a hash
of the key is present in the saved state, for example), then C_SetOperationState fails
with the error CKR_KEY_CHANGED.

An application can look at the CKF_RESTORE_KEY_NOT_NEEDED flag in the
flags field of the CK_TOKEN_INFO field for a token to determine whether or not it
needs to supply key handles to C_SetOperationState calls. If this flag is true, then a call
to C_SetOperationState never needs a key handle to be supplied to it. If this flag is
false, then at least some of the time, C_SetOperationState requires a key handle, and so
the application should probably always pass in any relevant key handles when restoring
cryptographic operations state to a session.

122 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C_SetOperationState can successfully restore cryptographic operations state to a
session even if that session has active cryptographic or object search operations when
C_SetOperationState is called (the ongoing operations are abruptly cancelled).

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_CHANGED,
CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK,
CKR_SAVED_STATE_INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_ARGUMENTS_BAD.

Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM digestMechanism;
CK_ULONG ulStateLen;
CK_BYTE data1[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE data2[] = {0x02, 0x04, 0x08};
CK_BYTE data3[] = {0x10, 0x0F, 0x0E, 0x0D, 0x0C};
CK_BYTE pDigest[20];
CK_ULONG ulDigestLen;
CK_RV rv;

.
.
/* Initialize hash operation */
rv = C_DigestInit(hSession, &digestMechanism);
assert(rv == CKR_OK);

/* Start hashing */
rv = C_DigestUpdate(hSession, data1, sizeof(data1));
assert(rv == CKR_OK);

/* Find out how big the state might be */
rv = C_GetOperationState(hSession, NULL_PTR,

&ulStateLen);
assert(rv == CKR_OK);

/* Allocate some memory and then get the state */
pState = (CK_BYTE_PTR) malloc(ulStateLen);
rv = C_GetOperationState(hSession, pState, &ulStateLen);

/* Continue hashing */
rv = C_DigestUpdate(hSession, data2, sizeof(data2));
assert(rv == CKR_OK);

/* Restore state. No key handles needed */
rv = C_SetOperationState(hSession, pState, ulStateLen, 0,

0);

11. FUNCTIONS 123

April 2009 Copyright © 2009 RSA Security Inc.

assert(rv == CKR_OK);

/* Continue hashing from where we saved state */
rv = C_DigestUpdate(hSession, data3, sizeof(data3));
assert(rv == CKR_OK);

/* Conclude hashing operation */
ulDigestLen = sizeof(pDigest);
rv = C_DigestFinal(hSession, pDigest, &ulDigestLen);
if (rv == CKR_OK) {
 /* pDigest[] now contains the hash of

0x01030507100F0E0D0C */
 .
 .
}

♦ C_Login

CK_DEFINE_FUNCTION(CK_RV, C_Login)(
 CK_SESSION_HANDLE hSession,
 CK_USER_TYPE userType,
 CK_UTF8CHAR_PTR pPin,
 CK_ULONG ulPinLen
);
C_Login logs a user into a token. hSession is a session handle; userType is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN. This standard allows
PIN values to contain any valid UTF8 character, but the token may impose subset
restrictions.

When the user type is either CKU_SO or CKU_USER, if the call succeeds, each of the
application's sessions will enter either the "R/W SO Functions" state, the "R/W User
Functions" state, or the "R/O User Functions" state. If the user type is
CKU_CONTEXT_SPECIFIC , the behavior of C_Login depends on the context in which
it is called. Improper use of this user type will result in a return value
CKR_OPERATION_NOT_INITIALIZED..

If the token has a “protected authentication path”, as indicated by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO
being set, then that means that there is some way for a user to be authenticated to the
token without having the application send a PIN through the Cryptoki library. One such
possibility is that the user enters a PIN on a PINpad on the token itself, or on the slot
device. Or the user might not even use a PIN—authentication could be achieved by some
fingerprint-reading device, for example. To log into a token with a protected
authentication path, the pPin parameter to C_Login should be NULL_PTR. When
C_Login returns, whatever authentication method supported by the token will have been
performed; a return value of CKR_OK means that the user was successfully
authenticated, and a return value of CKR_PIN_INCORRECT means that the user was
denied access.

124 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

If there are any active cryptographic or object finding operations in an application’s
session, and then C_Login is successfully executed by that application, it may or may not
be the case that those operations are still active. Therefore, before logging in, any active
operations should be finished.

If the application calling C_Login has a R/O session open with the token, then it will be
unable to log the SO into a session (see Section 6.7.7). An attempt to do this will result
in the error code CKR_SESSION_READ_ONLY_EXISTS.

C_Login may be called repeatedly, without intervening C_Logout calls, if (and only if) a
key with the CKA_ALWAYS_AUTHENTICATE attribute set to CK_TRUE exists, and
the user needs to do cryptographic operation on this key. See further Section 10.9.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_PIN_INCORRECT,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY_EXISTS,
CKR_USER_ALREADY_LOGGED_IN,
CKR_USER_ANOTHER_ALREADY_LOGGED_IN,
CKR_USER_PIN_NOT_INITIALIZED, CKR_USER_TOO_MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_Logout.

♦ C_Logout

CK_DEFINE_FUNCTION(CK_RV, C_Logout)(
 CK_SESSION_HANDLE hSession
);
C_Logout logs a user out from a token. hSession is the session’s handle.

Depending on the current user type, if the call succeeds, each of the application’s
sessions will enter either the “R/W Public Session” state or the “R/O Public Session”
state.

When C_Logout successfully executes, any of the application’s handles to private
objects become invalid (even if a user is later logged back into the token, those handles
remain invalid). In addition, all private session objects from sessions belonging to the
application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s
session, and then C_Logout is successfully executed by that application, it may or may

11. FUNCTIONS 125

April 2009 Copyright © 2009 RSA Security Inc.

not be the case that those operations are still active. Therefore, before logging out, any
active operations should be finished.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_UTF8CHAR userPIN[] = {“MyPIN”};
CK_RV rv;

rv = C_Login(hSession, CKU_USER, userPIN,

sizeof(userPIN)-1);
if (rv == CKR_OK) {
 .
 .
 rv == C_Logout(hSession);
 if (rv == CKR_OK) {
 .
 .
 }
}

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additional functions
provided specifically for managing key objects are described in Section 11.14.

♦ C_CreateObject

CK_DEFINE_FUNCTION(CK_RV, C_CreateObject)(
 CK_SESSION_HANDLE hSession,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 CK_OBJECT_HANDLE_PTR phObject
);
C_CreateObject creates a new object. hSession is the session’s handle; pTemplate points
to the object’s template; ulCount is the number of attributes in the template; phObject
points to the location that receives the new object’s handle.

If a call to C_CreateObject cannot support the precise template supplied to it, it will fail
and return without creating any object.

126 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

If C_CreateObject is used to create a key object, the key object will have its
CKA_LOCAL attribute set to CK_FALSE. If that key object is a secret or private key
then the new key will have the CKA_ALWAYS_SENSITIVE attribute set to
CK_FALSE, and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE
 hData,
 hCertificate,
 hKey;
CK_OBJECT_CLASS
 dataClass = CKO_DATA,
 certificateClass = CKO_CERTIFICATE,
 keyClass = CKO_PUBLIC_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK_BYTE id[] = {...};
CK_BYTE certificateValue[] = {...};
CK_BYTE modulus[] = {...};
CK_BYTE exponent[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE dataTemplate[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_APPLICATION, application, sizeof(application)-1},
 {CKA_VALUE, dataValue, sizeof(dataValue)}
};
CK_ATTRIBUTE certificateTemplate[] = {
 {CKA_CLASS, &certificateClass,

sizeof(certificateClass)},
 {CKA_TOKEN, &true, sizeof(true)},

11. FUNCTIONS 127

April 2009 Copyright © 2009 RSA Security Inc.

 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificateValue, sizeof(certificateValue)}
};
CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS, modulus, sizeof(modulus)},
 {CKA_PUBLIC_EXPONENT, exponent, sizeof(exponent)}
};
CK_RV rv;

.
.
/* Create a data object */
rv = C_CreateObject(hSession, &dataTemplate, 4, &hData);
if (rv == CKR_OK) {
 .
 .
}

/* Create a certificate object */
rv = C_CreateObject(
 hSession, &certificateTemplate, 5, &hCertificate);
if (rv == CKR_OK) {
 .
 .
}

/* Create an RSA public key object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if (rv == CKR_OK) {
 .
 .
}

♦ C_CopyObject

CK_DEFINE_FUNCTION(CK_RV, C_CopyObject)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 CK_OBJECT_HANDLE_PTR phNewObject
);
C_CopyObject copies an object, creating a new object for the copy. hSession is the
session’s handle; hObject is the object’s handle; pTemplate points to the template for the

128 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

new object; ulCount is the number of attributes in the template; phNewObject points to
the location that receives the handle for the copy of the object.

The template may specify new values for any attributes of the object that can ordinarily
be modified (e.g., in the course of copying a secret key, a key’s CKA_EXTRACTABLE
attribute may be changed from CK_TRUE to CK_FALSE, but not the other way around.
If this change is made, the new key’s CKA_NEVER_EXTRACTABLE attribute will
have the value CK_FALSE. Similarly, the template may specify that the new key’s
CKA_SENSITIVE attribute be CK_TRUE; the new key will have the same value for its
CKA_ALWAYS_SENSITIVE attribute as the original key). It may also specify new
values of the CKA_TOKEN and CKA_PRIVATE attributes (e.g., to copy a session
object to a token object). If the template specifies a value of an attribute which is
incompatible with other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

If a call to C_CopyObject cannot support the precise template supplied to it, it will fail
and return without creating any object. If the object indicated by hObject has its
CKA_COPYABLE attribute set to CK_FALSE, C_CopyObject will return
CKR_COPY_PROHIBITED.

Only session objects can be created during a read-only session. Only public objects can
be created unless the normal user is logged in.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN,
CKR_COPY_PROHIBITED.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey, hNewKey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BYTE id[] = {...};
CK_BYTE keyValue[] = {...};
CK_BBOOL false = CK_FALSE;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE keyTemplate[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_TOKEN, &false, sizeof(false)},

11. FUNCTIONS 129

April 2009 Copyright © 2009 RSA Security Inc.

 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, keyValue, sizeof(keyValue)}
};
CK_ATTRIBUTE copyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)}
};
CK_RV rv;

.
.
/* Create a DES secret key session object */
rv = C_CreateObject(hSession, &keyTemplate, 5, &hKey);
if (rv == CKR_OK) {
 /* Create a copy which is a token object */
 rv = C_CopyObject(hSession, hKey, ©Template, 1,

&hNewKey);
 .
 .
}

♦ C_DestroyObject

CK_DEFINE_FUNCTION(CK_RV, C_DestroyObject)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject
);
C_DestroyObject destroys an object. hSession is the session’s handle; and hObject is
the object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects
can be destroyed unless the normal user is logged in.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

130 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_GetObjectSize

CK_DEFINE_FUNCTION(CK_RV, C_GetObjectSize)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_ULONG_PTR pulSize
);
C_GetObjectSize gets the size of an object in bytes. hSession is the session’s handle;
hObject is the object’s handle; pulSize points to the location that receives the size in bytes
of the object.

Cryptoki does not specify what the precise meaning of an object’s size is. Intuitively, it
is some measure of how much token memory the object takes up. If an application
deletes (say) a private object of size S, it might be reasonable to assume that the
ulFreePrivateMemory field of the token’s CK_TOKEN_INFO structure increases by
approximately S.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_OBJECT_CLASS dataClass = CKO_DATA;
CK_UTF8CHAR application[] = {“My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &dataClass, sizeof(dataClass)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_APPLICATION, application, sizeof(application)-1},
 {CKA_VALUE, value, sizeof(value)}
};
CK_ULONG ulSize;
CK_RV rv;

.
.
rv = C_CreateObject(hSession, &template, 4, &hObject);
if (rv == CKR_OK) {
 rv = C_GetObjectSize(hSession, hObject, &ulSize);
 if (rv != CKR_INFORMATION_SENSITIVE) {
 .

11. FUNCTIONS 131

April 2009 Copyright © 2009 RSA Security Inc.

 .
 }

 rv = C_DestroyObject(hSession, hObject);
 .
 .
}

♦ C_GetAttributeValue

CK_DEFINE_FUNCTION(CK_RV, C_GetAttributeValue)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount
);
C_GetAttributeValue obtains the value of one or more attributes of an object. hSession
is the session’s handle; hObject is the object’s handle; pTemplate points to a template
that specifies which attribute values are to be obtained, and receives the attribute values;
ulCount is the number of attributes in the template.

For each (type, pValue, ulValueLen) triple in the template, C_GetAttributeValue
performs the following algorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object
cannot be revealed because the object is sensitive or unextractable, then the
ulValueLen field in that triple is modified to hold the value -1 (i.e., when it is cast to a
CK_LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invalid (the object does not
possess such an attribute), then the ulValueLen field in that triple is modified to hold
the value -1.

3. Otherwise, if the pValue field has the value NULL_PTR, then the ulValueLen field is
modified to hold the exact length of the specified attribute for the object.

4. Otherwise, if the length specified in ulValueLen is large enough to hold the value of
the specified attribute for the object, then that attribute is copied into the buffer
located at pValue, and the ulValueLen field is modified to hold the exact length of the
attribute.

5. Otherwise, the ulValueLen field is modified to hold the value -1.

If case 1 applies to any of the requested attributes, then the call should return the value
CKR_ATTRIBUTE_SENSITIVE. If case 2 applies to any of the requested attributes,
then the call should return the value CKR_ATTRIBUTE_TYPE_INVALID. If case 5
applies to any of the requested attributes, then the call should return the value
CKR_BUFFER_TOO_SMALL. As usual, if more than one of these error codes is

132 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

applicable, Cryptoki may return any of them. Only if none of them applies to any of the
requested attributes will CKR_OK be returned.

In the special case of an attribute whose value is an array of attributes, for example
CKA_WRAP_TEMPLATE, where it is passed in with pValue not NULL, then if the
pValue of elements within the array is NULL_PTR then the ulValueLen of elements
within the array will be set to the required length. If the pValue of elements within the
array is not NULL_PTR, then the ulValueLen element of attributes within the array must
reflect the space that the corresponding pValue points to, and pValue is filled in if there is
sufficient room. Therefore it is important to initialize the contents of a buffer before
calling C_GetAttributeValue to get such an array value. If any ulValueLen within the
array isn't large enough, it will be set to –1 and the function will return
CKR_BUFFER_TOO_SMALL, as it does if an attribute in the pTemplate argument has
ulValueLen too small. Note that any attribute whose value is an array of attributes is
identifiable by virtue of the attribute type having the CKF_ARRAY_ATTRIBUTE bit
set.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO_SMALL do not
denote true errors for C_GetAttributeValue. If a call to C_GetAttributeValue returns
any of these three values, then the call must nonetheless have processed every attribute in
the template supplied to C_GetAttributeValue. Each attribute in the template whose
value can be returned by the call to C_GetAttributeValue will be returned by the call to
C_GetAttributeValue.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_BYTE_PTR pModulus, pExponent;
CK_ATTRIBUTE template[] = {
 {CKA_MODULUS, NULL_PTR, 0},
 {CKA_PUBLIC_EXPONENT, NULL_PTR, 0}
};
CK_RV rv;

.
.
rv = C_GetAttributeValue(hSession, hObject, &template,

11. FUNCTIONS 133

April 2009 Copyright © 2009 RSA Security Inc.

2);
if (rv == CKR_OK) {
 pModulus = (CK_BYTE_PTR)

malloc(template[0].ulValueLen);
 template[0].pValue = pModulus;
 /* template[0].ulValueLen was set by

C_GetAttributeValue */

 pExponent = (CK_BYTE_PTR)

malloc(template[1].ulValueLen);
 template[1].pValue = pExponent;
 /* template[1].ulValueLen was set by

C_GetAttributeValue */

 rv = C_GetAttributeValue(hSession, hObject, &template,

2);
 if (rv == CKR_OK) {
 .
 .
 }
 free(pModulus);
 free(pExponent);
}

♦ C_SetAttributeValue

CK_DEFINE_FUNCTION(CK_RV, C_SetAttributeValue)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount
);
C_SetAttributeValue modifies the value of one or more attributes of an object.
hSession is the session’s handle; hObject is the object’s handle; pTemplate points to a
template that specifies which attribute values are to be modified and their new values;
ulCount is the number of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new values for any attributes of the object that can be
modified. If the template specifies a value of an attribute which is incompatible with
other existing attributes of the object, the call fails with the return code
CKR_TEMPLATE_INCONSISTENT.

Not all attributes can be modified; see Section 10.1.2 for more details.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

134 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT_HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_UTF8CHAR label[] = {“New label”};
CK_ATTRIBUTE template[] = {
 CKA_LABEL, label, sizeof(label)-1
};
CK_RV rv;

.
.
rv = C_SetAttributeValue(hSession, hObject, &template,

1);
if (rv == CKR_OK) {
 .
 .
}

♦ C_FindObjectsInit

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsInit)(
 CK_SESSION_HANDLE hSession,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount
);
C_FindObjectsInit initializes a search for token and session objects that match a
template. hSession is the session’s handle; pTemplate points to a search template that
specifies the attribute values to match; ulCount is the number of attributes in the search
template. The matching criterion is an exact byte-for-byte match with all attributes in the
template. To find all objects, set ulCount to 0.

After calling C_FindObjectsInit, the application may call C_FindObjects one or more
times to obtain handles for objects matching the template, and then eventually call
C_FindObjectsFinal to finish the active search operation. At most one search operation
may be active at a given time in a given session.

The object search operation will only find objects that the session can view. For
example, an object search in an “R/W Public Session” will not find any private objects
(even if one of the attributes in the search template specifies that the search is for private
objects).

11. FUNCTIONS 135

April 2009 Copyright © 2009 RSA Security Inc.

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by
the search operation. Note that this means that, under these circumstances, the search
operation may return invalid object handles.

Even though C_FindObjectsInit can return the values
CKR_ATTRIBUTE_TYPE_INVALID and CKR_ATTRIBUTE_VALUE_INVALID, it
is not required to. For example, if it is given a search template with nonexistent attributes
in it, it can return CKR_ATTRIBUTE_TYPE_INVALID, or it can initialize a search
operation which will match no objects and return CKR_OK.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

♦ C_FindObjects

CK_DEFINE_FUNCTION(CK_RV, C_FindObjects)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE_PTR phObject,
 CK_ULONG ulMaxObjectCount,
 CK_ULONG_PTR pulObjectCount
);
C_FindObjects continues a search for token and session objects that match a template,
obtaining additional object handles. hSession is the session’s handle; phObject points to
the location that receives the list (array) of additional object handles; ulMaxObjectCount
is the maximum number of object handles to be returned; pulObjectCount points to the
location that receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pulObjectCount
points to receives the value 0.

The search must have been initialized with C_FindObjectsInit.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_FindObjectsFinal.

136 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_FindObjectsFinal

CK_DEFINE_FUNCTION(CK_RV, C_FindObjectsFinal)(
 CK_SESSION_HANDLE hSession
);
C_FindObjectsFinal terminates a search for token and session objects. hSession is the
session’s handle.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hObject;
CK_ULONG ulObjectCount;
CK_RV rv;

.
.
rv = C_FindObjectsInit(hSession, NULL_PTR, 0);
assert(rv == CKR_OK);
while (1) {
 rv = C_FindObjects(hSession, &hObject, 1,

&ulObjectCount);
 if (rv != CKR_OK || ulObjectCount == 0)
 break;
 .
 .
}

rv = C_FindObjectsFinal(hSession);
assert(rv == CKR_OK);

11. FUNCTIONS 137

April 2009 Copyright © 2009 RSA Security Inc.

11.8 Encryption functions

Cryptoki provides the following functions for encrypting data:

♦ C_EncryptInit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_EncryptInit initializes an encryption operation. hSession is the session’s handle;
pMechanism points to the encryption mechanism; hKey is the handle of the encryption
key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key
supports encryption, must be CK_TRUE.

After calling C_EncryptInit, the application can either call C_Encrypt to encrypt data
in a single part; or call C_EncryptUpdate zero or more times, followed by
C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the
final piece of ciphertext. To process additional data (in single or multiple parts), the
application must call C_EncryptInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

138 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_Encrypt

CK_DEFINE_FUNCTION(CK_RV, C_Encrypt)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG_PTR pulEncryptedDataLen
);
C_Encrypt encrypts single-part data. hSession is the session’s handle; pData points to
the data; ulDataLen is the length in bytes of the data; pEncryptedData points to the
location that receives the encrypted data; pulEncryptedDataLen points to the location that
holds the length in bytes of the encrypted data.

C_Encrypt uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_Encrypt always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

C_Encrypt can not be used to terminate a multi-part operation, and must be called after
C_EncryptInit without intervening C_EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length constraints
(either because the mechanism can only encrypt relatively short pieces of plaintext, or
because the mechanism’s input data must consist of an integral number of blocks). If
these constraints are not satisfied, then C_Encrypt will fail with return code
CKR_DATA_LEN_RANGE.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pData and
pEncryptedData point to the same location.

For most mechanisms, C_Encrypt is equivalent to a sequence of C_EncryptUpdate
operations followed by C_EncryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal for an example of similar functions.

11. FUNCTIONS 139

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_EncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_EncryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG_PTR pulEncryptedPartLen
);
C_EncryptUpdate continues a multiple-part encryption operation, processing another
data part. hSession is the session’s handle; pPart points to the data part; ulPartLen is the
length of the data part; pEncryptedPart points to the location that receives the encrypted
data part; pulEncryptedPartLen points to the location that holds the length in bytes of the
encrypted data part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_EncryptInit. This function
may be called any number of times in succession. A call to C_EncryptUpdate which
results in an error other than CKR_BUFFER_TOO_SMALL terminates the current
encryption operation.

The plaintext and ciphertext can be in the same place, i.e., it is OK if pPart and
pEncryptedPart point to the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_EncryptFinal.

♦ C_EncryptFinal

CK_DEFINE_FUNCTION(CK_RV, C_EncryptFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pLastEncryptedPart,
 CK_ULONG_PTR pulLastEncryptedPartLen
);
C_EncryptFinal finishes a multiple-part encryption operation. hSession is the session’s
handle; pLastEncryptedPart points to the location that receives the last encrypted data
part, if any; pulLastEncryptedPartLen points to the location that holds the length of the
last encrypted data part.

140 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C_EncryptFinal uses the convention described in Section 11.2 on producing output.

The encryption operation must have been initialized with C_EncryptInit. A call to
C_EncryptFinal always terminates the active encryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
constraints, because the mechanism’s input data must consist of an integral number of
blocks. If these constraints are not satisfied, then C_EncryptFinal will fail with return
code CKR_DATA_LEN_RANGE.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define PLAINTEXT_BUF_SZ 200
#define CIPHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
 CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulEncryptedData1Len;
CK_ULONG ulEncryptedData2Len;
CK_ULONG ulEncryptedData3Len;
CK_RV rv;

.
.
firstPieceLen = 90;
secondPieceLen = PLAINTEXT_BUF_SZ-firstPieceLen;
rv = C_EncryptInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 /* Encrypt first piece */
 ulEncryptedData1Len = sizeof(encryptedData);
 rv = C_EncryptUpdate(
 hSession,

11. FUNCTIONS 141

April 2009 Copyright © 2009 RSA Security Inc.

 &data[0], firstPieceLen,
 &encryptedData[0], &ulEncryptedData1Len);
 if (rv != CKR_OK) {
 .
 .
 }

 /* Encrypt second piece */
 ulEncryptedData2Len = sizeof(encryptedData)-

ulEncryptedData1Len;
 rv = C_EncryptUpdate(
 hSession,
 &data[firstPieceLen], secondPieceLen,
 &encryptedData[ulEncryptedData1Len],

&ulEncryptedData2Len);
 if (rv != CKR_OK) {
 .
 .
 }

 /* Get last little encrypted bit */
 ulEncryptedData3Len =
 sizeof(encryptedData)-ulEncryptedData1Len-

ulEncryptedData2Len;
 rv = C_EncryptFinal(
 hSession,

&encryptedData[ulEncryptedData1Len+ulEncryptedDat
a2Len],

 &ulEncryptedData3Len);
 if (rv != CKR_OK) {
 .
 .
 }
}

142 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

11.9 Decryption functions

Cryptoki provides the following functions for decrypting data:

♦ C_DecryptInit

CK_DEFINE_FUNCTION(CK_RV, C_DecryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_DecryptInit initializes a decryption operation. hSession is the session’s handle;
pMechanism points to the decryption mechanism; hKey is the handle of the decryption
key.

The CKA_DECRYPT attribute of the decryption key, which indicates whether the key
supports decryption, must be CK_TRUE.

After calling C_DecryptInit, the application can either call C_Decrypt to decrypt data
in a single part; or call C_DecryptUpdate zero or more times, followed by
C_DecryptFinal, to decrypt data in multiple parts. The decryption operation is active
until the application uses a call to C_Decrypt or C_DecryptFinal to actually obtain the
final piece of plaintext. To process additional data (in single or multiple parts), the
application must call C_DecryptInit again

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal.

11. FUNCTIONS 143

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_Decrypt

CK_DEFINE_FUNCTION(CK_RV, C_Decrypt)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedData,
 CK_ULONG ulEncryptedDataLen,
 CK_BYTE_PTR pData,
 CK_ULONG_PTR pulDataLen
);
C_Decrypt decrypts encrypted data in a single part. hSession is the session’s handle;
pEncryptedData points to the encrypted data; ulEncryptedDataLen is the length of the
encrypted data; pData points to the location that receives the recovered data; pulDataLen
points to the location that holds the length of the recovered data.

C_Decrypt uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_DecryptInit. A call to
C_Decrypt always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

C_Decrypt can not be used to terminate a multi-part operation, and must be called after
C_DecryptInit without intervening C_DecryptUpdate calls.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedData
and pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivalent to a sequence of C_DecryptUpdate
operations followed by C_DecryptFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DecryptFinal for an example of similar functions.

144 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_DecryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG ulEncryptedPartLen,
 CK_BYTE_PTR pPart,
 CK_ULONG_PTR pulPartLen
);
C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the session’s handle; pEncryptedPart points to the
encrypted data part; ulEncryptedPartLen is the length of the encrypted data part; pPart
points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_DecryptInit. This function
may be called any number of times in succession. A call to C_DecryptUpdate which
results in an error other than CKR_BUFFER_TOO_SMALL terminates the current
decryption operation.

The ciphertext and plaintext can be in the same place, i.e., it is OK if pEncryptedPart and
pPart point to the same location.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: See C_DecryptFinal.

♦ C_DecryptFinal

CK_DEFINE_FUNCTION(CK_RV, C_DecryptFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pLastPart,
 CK_ULONG_PTR pulLastPartLen
);
C_DecryptFinal finishes a multiple-part decryption operation. hSession is the session’s
handle; pLastPart points to the location that receives the last recovered data part, if any;
pulLastPartLen points to the location that holds the length of the last recovered data part.

11. FUNCTIONS 145

April 2009 Copyright © 2009 RSA Security Inc.

C_DecryptFinal uses the convention described in Section 11.2 on producing output.

The decryption operation must have been initialized with C_DecryptInit. A call to
C_DecryptFinal always terminates the active decryption operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length,
then either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

#define CIPHERTEXT_BUF_SZ 256
#define PLAINTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPieceLen, secondEncryptedPieceLen;
CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM mechanism = {
 CKM_DES_CBC_PAD, iv, sizeof(iv)
};
CK_BYTE data[PLAINTEXT_BUF_SZ];
CK_BYTE encryptedData[CIPHERTEXT_BUF_SZ];
CK_ULONG ulData1Len, ulData2Len, ulData3Len;
CK_RV rv;

.
.
firstEncryptedPieceLen = 90;
secondEncryptedPieceLen = CIPHERTEXT_BUF_SZ-

firstEncryptedPieceLen;
rv = C_DecryptInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 /* Decrypt first piece */
 ulData1Len = sizeof(data);
 rv = C_DecryptUpdate(
 hSession,
 &encryptedData[0], firstEncryptedPieceLen,

146 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 &data[0], &ulData1Len);
 if (rv != CKR_OK) {
 .
 .
 }

 /* Decrypt second piece */
 ulData2Len = sizeof(data)-ulData1Len;
 rv = C_DecryptUpdate(
 hSession,
 &encryptedData[firstEncryptedPieceLen],
 secondEncryptedPieceLen,
 &data[ulData1Len], &ulData2Len);
 if (rv != CKR_OK) {
 .
 .
 }

 /* Get last little decrypted bit */
 ulData3Len = sizeof(data)-ulData1Len-ulData2Len;
 rv = C_DecryptFinal(
 hSession,
 &data[ulData1Len+ulData2Len], &ulData3Len);
 if (rv != CKR_OK) {
 .
 .
 }
}

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

♦ C_DigestInit

CK_DEFINE_FUNCTION(CK_RV, C_DigestInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism
);
C_DigestInit initializes a message-digesting operation. hSession is the session’s handle;
pMechanism points to the digesting mechanism.

After calling C_DigestInit, the application can either call C_Digest to digest data in a
single part; or call C_DigestUpdate zero or more times, followed by C_DigestFinal, to
digest data in multiple parts. The message-digesting operation is active until the
application uses a call to C_Digest or C_DigestFinal to actually obtain the message
digest. To process additional data (in single or multiple parts), the application must call
C_DigestInit again.

11. FUNCTIONS 147

April 2009 Copyright © 2009 RSA Security Inc.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_DigestFinal.

♦ C_Digest

CK_DEFINE_FUNCTION(CK_RV, C_Digest)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pDigest,
 CK_ULONG_PTR pulDigestLen
);
C_Digest digests data in a single part. hSession is the session’s handle, pData points to
the data; ulDataLen is the length of the data; pDigest points to the location that receives
the message digest; pulDigestLen points to the location that holds the length of the
message digest.

C_Digest uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to C_Digest
always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

C_Digest can not be used to terminate a multi-part operation, and must be called after
C_DigestInit without intervening C_DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it is OK if pData and
pDigest point to the same location.

C_Digest is equivalent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,

148 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal for an example of similar functions.

♦ C_DigestUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DigestUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen
);
C_DigestUpdate continues a multiple-part message-digesting operation, processing
another data part. hSession is the session’s handle, pPart points to the data part;
ulPartLen is the length of the data part.

The message-digesting operation must have been initialized with C_DigestInit. Calls to
this function and C_DigestKey may be interspersed any number of times in any order. A
call to C_DigestUpdate which results in an error terminates the current digest operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

♦ C_DigestKey

CK_DEFINE_FUNCTION(CK_RV, C_DigestKey)(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hKey
);
C_DigestKey continues a multiple-part message-digesting operation by digesting the
value of a secret key. hSession is the session’s handle; hKey is the handle of the secret
key to be digested.

The message-digesting operation must have been initialized with C_DigestInit. Calls to
this function and C_DigestUpdate may be interspersed any number of times in any
order.

If the value of the supplied key cannot be digested purely for some reason related to its
length, C_DigestKey should return the error code CKR_KEY_SIZE_RANGE.

11. FUNCTIONS 149

April 2009 Copyright © 2009 RSA Security Inc.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_INDIGESTIBLE,
CKR_KEY_SIZE_RANGE, CKR_OK, CKR_OPERATION_NOT_INITIALIZED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example: see C_DigestFinal.

♦ C_DigestFinal

CK_DEFINE_FUNCTION(CK_RV, C_DigestFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pDigest,
 CK_ULONG_PTR pulDigestLen
);
C_DigestFinal finishes a multiple-part message-digesting operation, returning the
message digest. hSession is the session’s handle; pDigest points to the location that
receives the message digest; pulDigestLen points to the location that holds the length of
the message digest.

C_DigestFinal uses the convention described in Section 11.2 on producing output.

The digest operation must have been initialized with C_DigestInit. A call to
C_DigestFinal always terminates the active digest operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the message digest.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

CK_SESSION_HANDLE hSession;
CK_MECHANISM mechanism = {
 CKM_MD5, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_RV rv;

150 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

.
.
rv = C_DigestInit(hSession, &mechanism);
if (rv != CKR_OK) {
 .
 .
}

rv = C_DigestUpdate(hSession, data, sizeof(data));
if (rv != CKR_OK) {
 .
 .
}

rv = C_DigestKey(hSession, hKey);
if (rv != CKR_OK) {
 .
 .
}

ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.

11.11 Signing and MACing functions

Cryptoki provides the following functions for signing data (for the purposes of Cryptoki,
these operations also encompass message authentication codes):

♦ C_SignInit

CK_DEFINE_FUNCTION(CK_RV, C_SignInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_SignInit initializes a signature operation, where the signature is an appendix to the
data. hSession is the session’s handle; pMechanism points to the signature mechanism;
hKey is the handle of the signature key.

The CKA_SIGN attribute of the signature key, which indicates whether the key supports
signatures with appendix, must be CK_TRUE.

After calling C_SignInit, the application can either call C_Sign to sign in a single part;
or call C_SignUpdate one or more times, followed by C_SignFinal, to sign data in
multiple parts. The signature operation is active until the application uses a call to

11. FUNCTIONS 151

April 2009 Copyright © 2009 RSA Security Inc.

C_Sign or C_SignFinal to actually obtain the signature. To process additional data (in
single or multiple parts), the application must call C_SignInit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

♦ C_Sign

CK_DEFINE_FUNCTION(CK_RV, C_Sign)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,
 CK_ULONG_PTR pulSignatureLen
);
C_Sign signs data in a single part, where the signature is an appendix to the data.
hSession is the session’s handle; pData points to the data; ulDataLen is the length of the
data; pSignature points to the location that receives the signature; pulSignatureLen points
to the location that holds the length of the signature.

C_Sign uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignInit. A call to C_Sign
always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

C_Sign can not be used to terminate a multi-part operation, and must be called after
C_SignInit without intervening C_SignUpdate calls.

For most mechanisms, C_Sign is equivalent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

152 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_FUNCTION_REJECTED.

Example: see C_SignFinal for an example of similar functions.

♦ C_SignUpdate

CK_DEFINE_FUNCTION(CK_RV, C_SignUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen
);
C_SignUpdate continues a multiple-part signature operation, processing another data
part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The signature operation must have been initialized with C_SignInit. This function may
be called any number of times in succession. A call to C_SignUpdate which results in
an error terminates the current signature operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignFinal.

♦ C_SignFinal

CK_DEFINE_FUNCTION(CK_RV, C_SignFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pSignature,
 CK_ULONG_PTR pulSignatureLen
);
C_SignFinal finishes a multiple-part signature operation, returning the signature.
hSession is the session’s handle; pSignature points to the location that receives the
signature; pulSignatureLen points to the location that holds the length of the signature.

C_SignFinal uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignInit. A call to
C_SignFinal always terminates the active signing operation unless it returns

11. FUNCTIONS 153

April 2009 Copyright © 2009 RSA Security Inc.

CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_FUNCTION_REJECTED.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_ULONG ulMacLen;
CK_RV rv;

.
.
rv = C_SignInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 rv = C_SignUpdate(hSession, data, sizeof(data));
 .
 .
 ulMacLen = sizeof(mac);
 rv = C_SignFinal(hSession, mac, &ulMacLen);
 .
 .
}

♦ C_SignRecoverInit

CK_DEFINE_FUNCTION(CK_RV, C_SignRecoverInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_SignRecoverInit initializes a signature operation, where the data can be recovered
from the signature. hSession is the session’s handle; pMechanism points to the structure
that specifies the signature mechanism; hKey is the handle of the signature key.

154 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The CKA_SIGN_RECOVER attribute of the signature key, which indicates whether the
key supports signatures where the data can be recovered from the signature, must be
CK_TRUE.

After calling C_SignRecoverInit, the application may call C_SignRecover to sign in a
single part. The signature operation is active until the application uses a call to
C_SignRecover to actually obtain the signature. To process additional data in a single
part, the application must call C_SignRecoverInit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_SignRecover.

♦ C_SignRecover

CK_DEFINE_FUNCTION(CK_RV, C_SignRecover)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,
 CK_ULONG_PTR pulSignatureLen
);
C_SignRecover signs data in a single operation, where the data can be recovered from
the signature. hSession is the session’s handle; pData points to the data; uLDataLen is the
length of the data; pSignature points to the location that receives the signature;
pulSignatureLen points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The signing operation must have been initialized with C_SignRecoverInit. A call to
C_SignRecover always terminates the active signing operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the signature.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,

11. FUNCTIONS 155

April 2009 Copyright © 2009 RSA Security Inc.

CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE signature[128];
CK_ULONG ulSignatureLen;
CK_RV rv;

.
.
rv = C_SignRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 ulSignatureLen = sizeof(signature);
 rv = C_SignRecover(
 hSession, data, sizeof(data), signature,

&ulSignatureLen);
 if (rv == CKR_OK) {
 .
 .
 }
}

11.12 Functions for verifying signatures and MACs

Cryptoki provides the following functions for verifying signatures on data (for the
purposes of Cryptoki, these operations also encompass message authentication codes):

♦ C_VerifyInit

CK_DEFINE_FUNCTION(CK_RV, C_VerifyInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_VerifyInit initializes a verification operation, where the signature is an appendix to
the data. hSession is the session’s handle; pMechanism points to the structure that
specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY attribute of the verification key, which indicates whether the key
supports verification where the signature is an appendix to the data, must be CK_TRUE.

156 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

After calling C_VerifyInit, the application can either call C_Verify to verify a signature
on data in a single part; or call C_VerifyUpdate one or more times, followed by
C_VerifyFinal, to verify a signature on data in multiple parts. The verification operation
is active until the application calls C_Verify or C_VerifyFinal. To process additional
data (in single or multiple parts), the application must call C_VerifyInit again.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyFinal.

♦ C_Verify

CK_DEFINE_FUNCTION(CK_RV, C_Verify)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pData,
 CK_ULONG ulDataLen,
 CK_BYTE_PTR pSignature,
 CK_ULONG ulSignatureLen
);
C_Verify verifies a signature in a single-part operation, where the signature is an
appendix to the data. hSession is the session’s handle; pData points to the data;
ulDataLen is the length of the data; pSignature points to the signature; ulSignatureLen is
the length of the signature.

The verification operation must have been initialized with C_VerifyInit. A call to
C_Verify always terminates the active verification operation.

A successful call to C_Verify should return either the value CKR_OK (indicating that
the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that the
supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active signing operation is terminated.

C_Verify can not be used to terminate a multi-part operation, and must be called after
C_VerifyInit without intervening C_VerifyUpdate calls.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate
operations followed by C_VerifyFinal.

11. FUNCTIONS 157

April 2009 Copyright © 2009 RSA Security Inc.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example: see C_VerifyFinal for an example of similar functions.

♦ C_VerifyUpdate

CK_DEFINE_FUNCTION(CK_RV, C_VerifyUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen
);
C_VerifyUpdate continues a multiple-part verification operation, processing another
data part. hSession is the session’s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The verification operation must have been initialized with C_VerifyInit. This function
may be called any number of times in succession. A call to C_VerifyUpdate which
results in an error terminates the current verification operation.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example: see C_VerifyFinal.

♦ C_VerifyFinal

CK_DEFINE_FUNCTION(CK_RV, C_VerifyFinal)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pSignature,
 CK_ULONG ulSignatureLen
);
C_VerifyFinal finishes a multiple-part verification operation, checking the signature.
hSession is the session’s handle; pSignature points to the signature; ulSignatureLen is the
length of the signature.

158 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

The verification operation must have been initialized with C_VerifyInit. A call to
C_VerifyFinal always terminates the active verification operation.

A successful call to C_VerifyFinal should return either the value CKR_OK (indicating
that the supplied signature is valid) or CKR_SIGNATURE_INVALID (indicating that
the supplied signature is invalid). If the signature can be seen to be invalid purely on the
basis of its length, then CKR_SIGNATURE_LEN_RANGE should be returned. In any
of these cases, the active verifying operation is terminated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_BYTE mac[4];
CK_RV rv;

.
.
rv = C_VerifyInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 rv = C_VerifyUpdate(hSession, data, sizeof(data));
 .
 .
 rv = C_VerifyFinal(hSession, mac, sizeof(mac));
 .
 .
}

11. FUNCTIONS 159

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_VerifyRecoverInit

CK_DEFINE_FUNCTION(CK_RV, C_VerifyRecoverInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);
C_VerifyRecoverInit initializes a signature verification operation, where the data is
recovered from the signature. hSession is the session’s handle; pMechanism points to the
structure that specifies the verification mechanism; hKey is the handle of the verification
key.

The CKA_VERIFY_RECOVER attribute of the verification key, which indicates
whether the key supports verification where the data is recovered from the signature,
must be CK_TRUE.

After calling C_VerifyRecoverInit, the application may call C_VerifyRecover to verify
a signature on data in a single part. The verification operation is active until the
application uses a call to C_VerifyRecover to actually obtain the recovered message.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_VerifyRecover.

♦ C_VerifyRecover

CK_DEFINE_FUNCTION(CK_RV, C_VerifyRecover)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pSignature,
 CK_ULONG ulSignatureLen,
 CK_BYTE_PTR pData,
 CK_ULONG_PTR pulDataLen
);
C_VerifyRecover verifies a signature in a single-part operation, where the data is
recovered from the signature. hSession is the session’s handle; pSignature points to the
signature; ulSignatureLen is the length of the signature; pData points to the location that
receives the recovered data; and pulDataLen points to the location that holds the length
of the recovered data.

160 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C_VerifyRecover uses the convention described in Section 11.2 on producing output.

The verification operation must have been initialized with C_VerifyRecoverInit. A call
to C_VerifyRecover always terminates the active verification operation unless it returns
CKR_BUFFER_TOO_SMALL or is a successful call (i.e., one which returns CKR_OK)
to determine the length of the buffer needed to hold the recovered data.

A successful call to C_VerifyRecover should return either the value CKR_OK
(indicating that the supplied signature is valid) or CKR_SIGNATURE_INVALID
(indicating that the supplied signature is invalid). If the signature can be seen to be
invalid purely on the basis of its length, then CKR_SIGNATURE_LEN_RANGE should
be returned. The return codes CKR_SIGNATURE_INVALID and
CKR_SIGNATURE_LEN_RANGE have a higher priority than the return code
CKR_BUFFER_TOO_SMALL, i.e., if C_VerifyRecover is supplied with an invalid
signature, it will never return CKR_BUFFER_TOO_SMALL.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_LEN_RANGE,
CKR_SIGNATURE_INVALID.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_MECHANISM mechanism = {
 CKM_RSA_9796, NULL_PTR, 0
};
CK_BYTE data[] = {...};
CK_ULONG ulDataLen;
CK_BYTE signature[128];
CK_RV rv;

.
.
rv = C_VerifyRecoverInit(hSession, &mechanism, hKey);
if (rv == CKR_OK) {
 ulDataLen = sizeof(data);
 rv = C_VerifyRecover(
 hSession, signature, sizeof(signature), data,

&ulDataLen);
 .
 .
}

11. FUNCTIONS 161

April 2009 Copyright © 2009 RSA Security Inc.

11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to perform two cryptographic operations
“simultaneously” within a session. These functions are provided so as to avoid
unnecessarily passing data back and forth to and from a token.

♦ C_DigestEncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DigestEncryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG_PTR pulEncryptedPartLen
);
C_DigestEncryptUpdate continues multiple-part digest and encryption operations,
processing another data part. hSession is the session’s handle; pPart points to the data
part; ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives the digested and encrypted data part; pulEncryptedPartLen points to the location
that holds the length of the encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing
output. If a C_DigestEncryptUpdate call does not produce encrypted output (because
an error occurs, or because pEncryptedPart has the value NULL_PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initialized
with C_DigestInit and C_EncryptInit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DigestUpdate,
C_DigestKey, and C_EncryptUpdate calls (it would be somewhat unusual to
intersperse calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

162 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_BYTE iv[8];
CK_MECHANISM digestMechanism = {
 CKM_MD5, NULL_PTR, 0
};
CK_MECHANISM encryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];
CK_ULONG ulEncryptedDataLen;
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.
.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism, hKey);
if (rv != CKR_OK) {
 .
 .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK) {
 .
 .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
 hSession,
 &data[0], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_DigestEncryptUpdate(
 hSession,
 &data[BUF_SZ], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled

with
 * separate calls to deal with padding issues in ECB mode
 */

11. FUNCTIONS 163

April 2009 Copyright © 2009 RSA Security Inc.

/* First, complete the digest on the buffer */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
.
.

/* Then, pad last part with 3 0x00 bytes, and complete

encryption */
for(i=0;i<3;i++)
 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
 hSession,
 &data[BUF_SZ*2], 8,
 encryptedData, &ulEncryptedDataLen);
.
.

/* Get last piece of ciphertext (should have length 0,

here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData,

&ulEncryptedDataLen);
.
.

♦ C_DecryptDigestUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptDigestUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG ulEncryptedPartLen,
 CK_BYTE_PTR pPart,
 CK_ULONG_PTR pulPartLen
);
C_DecryptDigestUpdate continues a multiple-part combined decryption and digest
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data
part; pPart points to the location that receives the recovered data part; pulPartLen points
to the location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptDigestUpdate call does not produce decrypted output (because an

164 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too
small to hold the entire decrypted part output), then no plaintext is passed to the active
digest operation.

Decryption and digesting operations must both be active (they must have been initialized
with C_DecryptInit and C_DigestInit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_DecryptUpdate,
C_DigestUpdate, and C_DigestKey calls (it would be somewhat unusual to intersperse
calls to C_DigestEncryptUpdate with calls to C_DigestKey, however).

Use of C_DecryptDigestUpdate involves a pipelining issue that does not arise when
using C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate.
This is because when C_DigestEncryptUpdate is called, precisely the same input is
passed to both the active digesting operation and the active encryption operation;
however, when C_DecryptDigestUpdate is called, the input passed to the active
digesting operation is the output of the active decryption operation. This issue comes up
only when the mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and digest the original plaintext thereby
obtained.

After initializing decryption and digesting operations, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate
returns exactly 16 bytes of plaintext, since at this point, Cryptoki doesn’t know if there’s
more ciphertext coming, or if the last block of ciphertext held any padding. These 16
bytes of plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and digesting operations are linked only
through the C_DecryptDigestUpdate call, these 2 bytes of plaintext are not passed on to
be digested.

A call to C_DigestFinal, therefore, would compute the message digest of the first 16
bytes of the plaintext, not the message digest of the entire plaintext. It is crucial that,
before C_DigestFinal is called, the last 2 bytes of plaintext get passed into the active
digesting operation via a C_DigestUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptDigestUpdate, it knows exactly how much plaintext has
been passed into the active digesting operation. Extreme caution is warranted when
using a padded decryption mechanism with C_DecryptDigestUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,

11. FUNCTIONS 165

April 2009 Copyright © 2009 RSA Security Inc.

CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM digestMechanism = {
 CKM_MD5, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE digest[16];
CK_ULONG ulDigestLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.
.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism, hKey);
if (rv != CKR_OK) {
 .
 .
}
rv = C_DigestInit(hSession, &digestMechanism);
if (rv != CKR_OK){
 .
 .
}

ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
 hSession,
 &encryptedData[0], BUF_SZ,
 data, &ulDataLen);
.
.

166 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

ulDataLen = sizeof(data);
rv = C_DecryptDigestUpdate(
 hSession,
 &encryptedData[BUF_SZ], BUF_SZ,
 data, &ulDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled

with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
 hSession,
 &encryptedData[BUF_SZ*2], 8,
 data, &ulLastUpdateSize);
.
.
/* Get last piece of plaintext (should have length 0,

here) */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize],

&ulDataLen);
if (rv != CKR_OK) {
 .
 .
}

/* Digest last bit of plaintext */
rv = C_DigestUpdate(hSession, &data[BUF_SZ*2], 5);
if (rv != CKR_OK) {
 .
 .
}
ulDigestLen = sizeof(digest);
rv = C_DigestFinal(hSession, digest, &ulDigestLen);
if (rv != CKR_OK) {
 .
 .
}

11. FUNCTIONS 167

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_SignEncryptUpdate

CK_DEFINE_FUNCTION(CK_RV, C_SignEncryptUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pPart,
 CK_ULONG ulPartLen,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG_PTR pulEncryptedPartLen
);
C_SignEncryptUpdate continues a multiple-part combined signature and encryption
operation, processing another data part. hSession is the session’s handle; pPart points to
the data part; ulPartLen is the length of the data part; pEncryptedPart points to the
location that receives the digested and encrypted data part; and pulEncryptedPartLen
points to the location that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing
output. If a C_SignEncryptUpdate call does not produce encrypted output (because an
error occurs, or because pEncryptedPart has the value NULL_PTR, or because
pulEncryptedPartLen is too small to hold the entire encrypted part output), then no
plaintext is passed to the active signing operation.

Signature and encryption operations must both be active (they must have been initialized
with C_SignInit and C_EncryptInit, respectively). This function may be called any
number of times in succession, and may be interspersed with C_SignUpdate and
C_EncryptUpdate calls.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hEncryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM signMechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_MECHANISM encryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_BYTE encryptedData[BUF_SZ];

168 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_ULONG ulEncryptedDataLen;
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[(2*BUF_SZ)+8];
CK_RV rv;
int i;

.
.
memset(iv, 0, sizeof(iv));
memset(data, ‘A’, ((2*BUF_SZ)+5));
rv = C_EncryptInit(hSession, &encryptionMechanism,

hEncryptionKey);
if (rv != CKR_OK) {
 .
 .
}
rv = C_SignInit(hSession, &signMechanism, hMacKey);
if (rv != CKR_OK) {
 .
 .
}

ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
 hSession,
 &data[0], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_SignEncryptUpdate(
 hSession,
 &data[BUF_SZ], BUF_SZ,
 encryptedData, &ulEncryptedDataLen);
.
.

/*
 * The last portion of the buffer needs to be handled

with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the signature on the buffer */
rv = C_SignUpdate(hSession, &data[BUF_SZ*2], 5);
.
.
ulMacLen = sizeof(MAC);
rv = C_SignFinal(hSession, MAC, &ulMacLen);

11. FUNCTIONS 169

April 2009 Copyright © 2009 RSA Security Inc.

.

.

/* Then pad last part with 3 0x00 bytes, and complete

encryption */
for(i=0;i<3;i++)
 data[((BUF_SZ*2)+5)+i] = 0x00;

/* Now, get second-to-last piece of ciphertext */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptUpdate(
 hSession,
 &data[BUF_SZ*2], 8,
 encryptedData, &ulEncryptedDataLen);
.
.

/* Get last piece of ciphertext (should have length 0,

here) */
ulEncryptedDataLen = sizeof(encryptedData);
rv = C_EncryptFinal(hSession, encryptedData,

&ulEncryptedDataLen);
.
.

♦ C_DecryptVerifyUpdate

CK_DEFINE_FUNCTION(CK_RV, C_DecryptVerifyUpdate)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pEncryptedPart,
 CK_ULONG ulEncryptedPartLen,
 CK_BYTE_PTR pPart,
 CK_ULONG_PTR pulPartLen
);
C_DecryptVerifyUpdate continues a multiple-part combined decryption and
verification operation, processing another data part. hSession is the session’s handle;
pEncryptedPart points to the encrypted data; ulEncryptedPartLen is the length of the
encrypted data; pPart points to the location that receives the recovered data; and
pulPartLen points to the location that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing
output. If a C_DecryptVerifyUpdate call does not produce decrypted output (because
an error occurs, or because pPart has the value NULL_PTR, or because pulPartLen is
too small to hold the entire encrypted part output), then no plaintext is passed to the
active verification operation.

Decryption and signature operations must both be active (they must have been initialized
with C_DecryptInit and C_VerifyInit, respectively). This function may be called any

170 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

number of times in succession, and may be interspersed with C_DecryptUpdate and
C_VerifyUpdate calls.

Use of C_DecryptVerifyUpdate involves a pipelining issue that does not arise when
using C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. This
is because when C_SignEncryptUpdate is called, precisely the same input is passed to
both the active signing operation and the active encryption operation; however, when
C_DecryptVerifyUpdate is called, the input passed to the active verifying operation is
the output of the active decryption operation. This issue comes up only when the
mechanism used for decryption performs padding.

In particular, envision a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consider an application which
will simultaneously decrypt this ciphertext and verify a signature on the original plaintext
thereby obtained.

After initializing decryption and verification operations, the application passes the 24-
byte ciphertext (3 DES blocks) into C_DecryptVerifyUpdate.
C_DecryptVerifyUpdate returns exactly 16 bytes of plaintext, since at this point,
Cryptoki doesn’t know if there’s more ciphertext coming, or if the last block of
ciphertext held any padding. These 16 bytes of plaintext are passed into the active
verification operation.

Since there is no more ciphertext, the application calls C_DecryptFinal. This tells
Cryptoki that there’s no more ciphertext coming, and the call returns the last 2 bytes of
plaintext. However, since the active decryption and verification operations are linked
only through the C_DecryptVerifyUpdate call, these 2 bytes of plaintext are not passed
on to the verification mechanism.

A call to C_VerifyFinal, therefore, would verify whether or not the signature supplied is
a valid signature on the first 16 bytes of the plaintext, not on the entire plaintext. It is
crucial that, before C_VerifyFinal is called, the last 2 bytes of plaintext get passed into
the active verification operation via a C_VerifyUpdate call.

Because of this, it is critical that when an application uses a padded decryption
mechanism with C_DecryptVerifyUpdate, it knows exactly how much plaintext has
been passed into the active verification operation. Extreme caution is warranted when
using a padded decryption mechanism with C_DecryptVerifyUpdate.

Return values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

11. FUNCTIONS 171

April 2009 Copyright © 2009 RSA Security Inc.

Example:

#define BUF_SZ 512

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hDecryptionKey, hMacKey;
CK_BYTE iv[8];
CK_MECHANISM decryptionMechanism = {
 CKM_DES_ECB, iv, sizeof(iv)
};
CK_MECHANISM verifyMechanism = {
 CKM_DES_MAC, NULL_PTR, 0
};
CK_BYTE encryptedData[(2*BUF_SZ)+8];
CK_BYTE MAC[4];
CK_ULONG ulMacLen;
CK_BYTE data[BUF_SZ];
CK_ULONG ulDataLen, ulLastUpdateSize;
CK_RV rv;

.
.
memset(iv, 0, sizeof(iv));
memset(encryptedData, ‘A’, ((2*BUF_SZ)+8));
rv = C_DecryptInit(hSession, &decryptionMechanism,

hDecryptionKey);
if (rv != CKR_OK) {
 .
 .
}
rv = C_VerifyInit(hSession, &verifyMechanism, hMacKey);
if (rv != CKR_OK){
 .
 .
}

ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
 hSession,
 &encryptedData[0], BUF_SZ,
 data, &ulDataLen);
.
.
ulDataLen = sizeof(data);
rv = C_DecryptVerifyUpdate(
 hSession,
 &encryptedData[BUF_SZ], BUF_SZ,
 data, &uldataLen);
.
.

172 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

/*
 * The last portion of the buffer needs to be handled

with
 * separate calls to deal with padding issues in ECB mode
 */

/* First, complete the decryption of the buffer */
ulLastUpdateSize = sizeof(data);
rv = C_DecryptUpdate(
 hSession,
 &encryptedData[BUF_SZ*2], 8,
 data, &ulLastUpdateSize);
.
.
/* Get last little piece of plaintext. Should have

length 0 */
ulDataLen = sizeof(data)-ulLastUpdateSize;
rv = C_DecryptFinal(hSession, &data[ulLastUpdateSize],

&ulDataLen);
if (rv != CKR_OK) {
 .
 .
}

/* Send last bit of plaintext to verification operation

*/
rv = C_VerifyUpdate(hSession, &data[BUF_SZ*2], 5);
if (rv != CKR_OK) {
 .
 .
}
rv = C_VerifyFinal(hSession, MAC, ulMacLen);
if (rv == CKR_SIGNATURE_INVALID) {
 .
 .
}

11.14 Key management functions

Cryptoki provides the following functions for key management:

11. FUNCTIONS 173

April 2009 Copyright © 2009 RSA Security Inc.

♦ C_GenerateKey

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKey)(
 CK_SESSION_HANDLE hSession
 CK_MECHANISM_PTR pMechanism,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 CK_OBJECT_HANDLE_PTR phKey
);
C_GenerateKey generates a secret key or set of domain parameters, creating a new
object. hSession is the session’s handle; pMechanism points to the generation
mechanism; pTemplate points to the template for the new key or set of domain
parameters; ulCount is the number of attributes in the template; phKey points to the
location that receives the handle of the new key or set of domain parameters.

If the generation mechanism is for domain parameter generation, the CKA_CLASS
attribute will have the value CKO_DOMAIN_PARAMETERS; otherwise, it will have
the value CKO_SECRET_KEY.

Since the type of key or domain parameters to be generated is implicit in the generation
mechanism, the template does not need to supply a key type. If it does supply a key type
which is inconsistent with the generation mechanism, C_GenerateKey fails and returns
the error code CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS attribute is
treated similarly.

If a call to C_GenerateKey cannot support the precise template supplied to it, it will fail
and return without creating an object.

The object created by a successful call to C_GenerateKey will have its CKA_LOCAL
attribute set to CK_TRUE.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hKey;

174 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_MECHANISM mechanism = {
 CKM_DES_KEY_GEN, NULL_PTR, 0
};
CK_RV rv;

.
.
rv = C_GenerateKey(hSession, &mechanism, NULL_PTR, 0,

&hKey);
if (rv == CKR_OK) {
 .
 .
}

♦ C_GenerateKeyPair

CK_DEFINE_FUNCTION(CK_RV, C_GenerateKeyPair)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_ATTRIBUTE_PTR pPublicKeyTemplate,
 CK_ULONG ulPublicKeyAttributeCount,
 CK_ATTRIBUTE_PTR pPrivateKeyTemplate,
 CK_ULONG ulPrivateKeyAttributeCount,
 CK_OBJECT_HANDLE_PTR phPublicKey,
 CK_OBJECT_HANDLE_PTR phPrivateKey
);
C_GenerateKeyPair generates a public/private key pair, creating new key objects.
hSession is the session’s handle; pMechanism points to the key generation mechanism;
pPublicKeyTemplate points to the template for the public key;
ulPublicKeyAttributeCount is the number of attributes in the public-key template;
pPrivateKeyTemplate points to the template for the private key;
ulPrivateKeyAttributeCount is the number of attributes in the private-key template;
phPublicKey points to the location that receives the handle of the new public key;
phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key pair generation mechanism,
the templates do not need to supply key types. If one of the templates does supply a key
type which is inconsistent with the key generation mechanism, C_GenerateKeyPair
fails and returns the error code CKR_TEMPLATE_INCONSISTENT. The
CKA_CLASS attribute is treated similarly.

If a call to C_GenerateKeyPair cannot support the precise templates supplied to it, it
will fail and return without creating any key objects.

A call to C_GenerateKeyPair will never create just one key and return. A call can fail,
and create no keys; or it can succeed, and create a matching public/private key pair.

11. FUNCTIONS 175

April 2009 Copyright © 2009 RSA Security Inc.

The key objects created by a successful call to C_GenerateKeyPair will have their
CKA_LOCAL attributes set to CK_TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey;
CK_MECHANISM mechanism = {
 CKM_RSA_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_ULONG modulusBits = 768;
CK_BYTE publicExponent[] = { 3 };
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_VERIFY, &true, sizeof(true)},
 {CKA_WRAP, &true, sizeof(true)},
 {CKA_MODULUS_BITS, &modulusBits, sizeof(modulusBits)},
 {CKA_PUBLIC_EXPONENT, publicExponent, sizeof

(publicExponent)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_PRIVATE, &true, sizeof(true)},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_SENSITIVE, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)},
 {CKA_SIGN, &true, sizeof(true)},
 {CKA_UNWRAP, &true, sizeof(true)}
};

176 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

CK_RV rv;

rv = C_GenerateKeyPair(
 hSession, &mechanism,
 publicKeyTemplate, 5,
 privateKeyTemplate, 8,
 &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
 .
 .
}

♦ C_WrapKey

CK_DEFINE_FUNCTION(CK_RV, C_WrapKey)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hWrappingKey,
 CK_OBJECT_HANDLE hKey,
 CK_BYTE_PTR pWrappedKey,
 CK_ULONG_PTR pulWrappedKeyLen
);
C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s
handle; pMechanism points to the wrapping mechanism; hWrappingKey is the handle of
the wrapping key; hKey is the handle of the key to be wrapped; pWrappedKey points to
the location that receives the wrapped key; and pulWrappedKeyLen points to the location
that receives the length of the wrapped key.

C_WrapKey uses the convention described in Section 11.2 on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key
supports wrapping, must be CK_TRUE. The CKA_EXTRACTABLE attribute of the
key to be wrapped must also be CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its
having its CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKey fails
with error code CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the
specified wrapping key and mechanism solely because of its length, then C_WrapKey
fails with error code CKR_KEY_SIZE_RANGE.

C_WrapKey can be used in the following situations:

• To wrap any secret key with a public key that supports encryption and decryption.

• To wrap any secret key with any other secret key. Consideration must be given to key
size and mechanism strength or the token may not allow the operation.

• To wrap a private key with any secret key.

11. FUNCTIONS 177

April 2009 Copyright © 2009 RSA Security Inc.

Of course, tokens vary in which types of keys can actually be wrapped with which
mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the
attribute CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an
attribute set that will be compared against the attributes of the key to be wrapped. If all
attributes match according to the C_FindObject rules of attribute matching then the wrap
will proceed. The value of this attribute is an attribute template and the size is the number
of items in the template times the size of CK_ATTRIBUTE. If this attribute is not
supplied then any template is acceptable. Attributes not present are not checked. If any
attribute mismatch occurs on an attempt to wrap a key then the function shall return
CKR_KEY_HANDLE_INVALID.

Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_NOT_WRAPPABLE,
CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPING_KEY_HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hWrappingKey, hKey;
CK_MECHANISM mechanism = {
 CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8];
CK_ULONG ulWrappedKeyLen;
CK_RV rv;

.
.
ulWrappedKeyLen = sizeof(wrappedKey);
rv = C_WrapKey(
 hSession, &mechanism,
 hWrappingKey, hKey,
 wrappedKey, &ulWrappedKeyLen);
if (rv == CKR_OK) {
 .
 .

178 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

}

♦ C_UnwrapKey

CK_DEFINE_FUNCTION(CK_RV, C_UnwrapKey)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hUnwrappingKey,
 CK_BYTE_PTR pWrappedKey,
 CK_ULONG ulWrappedKeyLen,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulAttributeCount,
 CK_OBJECT_HANDLE_PTR phKey
);
C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handle; pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points
to the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate
points to the template for the new key; ulAttributeCount is the number of attributes in the
template; phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key
supports unwrapping, must be CK_TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE,
and the CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The
CKA_EXTRACTABLE attribute is by default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism
structure at the same time that the key is unwrapped.

If a call to C_UnwrapKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_UnwrapKey will have its
CKA_LOCAL attribute set to CK_FALSE.

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute
set that will be added to attributes of the key to be unwrapped. If the attributes do not
conflict with the user supplied attribute template, in ‘pTemplate’, then the unwrap will
proceed. The value of this attribute is an attribute template and the size is the number of
items in the template times the size of CK_ATTRIBUTE. If this attribute is not present
on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function shall return
CKR_TEMPLATE_INCONSISTENT.

11. FUNCTIONS 179

April 2009 Copyright © 2009 RSA Security Inc.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID,
CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,
CKR_USER_NOT_LOGGED_IN, CKR_WRAPPED_KEY_INVALID,
CKR_WRAPPED_KEY_LEN_RANGE.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hUnwrappingKey, hKey;
CK_MECHANISM mechanism = {
 CKM_DES3_ECB, NULL_PTR, 0
};
CK_BYTE wrappedKey[8] = {...};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
rv = C_UnwrapKey(
 hSession, &mechanism, hUnwrappingKey,
 wrappedKey, sizeof(wrappedKey), template, 4, &hKey);
if (rv == CKR_OK) {
 .
 .
}

180 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_DeriveKey

CK_DEFINE_FUNCTION(CK_RV, C_DeriveKey)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hBaseKey,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulAttributeCount,
 CK_OBJECT_HANDLE_PTR phKey
);
C_DeriveKey derives a key from a base key, creating a new key object. hSession is the
session’s handle; pMechanism points to a structure that specifies the key derivation
mechanism; hBaseKey is the handle of the base key; pTemplate points to the template for
the new key; ulAttributeCount is the number of attributes in the template; and phKey
points to the location that receives the handle of the derived key.

The values of the CK_SENSITIVE, CK_ALWAYS_SENSITIVE,
CK_EXTRACTABLE, and CK_NEVER_EXTRACTABLE attributes for the base key
affect the values that these attributes can hold for the newly-derived key. See the
description of each particular key-derivation mechanism in Section 11.17.2 for any
constraints of this type.

If a call to C_DeriveKey cannot support the precise template supplied to it, it will fail
and return without creating any key object.

The key object created by a successful call to C_DeriveKey will have its CKA_LOCAL
attribute set to CK_FALSE.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE,
CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR_TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_OBJECT_HANDLE hPublicKey, hPrivateKey, hKey;
CK_MECHANISM keyPairMechanism = {

11. FUNCTIONS 181

April 2009 Copyright © 2009 RSA Security Inc.

 CKM_DH_PKCS_KEY_PAIR_GEN, NULL_PTR, 0
};
CK_BYTE prime[] = {...};
CK_BYTE base[] = {...};
CK_BYTE publicValue[128];
CK_BYTE otherPublicValue[128];
CK_MECHANISM mechanism = {
 CKM_DH_PKCS_DERIVE, otherPublicValue,

sizeof(otherPublicValue)
};
CK_ATTRIBUTE pTemplate[] = {
 CKA_VALUE, &publicValue, sizeof(publicValue)}
};
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE publicKeyTemplate[] = {
 {CKA_PRIME, prime, sizeof(prime)},
 {CKA_BASE, base, sizeof(base)}
};
CK_ATTRIBUTE privateKeyTemplate[] = {
 {CKA_DERIVE, &true, sizeof(true)}
};
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_ENCRYPT, &true, sizeof(true)},
 {CKA_DECRYPT, &true, sizeof(true)}
};
CK_RV rv;

.
.
rv = C_GenerateKeyPair(
 hSession, &keyPairMechanism,
 publicKeyTemplate, 2,
 privateKeyTemplate, 1,
 &hPublicKey, &hPrivateKey);
if (rv == CKR_OK) {
 rv = C_GetAttributeValue(hSession, hPublicKey,

&pTemplate, 1);
 if (rv == CKR_OK) {
 /* Put other guy’s public value in otherPublicValue

*/
 .
 .
 rv = C_DeriveKey(
 hSession, &mechanism,
 hPrivateKey, template, 4, &hKey);
 if (rv == CKR_OK) {

182 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

 .
 .
 }
 }
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

♦ C_SeedRandom

CK_DEFINE_FUNCTION(CK_RV, C_SeedRandom)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pSeed,
 CK_ULONG ulSeedLen
);
C_SeedRandom mixes additional seed material into the token’s random number
generator. hSession is the session’s handle; pSeed points to the seed material; and
ulSeedLen is the length in bytes of the seed material.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_SEED_NOT_SUPPORTED,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_GenerateRandom.

♦ C_GenerateRandom

CK_DEFINE_FUNCTION(CK_RV, C_GenerateRandom)(
 CK_SESSION_HANDLE hSession,
 CK_BYTE_PTR pRandomData,
 CK_ULONG ulRandomLen
);
C_GenerateRandom generates random or pseudo-random data. hSession is the session’s
handle; pRandomData points to the location that receives the random data; and
ulRandomLen is the length in bytes of the random or pseudo-random data to be
generated.

Return values: CKR_ARGUMENTS_BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,

11. FUNCTIONS 183

April 2009 Copyright © 2009 RSA Security Inc.

CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN.

Example:

CK_SESSION_HANDLE hSession;
CK_BYTE seed[] = {...};
CK_BYTE randomData[] = {...};
CK_RV rv;

.
.
rv = C_SeedRandom(hSession, seed, sizeof(seed));
if (rv != CKR_OK) {
 .
 .
}
rv = C_GenerateRandom(hSession, randomData,

sizeof(randomData));
if (rv == CKR_OK) {
 .
 .
}

11.16 Parallel function management functions

Cryptoki provides the following functions for managing parallel execution of
cryptographic functions. These functions exist only for backwards compatibility.

♦ C_GetFunctionStatus

CK_DEFINE_FUNCTION(CK_RV, C_GetFunctionStatus)(
 CK_SESSION_HANDLE hSession
);
In previous versions of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in parallel with an application. Now, however, C_GetFunctionStatus is a
legacy function which should simply return the value
CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

184 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

♦ C_CancelFunction

CK_DEFINE_FUNCTION(CK_RV, C_CancelFunction)(
 CK_SESSION_HANDLE hSession
);
In previous versions of Cryptoki, C_CancelFunction cancelled a function running in
parallel with an application. Now, however, C_CancelFunction is a legacy function
which should simply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_CLOSED.

11.17 Callback functions

Cryptoki sessions can use function pointers of type CK_NOTIFY to notify the
application of certain events.

11.17.1 Surrender callbacks

Cryptographic functions (i.e., any functions falling under one of these categories:
encryption functions; decryption functions; message digesting functions; signing and
MACing functions; functions for verifying signatures and MACs; dual-purpose
cryptographic functions; key management functions; random number generation
functions) executing in Cryptoki sessions can periodically surrender control to the
application who called them if the session they are executing in had a notification
callback function associated with it when it was opened. They do this by calling the
session’s callback with the arguments (hSession, CKN_SURRENDER,
pApplication), where hSession is the session’s handle and pApplication was
supplied to C_OpenSession when the session was opened. Surrender callbacks should
return either the value CKR_OK (to indicate that Cryptoki should continue executing the
function) or the value CKR_CANCEL (to indicate that Cryptoki should abort execution
of the function). Of course, before returning one of these values, the callback function
can perform some computation, if desired.

A typical use of a surrender callback might be to give an application user feedback
during a lengthy key pair generation operation. Each time the application receives a
callback, it could display an additional “.” to the user. It might also examine the
keyboard’s activity since the last surrender callback, and abort the key pair generation
operation (probably by returning the value CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

11. FUNCTIONS 185

April 2009 Copyright © 2009 RSA Security Inc.

11.17.2 Vendor-defined callbacks

Library vendors can also define additional types of callbacks. Because of this extension
capability, application-supplied notification callback routines should examine each
callback they receive, and if they are unfamiliar with the type of that callback, they
should immediately give control back to the library by returning with the value
CKR_OK.

186 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

12 Cryptoki tips and reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how
Cryptoki works.

12.1 Operations, sessions, and threads

In Cryptoki, there are several different types of operations which can be “active” in a
session. An active operation is essentially one which takes more than one Cryptoki
function call to perform. The types of active operations are object searching; encryption;
decryption; message-digesting; signature with appendix; signature with recovery;
verification with appendix; and verification with recovery.

A given session can have 0, 1, or 2 operations active at a time. It can only have 2
operations active simultaneously if the token supports this; moreover, those two
operations must be one of the four following pairs of operations: digesting and
encryption; decryption and digesting; signing and encryption; decryption and
verification.

If an application attempts to initialize an operation (make it active) in a session, but this
cannot be accomplished because of some other active operation(s), the application
receives the error value CKR_OPERATION_ACTIVE. This error value can also be
received if a session has an active operation and the application attempts to use that
session to perform any of various operations which do not become “active”, but which
require cryptographic processing, such as using the token’s random number generator, or
generating/wrapping/unwrapping/deriving a key.

To abandon an active operation an application may have to complete the operation and
discard the result. Closing the session will also have this effect. Alternatively. the library
may allow active operations to be abandoned by the application, simply by allowing
initialization for some other operation. In this case CKR_OPERATION_ACTIVE will
not be returned but the previous active operation will be unusable.

Different threads of an application should never share sessions, unless they are extremely
careful not to make function calls at the same time. This is true even if the Cryptoki
library was initialized with locking enabled for thread-safety.

12.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an application, are accessing a set
of common objects the issue of object protection becomes important. This is especially
the case when application A activates an operation using object O, and application B
attempts to delete O before application A has finished the operation. Unfortunately,
variation in device capabilities makes an absolute behavior specification impractical.
General guidelines are presented here for object protection behavior.

12. CRYPTOKI TIPS AND REMINDERS 187

April 2009 Copyright © 2009 RSA Security Inc.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another application or thread that is using the object in an active
operation until that operation is complete. For instance, application A has begun a
signature operation with private key P and application B attempts to delete P while the
signature is in progress. In this case, one of two things should happen. The object is
deleted from the device but the operation is allow to complete because the operation uses
a temporary copy of the object, or the delete operation blocks until the signature
operation has completed. If neither of these actions can be supported by an
implementation, then the error code CKR_OBJECT_HANDLE_INVALID may be
returned to application A to indicate that the key being used to perform its active
operation has been deleted.

Whenever possible, changing the value of an object attribute should impact the behavior
of active operations in other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure
should be returned to the application with the active operation.

12.3 Objects, attributes, and templates

In general, a Cryptoki function which requires a template for an object needs the template
to specify—either explicitly or implicitly—any attributes that are not specified
elsewhere. If a template specifies a particular attribute more than once, the function can
return CKR_TEMPLATE_INVALID or it can choose a particular value of the attribute
from among those specified and use that value. In any event, object attributes are always
single-valued.

12.4 Signing with recovery

Signing with recovery is a general alternative to ordinary digital signatures (“signing
with appendix”) which is supported by certain mechanisms. Recall that for ordinary
digital signatures, a signature of a message is computed as some function of the message
and the signer’s private key; this signature can then be used (together with the message
and the signer’s public key) as input to the verification process, which yields a simple
“signature valid/signature invalid” decision.

Signing with recovery also creates a signature from a message and the signer’s private
key. However, to verify this signature, no message is required as input. Only the
signature and the signer’s public key are input to the verification process, and the
verification process outputs either “signature invalid” or—if the signature is valid—the
original message.

Consider a simple example with the CKM_RSA_X_509 mechanism. Here, a message is
a byte string which we will consider to be a number modulo n (the signer’s RSA
modulus). When this mechanism is used for ordinary digital signatures (signatures with
appendix), a signature is computed by raising the message to the signer’s private

188 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

exponent modulo n. To verify this signature, a verifier raises the signature to the signer’s
public exponent modulo n, and accepts the signature as valid if and only if the result
matches the original message.

If CKM_RSA_X_509 is used to create signatures with recovery, the signatures are
produced in exactly the same fashion. For this particular mechanism, any number
modulo n is a valid signature. To recover the message from a signature, the signature is
raised to the signer’s public exponent modulo n.

A. MANIFEST CONSTANTS 189

April 2009 Copyright © 2009 RSA Security Inc.

A Manifest constants

The following definitions can be found in the appropriate header file.

Also, refer [PKCS #11 M1] and [PKCS #11 M2] for additional
definitions.

#define CK_INVALID_HANDLE 0

#define CKN_SURRENDER 0

#define CK_UNAVAILABLE_INFORMATION (~0UL)
#define CK_EFFECTIVELY_INFINITE 0

#define CKF_DONT_BLOCK 1

#define CKF_ARRAY_ATTRIBUTE 0x40000000

#define CKU_SO 0
#define CKU_USER 1
#define CKU_CONTEXT_SPECIFIC 2

#define CKS_RO_PUBLIC_SESSION 0
#define CKS_RO_USER_FUNCTIONS 1
#define CKS_RW_PUBLIC_SESSION 2
#define CKS_RW_USER_FUNCTIONS 3
#define CKS_RW_SO_FUNCTIONS 4

#define CKO_DATA 0x00000000
#define CKO_CERTIFICATE 0x00000001
#define CKO_PUBLIC_KEY 0x00000002
#define CKO_PRIVATE_KEY 0x00000003
#define CKO_SECRET_KEY 0x00000004
#define CKO_HW_FEATURE 0x00000005
#define CKO_DOMAIN_PARAMETERS 0x00000006
#define CKO_MECHANISM 0x00000007
#define CKO_VENDOR_DEFINED 0x80000000

#define CKH_MONOTONIC_COUNTER 0x00000001
#define CKH_CLOCK 0x00000002
#define CKH_USER_INTERFACE 0x00000003
#define CKH_VENDOR_DEFINED 0x80000000

#define CKK_VENDOR_DEFINED 0x80000000

#define CKC_VENDOR_DEFINED 0x80000000

#define CKA_CLASS 0x00000000
#define CKA_TOKEN 0x00000001
#define CKA_PRIVATE 0x00000002
#define CKA_LABEL 0x00000003
#define CKA_APPLICATION 0x00000010
#define CKA_VALUE 0x00000011
#define CKA_OBJECT_ID 0x00000012
#define CKA_CERTIFICATE_TYPE 0x00000080
#define CKA_ISSUER 0x00000081

190 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

#define CKA_SERIAL_NUMBER 0x00000082
#define CKA_AC_ISSUER 0x00000083
#define CKA_OWNER 0x00000084
#define CKA_ATTR_TYPES 0x00000085
#define CKA_TRUSTED 0x00000086
#define CKA_CERTIFICATE_CATEGORY 0x00000087
#define CKA_JAVA_MIDP_SECURITY_DOMAIN 0x00000088
#define CKA_URL 0x00000089
#define CKA_HASH_OF_SUBJECT_PUBLIC_KEY 0x0000008A
#define CKA_HASH_OF_ISSUER_PUBLIC_KEY 0x0000008B
#define CKA_NAME_HASH_ALGORITHM 0x0000008C
#define CKA_CHECK_VALUE 0x00000090
#define CKA_KEY_TYPE 0x00000100
#define CKA_SUBJECT 0x00000101
#define CKA_ID 0x00000102
#define CKA_SENSITIVE 0x00000103
#define CKA_ENCRYPT 0x00000104
#define CKA_DECRYPT 0x00000105
#define CKA_WRAP 0x00000106
#define CKA_UNWRAP 0x00000107
#define CKA_SIGN 0x00000108
#define CKA_SIGN_RECOVER 0x00000109
#define CKA_VERIFY 0x0000010A
#define CKA_VERIFY_RECOVER 0x0000010B
#define CKA_DERIVE 0x0000010C
#define CKA_START_DATE 0x00000110
#define CKA_END_DATE 0x00000111
#define CKA_MODULUS 0x00000120
#define CKA_MODULUS_BITS 0x00000121
#define CKA_PUBLIC_EXPONENT 0x00000122
#define CKA_PRIVATE_EXPONENT 0x00000123
#define CKA_PRIME_1 0x00000124
#define CKA_PRIME_2 0x00000125
#define CKA_EXPONENT_1 0x00000126
#define CKA_EXPONENT_2 0x00000127
#define CKA_COEFFICIENT 0x00000128
#define CKA_PRIME 0x00000130
#define CKA_SUBPRIME 0x00000131
#define CKA_BASE 0x00000132
#define CKA_PRIME_BITS 0x00000133
#define CKA_SUBPRIME_BITS 0x00000134
#define CKA_VALUE_BITS 0x00000160
#define CKA_VALUE_LEN 0x00000161
#define CKA_EXTRACTABLE 0x00000162
#define CKA_LOCAL 0x00000163
#define CKA_NEVER_EXTRACTABLE 0x00000164
#define CKA_ALWAYS_SENSITIVE 0x00000165
#define CKA_KEY_GEN_MECHANISM 0x00000166
#define CKA_MODIFIABLE 0x00000170
#define CKA_COPYABLE 0x00000171
#define CKA_ECDSA_PARAMS 0x00000180
#define CKA_EC_PARAMS 0x00000180
#define CKA_EC_POINT 0x00000181
#define CKA_SECONDARY_AUTH 0x00000200 /* Deprecated */
#define CKA_AUTH_PIN_FLAGS 0x00000201 /* Deprecated */
#define CKA_ALWAYS_AUTHENTICATE 0x00000202

#define CKA_WRAP_WITH_TRUSTED 0x00000210
#define CKA_WRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000211)

 #define CKA_UNWRAP_TEMPLATE (CKF_ARRAY_ATTRIBUTE|0x00000212)

A. MANIFEST CONSTANTS 191

April 2009 Copyright © 2009 RSA Security Inc.

#define CKA_HW_FEATURE_TYPE 0x00000300
#define CKA_RESET_ON_INIT 0x00000301
#define CKA_HAS_RESET 0x00000302
#define CKA_PIXEL_X 0x00000400
#define CKA_PIXEL_Y 0x00000401
#define CKA_RESOLUTION 0x00000402
#define CKA_CHAR_ROWS 0x00000403
#define CKA_CHAR_COLUMNS 0x00000404
#define CKA_COLOR 0x00000405
#define CKA_BITS_PER_PIXEL 0x00000406
#define CKA_CHAR_SETS 0x00000480
#define CKA_ENCODING_METHODS 0x00000481
#define CKA_MIME_TYPES 0x00000482
#define CKA_MECHANISM_TYPE 0x00000500
#define CKA_REQUIRED_CMS_ATTRIBUTES 0x00000501
#define CKA_DEFAULT_CMS_ATTRIBUTES 0x00000502
#define CKA_SUPPORTED_CMS_ATTRIBUTES 0x00000503
#define CKA_ALLOWED_MECHANISMS (CKF_ARRAY_ATTRIBUTE|0x00000600)
#define CKA_VENDOR_DEFINED 0x80000000

#define CKM_VENDOR_DEFINED 0x80000000

#define CKR_OK 0x00000000
#define CKR_CANCEL 0x00000001
#define CKR_HOST_MEMORY 0x00000002
#define CKR_SLOT_ID_INVALID 0x00000003
#define CKR_GENERAL_ERROR 0x00000005
#define CKR_FUNCTION_FAILED 0x00000006
#define CKR_ARGUMENTS_BAD 0x00000007
#define CKR_NO_EVENT 0x00000008
#define CKR_NEED_TO_CREATE_THREADS 0x00000009
#define CKR_CANT_LOCK 0x0000000A
#define CKR_ATTRIBUTE_READ_ONLY 0x00000010
#define CKR_ATTRIBUTE_SENSITIVE 0x00000011
#define CKR_ATTRIBUTE_TYPE_INVALID 0x00000012
#define CKR_ATTRIBUTE_VALUE_INVALID 0x00000013
#define CKR_COPY_PROHIBITED 0x0000001A
#define CKR_DATA_INVALID 0x00000020
#define CKR_DATA_LEN_RANGE 0x00000021
#define CKR_DEVICE_ERROR 0x00000030
#define CKR_DEVICE_MEMORY 0x00000031
#define CKR_DEVICE_REMOVED 0x00000032
#define CKR_ENCRYPTED_DATA_INVALID 0x00000040
#define CKR_ENCRYPTED_DATA_LEN_RANGE 0x00000041
#define CKR_FUNCTION_CANCELED 0x00000050
#define CKR_FUNCTION_NOT_PARALLEL 0x00000051
#define CKR_FUNCTION_NOT_SUPPORTED 0x00000054
#define CKR_KEY_HANDLE_INVALID 0x00000060
#define CKR_KEY_SIZE_RANGE 0x00000062
#define CKR_KEY_TYPE_INCONSISTENT 0x00000063
#define CKR_KEY_NOT_NEEDED 0x00000064
#define CKR_KEY_CHANGED 0x00000065
#define CKR_KEY_NEEDED 0x00000066
#define CKR_KEY_INDIGESTIBLE 0x00000067
#define CKR_KEY_FUNCTION_NOT_PERMITTED 0x00000068
#define CKR_KEY_NOT_WRAPPABLE 0x00000069
#define CKR_KEY_UNEXTRACTABLE 0x0000006A
#define CKR_MECHANISM_INVALID 0x00000070
#define CKR_MECHANISM_PARAM_INVALID 0x00000071
#define CKR_OBJECT_HANDLE_INVALID 0x00000082

192 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

#define CKR_OPERATION_ACTIVE 0x00000090
#define CKR_OPERATION_NOT_INITIALIZED 0x00000091
#define CKR_PIN_INCORRECT 0x000000A0
#define CKR_PIN_INVALID 0x000000A1
#define CKR_PIN_LEN_RANGE 0x000000A2
#define CKR_PIN_EXPIRED 0x000000A3
#define CKR_PIN_LOCKED 0x000000A4
#define CKR_SESSION_CLOSED 0x000000B0
#define CKR_SESSION_COUNT 0x000000B1
#define CKR_SESSION_HANDLE_INVALID 0x000000B3
#define CKR_SESSION_PARALLEL_NOT_SUPPORTED 0x000000B4
#define CKR_SESSION_READ_ONLY 0x000000B5
#define CKR_SESSION_EXISTS 0x000000B6
#define CKR_SESSION_READ_ONLY_EXISTS 0x000000B7
#define CKR_SESSION_READ_WRITE_SO_EXISTS 0x000000B8
#define CKR_SIGNATURE_INVALID 0x000000C0
#define CKR_SIGNATURE_LEN_RANGE 0x000000C1
#define CKR_TEMPLATE_INCOMPLETE 0x000000D0
#define CKR_TEMPLATE_INCONSISTENT 0x000000D1
#define CKR_TOKEN_NOT_PRESENT 0x000000E0
#define CKR_TOKEN_NOT_RECOGNIZED 0x000000E1
#define CKR_TOKEN_WRITE_PROTECTED 0x000000E2
#define CKR_UNWRAPPING_KEY_HANDLE_INVALID 0x000000F0
#define CKR_UNWRAPPING_KEY_SIZE_RANGE 0x000000F1
#define CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT 0x000000F2
#define CKR_USER_ALREADY_LOGGED_IN 0x00000100
#define CKR_USER_NOT_LOGGED_IN 0x00000101
#define CKR_USER_PIN_NOT_INITIALIZED 0x00000102
#define CKR_USER_TYPE_INVALID 0x00000103
#define CKR_USER_ANOTHER_ALREADY_LOGGED_IN 0x00000104
#define CKR_USER_TOO_MANY_TYPES 0x00000105
#define CKR_WRAPPED_KEY_INVALID 0x00000110
#define CKR_WRAPPED_KEY_LEN_RANGE 0x00000112
#define CKR_WRAPPING_KEY_HANDLE_INVALID 0x00000113
#define CKR_WRAPPING_KEY_SIZE_RANGE 0x00000114
#define CKR_WRAPPING_KEY_TYPE_INCONSISTENT 0x00000115
#define CKR_RANDOM_SEED_NOT_SUPPORTED 0x00000120
#define CKR_RANDOM_NO_RNG 0x00000121
#define CKR_DOMAIN_PARAMS_INVALID 0x00000130
#define CKR_BUFFER_TOO_SMALL 0x00000150
#define CKR_SAVED_STATE_INVALID 0x00000160
#define CKR_INFORMATION_SENSITIVE 0x00000170
#define CKR_STATE_UNSAVEABLE 0x00000180
#define CKR_CRYPTOKI_NOT_INITIALIZED 0x00000190
#define CKR_CRYPTOKI_ALREADY_INITIALIZED 0x00000191
#define CKR_MUTEX_BAD 0x000001A0
#define CKR_MUTEX_NOT_LOCKED 0x000001A1
#define CKR_FUNCTION_REJECTED 0x00000200
#define CKR_VENDOR_DEFINED 0x80000000

B Token profiles

This appendix describes “profiles,” i.e., sets of mechanisms, which a token should
support for various common types of application. It is expected that these sets would be
standardized as parts of the various applications, for instance within a list of requirements
on the module that provides cryptographic services to the application (which may be a

B. TOKEN PROFILES 193

April 2009 Copyright © 2009 RSA Security Inc.

Cryptoki token in some cases). Thus, these profiles are intended for reference only at this
point, and are not part of this standard.

The following table summarizes the mechanisms relevant to two common types of
applications:

Table B-1, Mechanisms and profiles
 Application

Mechanism

Government
Authentication-only

Cellular Digital Packet
Data

CKM_DSA_KEY_PAIR_GEN
CKM_DSA
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_DERIVE
CKM_RC4_KEY_GEN
CKM_RC4
CKM_SHA_1

B.1 Government authentication-only

The U.S. government has standardized on the Digital Signature Algorithm as defined in
FIPS PUB 186-2 for signatures and the Secure Hash Algorithm as defined in FIPS PUB
180-2 for message digesting. The relevant mechanisms include the following:

DSA key generation (512-1024 bits)
DSA (512-1024 bits)
SHA-1

B.2 Cellular Digital Packet Data

Cellular Digital Packet Data (CDPD) is a set of protocols for wireless communication.
The basic set of mechanisms to support CDPD applications includes the following:

Diffie-Hellman key generation (256-1024 bits)
Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)
RC4 (40-128 bits)

(The initial CDPD security specification limits the size of the Diffie-Hellman key to 256
bits, but it has been recommended that the size be increased to at least 512 bits.)

B.3 Other profiles

The reader is also informed of the presence of other profiles of PKCS #11 v2. – See
[PKCS #11-C] and [PKCS #11-P]

194 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C Comparison of Cryptoki and other APIs

This appendix compares Cryptoki with the following cryptographic APIs:

• ANSI N13-94 - Guideline X9.TG-12-199X, Using Tessera in Financial Systems: An
Application Programming Interface, April 29, 1994

• X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

C.1 FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. It is at a level
similar to Cryptoki. The following table lists the FORTEZZA CIPG functions, together
with the equivalent Cryptoki functions:

Table C-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki
CI_ChangePIN C_InitPIN, C_SetPIN
CI_CheckPIN C_Login
CI_Close C_CloseSession
CI_Decrypt C_DecryptInit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal
CI_DeleteCertificate C_DestroyObject
CI_DeleteKey C_DestroyObject
CI_Encrypt C_EncryptInit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal
CI_ExtractX C_WrapKey
CI_GenerateIV C_GenerateRandom
CI_GenerateMEK C_GenerateKey
CI_GenerateRa C_GenerateRandom
CI_GenerateRandom C_GenerateRandom
CI_GenerateTEK C_GenerateKey
CI_GenerateX C_GenerateKeyPair
CI_GetCertificate C_FindObjects
CI_Configuration C_GetTokenInfo
CI_GetHash C_DigestInit, C_Digest, C_DigestUpdate, and

C_DigestFinal
CI_GetIV No equivalent
CI_GetPersonalityList C_FindObjects
CI_GetState C_GetSessionInfo
CI_GetStatus C_GetTokenInfo

C. COMPARISON OF CRYPTOKI AND OTHER APIS 195

April 2009 Copyright © 2009 RSA Security Inc.

FORTEZZA CIPG Equivalent Cryptoki
CI_GetTime C_GetTokenInfo or

C_GetAttributeValue(clock object) [preferred]
CI_Hash C_DigestInit, C_Digest, C_DigestUpdate, and

C_DigestFinal
CI_Initialize C_Initialize
CI_InitializeHash C_DigestInit
CI_InstallX C_UnwrapKey
CI_LoadCertificate C_CreateObject
CI_LoadDSAParameters C_CreateObject
CI_LoadInitValues C_SeedRandom
CI_LoadIV C_EncryptInit, C_DecryptInit
CI_LoadK C_SignInit
CI_LoadPublicKeyParameters C_CreateObject
CI_LoadPIN C_SetPIN
CI_LoadX C_CreateObject
CI_Lock Implicit in session management
CI_Open C_OpenSession
CI_RelayX C_WrapKey
CI_Reset C_CloseAllSessions
CI_Restore Implicit in session management
CI_Save Implicit in session management
CI_Select C_OpenSession
CI_SetConfiguration No equivalent
CI_SetKey C_EncryptInit, C_DecryptInit
CI_SetMode C_EncryptInit, C_DecryptInit
CI_SetPersonality C_CreateObject
CI_SetTime No equivalent
CI_Sign C_SignInit, C_Sign
CI_Terminate C_CloseAllSessions
CI_Timestamp C_SignInit, C_Sign
CI_Unlock Implicit in session management
CI_UnwrapKey C_UnwrapKey
CI_VerifySignature C_VerifyInit, C_Verify
CI_VerifyTimestamp C_VerifyInit, C_Verify
CI_WrapKey C_WrapKey
CI_Zeroize C_InitToken

196 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

C.2 GCS-API

This proposed standard defines an API to high-level security services such as
authentication of identities and data-origin, non-repudiation, and separation and
protection. It is at a higher level than Cryptoki. The following table lists the GCS-API
functions with the Cryptoki functions used to implement the functions. Note that full
support of GCS-API is left for future versions of Cryptoki.

Table C-2, GCS-API vs. Cryptoki

GCS-API Cryptoki implementation
retrieve_CC
release_CC
generate_hash C_DigestInit, C_Digest
generate_random_number C_GenerateRandom
generate_checkvalue C_SignInit, C_Sign, C_SignUpdate,

C_SignFinal
verify_checkvalue C_VerifyInit, C_Verify, C_VerifyUpdate,

C_VerifyFinal
data_encipher C_EncryptInit, C_Encrypt, C_EncryptUpdate,

C_EncryptFinal
data_decipher C_DecryptInit, C_Decrypt, C_DecryptUpdate,

C_DecryptFinal
create_CC
derive_key C_DeriveKey
generate_key C_GenerateKey
store_CC
delete_CC
replicate_CC
export_key C_WrapKey
import_key C_UnwrapKey
archive_CC C_WrapKey
restore_CC C_UnwrapKey
set_key_state
generate_key_pattern
verify_key_pattern
derive_clear_key C_DeriveKey
generate_clear_key C_GenerateKey
load_key_parts
clear_key_encipher C_WrapKey
clear_key_decipher C_UnwrapKey

C. COMPARISON OF CRYPTOKI AND OTHER APIS 197

April 2009 Copyright © 2009 RSA Security Inc.

GCS-API Cryptoki implementation
change_key_context
load_initial_key
generate_initial_key
set_current_master_key
protect_under_new_master_key
protect_under_current_master_key
initialise_random_number_generator C_SeedRandom
install_algorithm
de_install_algorithm
disable_algorithm
enable_algorithm
set_defaults

198 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

D Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. The RC5 block cipher is protected by U.S. Patents 5,724,428 and
5,835,600. RSA Security Inc. makes no other patent claims on the constructions
described in this document, although specific underlying techniques may be covered.

RSA, RC2 and RC4 are registered trademarks of RSA Security Inc. RC5 is a trademark
of RSA Security Inc.

CAST, CAST3, CAST5, and CAST128 are registered trademarks of Entrust
Technologies. OS/2 and CDMF (Commercial Data Masking Facility) are registered
trademarks of International Business Machines Corporation. LYNKS is a registered
trademark of SPYRUS Corporation. IDEA is a registered trademark of Ascom Systec.
Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is a registered trademark of UNIX
System Laboratories. FORTEZZA is a registered trademark of the National Security
Agency.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.

E. METHOD FOR EXPOSING MULTIPLE-PINS ON A TOKEN THROUGH CRYPTOKI
(DEPRECATED) 199

April 2009 Copyright © 2009 RSA Security Inc.

E Method for Exposing Multiple-PINs on a Token Through
Cryptoki (deprecated)

Note: This support may be present for backwards compatibility. Refer to
PKCS11 V 2.11 for details.

200 PKCS #11 BASE FUNCTIONALITY V2.30: CRYPTOKI

Copyright © 2009 RSA Security Inc. April 2009

F Revision History

This is the initial version of PKCS #11 Base Functionality v2.30.

