Changes In Branch monocypher Through [567d112dc6] Excluding Merge-Ins
This is equivalent to a diff from 542443e166 to 567d112dc6
2019-01-11
| ||
16:45 | Many unrelated changes check-in: 5db79120e2 user: rkeene tags: trunk | |
16:43 | Use Tcl for free() and malloc() within argon2 Closed-Leaf check-in: e61a5fb78c user: rkeene tags: monocypher | |
16:08 | Removed all heap-based memory allocations since they can be done on the stack now that they are constant sized check-in: 567d112dc6 user: rkeene tags: monocypher | |
15:53 | Add AES256-CTR Tcl command check-in: ed43f19076 user: rkeene tags: monocypher | |
2019-01-10
| ||
08:41 | Started switching to monocypher check-in: 1dbc43abc9 user: rkeene tags: monocypher | |
2018-12-09
| ||
22:11 | Removed extra auto_paths check-in: 542443e166 user: rkeene tags: trunk | |
22:10 | Added an RPC client REPL check-in: e9fd1f6094 user: rkeene tags: trunk | |
Modified .fossil-settings/ignore-glob from [f9b9628d3b] to [e8ee0fb684].
1 2 3 | nano.so nano.o randombytes.o | > > > < < < < < | | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | nano.so nano.o argon2.o monocypher.o aes.o randombytes.o nano.syms nano.vers nano.tcl.h Makefile pkgIndex.tcl-shared pkgIndex.tcl-static pkgIndex.tcl aclocal.m4 config.guess config.sub configure install-sh config.log config.status vendor/argon2 build/argon2/out build/argon2/INST build/work build/tcl |
Modified Makefile.in from [9775c9b8f5] to [a0a59daca8].
1 2 3 4 | CC := @CC@ AR := @AR@ RANLIB := @RANLIB@ CFLAGS := @CFLAGS@ @SHOBJFLAGS@ | > > > > > | | | | | | | | | > > | > | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | monocypher_dir := @srcdir@/vendor/monocypher/ argon2_dir := @srcdir@/vendor/argon2/ aes_dir := @srcdir@/vendor/aes/ aes_cppflags := -DAES256=1 -DCTR=1 -DCBC=0 -DECB=0 CC := @CC@ AR := @AR@ RANLIB := @RANLIB@ CFLAGS := @CFLAGS@ @SHOBJFLAGS@ CPPFLAGS := -I. -I@srcdir@ -I$(monocypher_dir) -I$(argon2_dir) -I$(aes_dir) $(aes_cppflags) @CPPFLAGS@ @SHOBJCPPFLAGS@ @DEFS@ @TCL_DEFS@ LDFLAGS := @LDFLAGS@ LIBS := @LIBS@ SHOBJLDFLAGS := @SHOBJLDFLAGS@ VPATH := @srcdir@ srcdir := @srcdir@ prefix := @prefix@ exec_prefix := @exec_prefix@ libdir := @libdir@ PACKAGE_VERSION := @PACKAGE_VERSION@ TCL_PACKAGE_PATH := @TCL_PACKAGE_PATH@ PACKAGE_INSTALL_DIR := $(TCL_PACKAGE_PATH)/tcl-nano$(PACKAGE_VERSION) INSTALL := @INSTALL@ INSTALL_PROGRAM := @INSTALL_PROGRAM@ INSTALL_DATA := @INSTALL_DATA@ export CC CFLAGS CPPFLAGS all: @EXTENSION_TARGET@ pkgIndex.tcl ifeq (@TCLEXT_BUILD@,shared) @EXTENSION_TARGET@: monocypher.o argon2.o aes.o randombytes.o nano.o Makefile $(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) $(SHOBJLDFLAGS) -o @EXTENSION_TARGET@ nano.o randombytes.o monocypher.o argon2.o aes.o $(LIBS) -@WEAKENSYMS@ @EXTENSION_TARGET@ -@REMOVESYMS@ @EXTENSION_TARGET@ else @EXTENSION_TARGET@: nano-amalgamation.o Makefile -@WEAKENSYMS@ nano-amalgamation.o -@REMOVESYMS@ nano-amalgamation.o $(AR) rc @EXTENSION_TARGET@ nano-amalgamation.o -$(RANLIB) @EXTENSION_TARGET@ endif # The amalgamation is used when compiling statically so that the same ABI can be exposed # to upstream projects rather than requiring them to filter out our symbols nano-amalgamation.c: @srcdir@/nano.c @srcdir@/randombytes.c $(monocypher_dir)monocypher.c $(argon2_dir)argon2.c $(aes_dir)aes.c Makefile rm -f nano-amalgamation.c cat @srcdir@/nano.c @srcdir@/randombytes.c $(monocypher_dir)monocypher.c $(argon2_dir)argon2.c $(aes_dir)aes.c > nano-amalgamation.c nano-amalgamation.o: nano-amalgamation.c $(monocypher_dir)monocypher.h $(argon2_dir)argon2.h $(aes_dir)aes.h @srcdir@/randombytes.h nano.tcl.h Makefile $(CC) $(CPPFLAGS) $(CFLAGS) -o nano-amalgamation.o -c nano-amalgamation.c nano.o: @srcdir@/nano.c $(monocypher_dir)monocypher.h $(argon2_dir)argon2.h $(aes_dir)aes.h @srcdir@/randombytes.h nano.tcl.h Makefile $(CC) $(CPPFLAGS) $(CFLAGS) -o nano.o -c @srcdir@/nano.c randombytes.o: @srcdir@/randombytes.c @srcdir@/randombytes.h $(CC) $(CPPFLAGS) $(CFLAGS) -o randombytes.o -c @srcdir@/randombytes.c monocypher.o: $(monocypher_dir)monocypher.c $(monocypher_dir)monocypher.h $(CC) $(CPPFLAGS) $(CFLAGS) -o monocypher.o -c $(monocypher_dir)monocypher.c argon2.o: $(argon2_dir)argon2.c $(argon2_dir)argon2.h $(monocypher_dir)monocypher.h $(CC) $(CPPFLAGS) $(CFLAGS) -o argon2.o -c $(argon2_dir)argon2.c aes.o: $(aes_dir)aes.c $(aes_dir)aes.h $(CC) $(CPPFLAGS) $(CFLAGS) -o aes.o -c $(aes_dir)aes.c pkgIndex.tcl: pkgIndex.tcl-@TCLEXT_BUILD@ cp pkgIndex.tcl-@TCLEXT_BUILD@ pkgIndex.tcl nano.tcl.h: @srcdir@/nano.tcl Makefile od -A n -v -t xC < '@srcdir@/nano.tcl' > nano.tcl.h.new.1 sed 's@ *@@g;s@..@0x&, @g' < nano.tcl.h.new.1 > nano.tcl.h.new.2 |
︙ | ︙ | |||
81 82 83 84 85 86 87 | $(INSTALL_PROGRAM) @EXTENSION_TARGET@ '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' $(INSTALL_DATA) pkgIndex.tcl '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' $(INSTALL_DATA) @srcdir@/nano.man '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' clean: rm -f nano-amalgamation.c nano-amalgamation.o rm -f @EXTENSION_TARGET@ nano.o nano.gcda nano.gcno | | | | | < | | 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | $(INSTALL_PROGRAM) @EXTENSION_TARGET@ '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' $(INSTALL_DATA) pkgIndex.tcl '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' $(INSTALL_DATA) @srcdir@/nano.man '$(DESTDIR)$(PACKAGE_INSTALL_DIR)' clean: rm -f nano-amalgamation.c nano-amalgamation.o rm -f @EXTENSION_TARGET@ nano.o nano.gcda nano.gcno rm -f argon2.o monocypher.o aes.o randombytes.o rm -f argon2.gcda monocypher.gcda aes.gcda randombytes.gcda rm -f argon2.gcno monocypher.gcno aes.gcno randombytes.gcno rm -f nano-coverage.info distclean: clean rm -f Makefile pkgIndex.tcl-shared pkgIndex.tcl-static nano.syms rm -f pkgIndex.tcl rm -f config.log config.status rm -f nano.tcl.h nano.tcl.h.new.1 nano.tcl.h.new.2 rm -rf coverage.dir mrproper: distclean rm -f @srcdir@/configure @srcdir@/aclocal.m4 @srcdir@/config.guess @srcdir@/config.sub @srcdir@/install-sh rm -f @srcdir@/nano.vers rm -rf '$(argon2_dir)' $(MAKE) -C @srcdir@/build/argon2 distclean .PHONY: all test clean distclean mrproper |
Modified autogen.sh from [50eb64ee31] to [5177f2c1f8].
︙ | ︙ | |||
75 76 77 78 79 80 81 | exit 1 fi autoconf rm -rf autom4te.cache | | < < < < | | | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | exit 1 fi autoconf rm -rf autom4te.cache # Assemble argon2 rm -rf argon2 make -C build/argon2 install PREFIX="$(pwd)/vendor/argon2" # Assemble version script rm -f nano.vers ( echo '{' echo $'\tglobal:' sed 's/@SYMPREFIX@/\t\t/g;s/$/;/' nano.syms.in |
︙ | ︙ |
Added build/argon2/Makefile version [2e6c9551be].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | PREFIX := $(shell pwd)/INST all: out/argon2.c out/argon2.h out/argon2.c: src/argon2.c src/ref.c src/core.c src/blake2b.c src/encoding.c monocypher-blake2b.h mkdir -p out echo '#define ARGON2_NO_THREADS 1' > out/argon2.c.new.1 echo '#define ARGON2_INTERNAL_ONLY 1' >> out/argon2.c.new.1 cat monocypher-blake2b.h >> out/argon2.c.new.1 echo '#include "argon2.h"' >> out/argon2.c.new.1 sed '/^#include "/ d' src/argon2.c >> out/argon2.c.new.1 sed '/^#include "/ d' src/encoding.c >> out/argon2.c.new.1 sed '/^#include "/ d' src/ref.c >> out/argon2.c.new.1 sed '/#include "/ d;/#include/ b;/Argon2 Team - Begin Code/,/Argon2 Team - End Code/ b;d' src/blake2b.c >> out/argon2.c.new.1 sed '/^#include "/ d' src/core.c >> out/argon2.c.new.1 sed -r '/( |\*)argon(2_ctx|2_verify|2_hash|2_type2|2_error_message|2_encodedlen|2i_|2d_|2id_)/ b;/:/ b;/^(static|extern|enum|typedef) / b;s@^[a-z]@static &@' out/argon2.c.new.1 > out/argon2.c.new.2 rm -f out/argon2.c.new.1 mv out/argon2.c.new.2 out/argon2.c out/argon2.h: src/argon2.h src/blamka-round-ref.h src/core.h src/encoding.h mkdir -p out cat src/argon2.h > out/argon2.h.new.1 echo '#ifdef ARGON2_INTERNAL_ONLY' >> out/argon2.h.new.1 cat src/blamka-round-ref.h src/core.h src/encoding.h >> out/argon2.h.new.1 echo '#endif' >> out/argon2.h.new.1 sed -r '/^extern int FLAG/ d;/#include "/ d;/( |\*)argon(2_ctx|2_verify|2_hash|2_type2|2_error_message|2_encodedlen|2i_|2d_|2id_)/ b;/:/ b;/^(static|extern|enum|typedef) / b;s@^[a-z]@static &@' out/argon2.h.new.1 > out/argon2.h.new.2 rm -f out/argon2.h.new.1 mv out/argon2.h.new.2 out/argon2.h install: out/argon2.c out/argon2.h mkdir -p '$(PREFIX)' cp out/argon2.c out/argon2.h '$(PREFIX)' clean: rm -f out/argon2.c out/argon2.h rm -f out/argon2.c.new.1 out/argon2.c.new.2 rm -f out/argon2.h.new.1 out/argon2.h.new.2 -rmdir out distclean: clean .PHONY: all install clean distclean |
Added build/argon2/monocypher-blake2b.h version [b2dc3556d1].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #define crypto_hash(out, in, inlen) crypto_blake2b(out, in, inlen) #define blake2b(out, outlen, in, inlen, key, keylen) 0, crypto_blake2b_general(out, outlen, key, keylen, in, inlen) #define blake2b_state crypto_blake2b_ctx #define blake2b_init(ctx, outlen) 0; crypto_blake2b_general_init(ctx, outlen, NULL, 0) #define blake2b_update(ctx, in, inlen) 0; crypto_blake2b_update(ctx, in, inlen) #define blake2b_final(ctx, out, ignore1) 0; crypto_blake2b_final(ctx, out) #define BLAKE2_INLINE #define BLAKE2B_OUTBYTES 64 #include <stdint.h> #include "monocypher.h" static BLAKE2_INLINE uint64_t rotr64(uint64_t x, uint64_t n) { return (x >> n) ^ (x << (64 - n)); } static BLAKE2_INLINE void store32( void *dst, uint32_t w ) { #if defined(NATIVE_LITTLE_ENDIAN) memcpy(dst, &w, sizeof w); #else uint8_t *p = ( uint8_t * )dst; p[0] = (uint8_t)(w >> 0); p[1] = (uint8_t)(w >> 8); p[2] = (uint8_t)(w >> 16); p[3] = (uint8_t)(w >> 24); #endif } static BLAKE2_INLINE void store64( void *dst, uint64_t w ) { #if defined(NATIVE_LITTLE_ENDIAN) memcpy(dst, &w, sizeof w); #else uint8_t *p = ( uint8_t * )dst; p[0] = (uint8_t)(w >> 0); p[1] = (uint8_t)(w >> 8); p[2] = (uint8_t)(w >> 16); p[3] = (uint8_t)(w >> 24); p[4] = (uint8_t)(w >> 32); p[5] = (uint8_t)(w >> 40); p[6] = (uint8_t)(w >> 48); p[7] = (uint8_t)(w >> 56); #endif } static BLAKE2_INLINE uint64_t load64( const void *src ) { #if defined(NATIVE_LITTLE_ENDIAN) uint64_t w; memcpy(&w, src, sizeof w); return w; #else const uint8_t *p = ( const uint8_t * )src; return (( uint64_t )( p[0] ) << 0) | (( uint64_t )( p[1] ) << 8) | (( uint64_t )( p[2] ) << 16) | (( uint64_t )( p[3] ) << 24) | (( uint64_t )( p[4] ) << 32) | (( uint64_t )( p[5] ) << 40) | (( uint64_t )( p[6] ) << 48) | (( uint64_t )( p[7] ) << 56) ; #endif } |
Added build/argon2/src/argon2.c version [f1814855c1].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include <string.h> #include <stdlib.h> #include <stdio.h> #include "argon2.h" #include "encoding.h" #include "core.h" const char *argon2_type2string(argon2_type type, int uppercase) { switch (type) { case Argon2_d: return uppercase ? "Argon2d" : "argon2d"; case Argon2_i: return uppercase ? "Argon2i" : "argon2i"; case Argon2_id: return uppercase ? "Argon2id" : "argon2id"; } return NULL; } int argon2_ctx(argon2_context *context, argon2_type type) { /* 1. Validate all inputs */ int result = validate_inputs(context); uint32_t memory_blocks, segment_length; argon2_instance_t instance; if (ARGON2_OK != result) { return result; } if (Argon2_d != type && Argon2_i != type && Argon2_id != type) { return ARGON2_INCORRECT_TYPE; } /* 2. Align memory size */ /* Minimum memory_blocks = 8L blocks, where L is the number of lanes */ memory_blocks = context->m_cost; if (memory_blocks < 2 * ARGON2_SYNC_POINTS * context->lanes) { memory_blocks = 2 * ARGON2_SYNC_POINTS * context->lanes; } segment_length = memory_blocks / (context->lanes * ARGON2_SYNC_POINTS); /* Ensure that all segments have equal length */ memory_blocks = segment_length * (context->lanes * ARGON2_SYNC_POINTS); instance.version = context->version; instance.memory = NULL; instance.passes = context->t_cost; instance.memory_blocks = memory_blocks; instance.segment_length = segment_length; instance.lane_length = segment_length * ARGON2_SYNC_POINTS; instance.lanes = context->lanes; instance.threads = context->threads; instance.type = type; if (instance.threads > instance.lanes) { instance.threads = instance.lanes; } /* 3. Initialization: Hashing inputs, allocating memory, filling first * blocks */ result = initialize(&instance, context); if (ARGON2_OK != result) { return result; } /* 4. Filling memory */ result = fill_memory_blocks(&instance); if (ARGON2_OK != result) { return result; } /* 5. Finalization */ finalize(context, &instance); return ARGON2_OK; } int argon2_hash(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen, char *encoded, const size_t encodedlen, argon2_type type, const uint32_t version){ argon2_context context; int result; uint8_t *out; if (pwdlen > ARGON2_MAX_PWD_LENGTH) { return ARGON2_PWD_TOO_LONG; } if (saltlen > ARGON2_MAX_SALT_LENGTH) { return ARGON2_SALT_TOO_LONG; } if (hashlen > ARGON2_MAX_OUTLEN) { return ARGON2_OUTPUT_TOO_LONG; } if (hashlen < ARGON2_MIN_OUTLEN) { return ARGON2_OUTPUT_TOO_SHORT; } out = malloc(hashlen); if (!out) { return ARGON2_MEMORY_ALLOCATION_ERROR; } context.out = (uint8_t *)out; context.outlen = (uint32_t)hashlen; context.pwd = CONST_CAST(uint8_t *)pwd; context.pwdlen = (uint32_t)pwdlen; context.salt = CONST_CAST(uint8_t *)salt; context.saltlen = (uint32_t)saltlen; context.secret = NULL; context.secretlen = 0; context.ad = NULL; context.adlen = 0; context.t_cost = t_cost; context.m_cost = m_cost; context.lanes = parallelism; context.threads = parallelism; context.allocate_cbk = NULL; context.free_cbk = NULL; context.flags = ARGON2_DEFAULT_FLAGS; context.version = version; result = argon2_ctx(&context, type); if (result != ARGON2_OK) { clear_internal_memory(out, hashlen); free(out); return result; } /* if raw hash requested, write it */ if (hash) { memcpy(hash, out, hashlen); } /* if encoding requested, write it */ if (encoded && encodedlen) { if (encode_string(encoded, encodedlen, &context, type) != ARGON2_OK) { clear_internal_memory(out, hashlen); /* wipe buffers if error */ clear_internal_memory(encoded, encodedlen); free(out); return ARGON2_ENCODING_FAIL; } } clear_internal_memory(out, hashlen); free(out); return ARGON2_OK; } int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, NULL, hashlen, encoded, encodedlen, Argon2_i, ARGON2_VERSION_NUMBER); } int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, hash, hashlen, NULL, 0, Argon2_i, ARGON2_VERSION_NUMBER); } int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, NULL, hashlen, encoded, encodedlen, Argon2_d, ARGON2_VERSION_NUMBER); } int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, hash, hashlen, NULL, 0, Argon2_d, ARGON2_VERSION_NUMBER); } int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, NULL, hashlen, encoded, encodedlen, Argon2_id, ARGON2_VERSION_NUMBER); } int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen) { return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen, hash, hashlen, NULL, 0, Argon2_id, ARGON2_VERSION_NUMBER); } static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) { size_t i; uint8_t d = 0U; for (i = 0U; i < len; i++) { d |= b1[i] ^ b2[i]; } return (int)((1 & ((d - 1) >> 8)) - 1); } int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen, argon2_type type) { argon2_context ctx; uint8_t *desired_result = NULL; int ret = ARGON2_OK; size_t encoded_len; uint32_t max_field_len; if (pwdlen > ARGON2_MAX_PWD_LENGTH) { return ARGON2_PWD_TOO_LONG; } if (encoded == NULL) { return ARGON2_DECODING_FAIL; } encoded_len = strlen(encoded); if (encoded_len > UINT32_MAX) { return ARGON2_DECODING_FAIL; } /* No field can be longer than the encoded length */ max_field_len = (uint32_t)encoded_len; ctx.saltlen = max_field_len; ctx.outlen = max_field_len; ctx.salt = malloc(ctx.saltlen); ctx.out = malloc(ctx.outlen); if (!ctx.salt || !ctx.out) { ret = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } ctx.pwd = (uint8_t *)pwd; ctx.pwdlen = (uint32_t)pwdlen; ret = decode_string(&ctx, encoded, type); if (ret != ARGON2_OK) { goto fail; } /* Set aside the desired result, and get a new buffer. */ desired_result = ctx.out; ctx.out = malloc(ctx.outlen); if (!ctx.out) { ret = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } ret = argon2_verify_ctx(&ctx, (char *)desired_result, type); if (ret != ARGON2_OK) { goto fail; } fail: free(ctx.salt); free(ctx.out); free(desired_result); return ret; } int argon2i_verify(const char *encoded, const void *pwd, const size_t pwdlen) { return argon2_verify(encoded, pwd, pwdlen, Argon2_i); } int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen) { return argon2_verify(encoded, pwd, pwdlen, Argon2_d); } int argon2id_verify(const char *encoded, const void *pwd, const size_t pwdlen) { return argon2_verify(encoded, pwd, pwdlen, Argon2_id); } int argon2d_ctx(argon2_context *context) { return argon2_ctx(context, Argon2_d); } int argon2i_ctx(argon2_context *context) { return argon2_ctx(context, Argon2_i); } int argon2id_ctx(argon2_context *context) { return argon2_ctx(context, Argon2_id); } int argon2_verify_ctx(argon2_context *context, const char *hash, argon2_type type) { int ret = argon2_ctx(context, type); if (ret != ARGON2_OK) { return ret; } if (argon2_compare((uint8_t *)hash, context->out, context->outlen)) { return ARGON2_VERIFY_MISMATCH; } return ARGON2_OK; } int argon2d_verify_ctx(argon2_context *context, const char *hash) { return argon2_verify_ctx(context, hash, Argon2_d); } int argon2i_verify_ctx(argon2_context *context, const char *hash) { return argon2_verify_ctx(context, hash, Argon2_i); } int argon2id_verify_ctx(argon2_context *context, const char *hash) { return argon2_verify_ctx(context, hash, Argon2_id); } const char *argon2_error_message(int error_code) { switch (error_code) { case ARGON2_OK: return "OK"; case ARGON2_OUTPUT_PTR_NULL: return "Output pointer is NULL"; case ARGON2_OUTPUT_TOO_SHORT: return "Output is too short"; case ARGON2_OUTPUT_TOO_LONG: return "Output is too long"; case ARGON2_PWD_TOO_SHORT: return "Password is too short"; case ARGON2_PWD_TOO_LONG: return "Password is too long"; case ARGON2_SALT_TOO_SHORT: return "Salt is too short"; case ARGON2_SALT_TOO_LONG: return "Salt is too long"; case ARGON2_AD_TOO_SHORT: return "Associated data is too short"; case ARGON2_AD_TOO_LONG: return "Associated data is too long"; case ARGON2_SECRET_TOO_SHORT: return "Secret is too short"; case ARGON2_SECRET_TOO_LONG: return "Secret is too long"; case ARGON2_TIME_TOO_SMALL: return "Time cost is too small"; case ARGON2_TIME_TOO_LARGE: return "Time cost is too large"; case ARGON2_MEMORY_TOO_LITTLE: return "Memory cost is too small"; case ARGON2_MEMORY_TOO_MUCH: return "Memory cost is too large"; case ARGON2_LANES_TOO_FEW: return "Too few lanes"; case ARGON2_LANES_TOO_MANY: return "Too many lanes"; case ARGON2_PWD_PTR_MISMATCH: return "Password pointer is NULL, but password length is not 0"; case ARGON2_SALT_PTR_MISMATCH: return "Salt pointer is NULL, but salt length is not 0"; case ARGON2_SECRET_PTR_MISMATCH: return "Secret pointer is NULL, but secret length is not 0"; case ARGON2_AD_PTR_MISMATCH: return "Associated data pointer is NULL, but ad length is not 0"; case ARGON2_MEMORY_ALLOCATION_ERROR: return "Memory allocation error"; case ARGON2_FREE_MEMORY_CBK_NULL: return "The free memory callback is NULL"; case ARGON2_ALLOCATE_MEMORY_CBK_NULL: return "The allocate memory callback is NULL"; case ARGON2_INCORRECT_PARAMETER: return "Argon2_Context context is NULL"; case ARGON2_INCORRECT_TYPE: return "There is no such version of Argon2"; case ARGON2_OUT_PTR_MISMATCH: return "Output pointer mismatch"; case ARGON2_THREADS_TOO_FEW: return "Not enough threads"; case ARGON2_THREADS_TOO_MANY: return "Too many threads"; case ARGON2_MISSING_ARGS: return "Missing arguments"; case ARGON2_ENCODING_FAIL: return "Encoding failed"; case ARGON2_DECODING_FAIL: return "Decoding failed"; case ARGON2_THREAD_FAIL: return "Threading failure"; case ARGON2_DECODING_LENGTH_FAIL: return "Some of encoded parameters are too long or too short"; case ARGON2_VERIFY_MISMATCH: return "The password does not match the supplied hash"; default: return "Unknown error code"; } } size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism, uint32_t saltlen, uint32_t hashlen, argon2_type type) { return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) + numlen(t_cost) + numlen(m_cost) + numlen(parallelism) + b64len(saltlen) + b64len(hashlen) + numlen(ARGON2_VERSION_NUMBER) + 1; } |
Added build/argon2/src/argon2.h version [0188db9d46].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #ifndef ARGON2_H #define ARGON2_H #include <stdint.h> #include <stddef.h> #include <limits.h> #if defined(__cplusplus) extern "C" { #endif /* Symbols visibility control */ #ifdef A2_VISCTL #define ARGON2_PUBLIC __attribute__((visibility("default"))) #define ARGON2_LOCAL __attribute__ ((visibility ("hidden"))) #elif _MSC_VER #define ARGON2_PUBLIC __declspec(dllexport) #define ARGON2_LOCAL #else #define ARGON2_PUBLIC #define ARGON2_LOCAL #endif /* * Argon2 input parameter restrictions */ /* Minimum and maximum number of lanes (degree of parallelism) */ #define ARGON2_MIN_LANES UINT32_C(1) #define ARGON2_MAX_LANES UINT32_C(0xFFFFFF) /* Minimum and maximum number of threads */ #define ARGON2_MIN_THREADS UINT32_C(1) #define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF) /* Number of synchronization points between lanes per pass */ #define ARGON2_SYNC_POINTS UINT32_C(4) /* Minimum and maximum digest size in bytes */ #define ARGON2_MIN_OUTLEN UINT32_C(4) #define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF) /* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */ #define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */ #define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b)) /* Max memory size is addressing-space/2, topping at 2^32 blocks (4 TB) */ #define ARGON2_MAX_MEMORY_BITS \ ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1)) #define ARGON2_MAX_MEMORY \ ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS) /* Minimum and maximum number of passes */ #define ARGON2_MIN_TIME UINT32_C(1) #define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF) /* Minimum and maximum password length in bytes */ #define ARGON2_MIN_PWD_LENGTH UINT32_C(0) #define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF) /* Minimum and maximum associated data length in bytes */ #define ARGON2_MIN_AD_LENGTH UINT32_C(0) #define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF) /* Minimum and maximum salt length in bytes */ #define ARGON2_MIN_SALT_LENGTH UINT32_C(8) #define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF) /* Minimum and maximum key length in bytes */ #define ARGON2_MIN_SECRET UINT32_C(0) #define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF) /* Flags to determine which fields are securely wiped (default = no wipe). */ #define ARGON2_DEFAULT_FLAGS UINT32_C(0) #define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0) #define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1) /* Global flag to determine if we are wiping internal memory buffers. This flag * is defined in core.c and defaults to 1 (wipe internal memory). */ extern int FLAG_clear_internal_memory; /* Error codes */ typedef enum Argon2_ErrorCodes { ARGON2_OK = 0, ARGON2_OUTPUT_PTR_NULL = -1, ARGON2_OUTPUT_TOO_SHORT = -2, ARGON2_OUTPUT_TOO_LONG = -3, ARGON2_PWD_TOO_SHORT = -4, ARGON2_PWD_TOO_LONG = -5, ARGON2_SALT_TOO_SHORT = -6, ARGON2_SALT_TOO_LONG = -7, ARGON2_AD_TOO_SHORT = -8, ARGON2_AD_TOO_LONG = -9, ARGON2_SECRET_TOO_SHORT = -10, ARGON2_SECRET_TOO_LONG = -11, ARGON2_TIME_TOO_SMALL = -12, ARGON2_TIME_TOO_LARGE = -13, ARGON2_MEMORY_TOO_LITTLE = -14, ARGON2_MEMORY_TOO_MUCH = -15, ARGON2_LANES_TOO_FEW = -16, ARGON2_LANES_TOO_MANY = -17, ARGON2_PWD_PTR_MISMATCH = -18, /* NULL ptr with non-zero length */ ARGON2_SALT_PTR_MISMATCH = -19, /* NULL ptr with non-zero length */ ARGON2_SECRET_PTR_MISMATCH = -20, /* NULL ptr with non-zero length */ ARGON2_AD_PTR_MISMATCH = -21, /* NULL ptr with non-zero length */ ARGON2_MEMORY_ALLOCATION_ERROR = -22, ARGON2_FREE_MEMORY_CBK_NULL = -23, ARGON2_ALLOCATE_MEMORY_CBK_NULL = -24, ARGON2_INCORRECT_PARAMETER = -25, ARGON2_INCORRECT_TYPE = -26, ARGON2_OUT_PTR_MISMATCH = -27, ARGON2_THREADS_TOO_FEW = -28, ARGON2_THREADS_TOO_MANY = -29, ARGON2_MISSING_ARGS = -30, ARGON2_ENCODING_FAIL = -31, ARGON2_DECODING_FAIL = -32, ARGON2_THREAD_FAIL = -33, ARGON2_DECODING_LENGTH_FAIL = -34, ARGON2_VERIFY_MISMATCH = -35 } argon2_error_codes; /* Memory allocator types --- for external allocation */ typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate); typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate); /* Argon2 external data structures */ /* ***** * Context: structure to hold Argon2 inputs: * output array and its length, * password and its length, * salt and its length, * secret and its length, * associated data and its length, * number of passes, amount of used memory (in KBytes, can be rounded up a bit) * number of parallel threads that will be run. * All the parameters above affect the output hash value. * Additionally, two function pointers can be provided to allocate and * deallocate the memory (if NULL, memory will be allocated internally). * Also, three flags indicate whether to erase password, secret as soon as they * are pre-hashed (and thus not needed anymore), and the entire memory ***** * Simplest situation: you have output array out[8], password is stored in * pwd[32], salt is stored in salt[16], you do not have keys nor associated * data. You need to spend 1 GB of RAM and you run 5 passes of Argon2d with * 4 parallel lanes. * You want to erase the password, but you're OK with last pass not being * erased. You want to use the default memory allocator. * Then you initialize: Argon2_Context(out,8,pwd,32,salt,16,NULL,0,NULL,0,5,1<<20,4,4,NULL,NULL,true,false,false,false) */ typedef struct Argon2_Context { uint8_t *out; /* output array */ uint32_t outlen; /* digest length */ uint8_t *pwd; /* password array */ uint32_t pwdlen; /* password length */ uint8_t *salt; /* salt array */ uint32_t saltlen; /* salt length */ uint8_t *secret; /* key array */ uint32_t secretlen; /* key length */ uint8_t *ad; /* associated data array */ uint32_t adlen; /* associated data length */ uint32_t t_cost; /* number of passes */ uint32_t m_cost; /* amount of memory requested (KB) */ uint32_t lanes; /* number of lanes */ uint32_t threads; /* maximum number of threads */ uint32_t version; /* version number */ allocate_fptr allocate_cbk; /* pointer to memory allocator */ deallocate_fptr free_cbk; /* pointer to memory deallocator */ uint32_t flags; /* array of bool options */ } argon2_context; /* Argon2 primitive type */ typedef enum Argon2_type { Argon2_d = 0, Argon2_i = 1, Argon2_id = 2 } argon2_type; /* Version of the algorithm */ typedef enum Argon2_version { ARGON2_VERSION_10 = 0x10, ARGON2_VERSION_13 = 0x13, ARGON2_VERSION_NUMBER = ARGON2_VERSION_13 } argon2_version; /* * Function that gives the string representation of an argon2_type. * @param type The argon2_type that we want the string for * @param uppercase Whether the string should have the first letter uppercase * @return NULL if invalid type, otherwise the string representation. */ ARGON2_PUBLIC const char *argon2_type2string(argon2_type type, int uppercase); /* * Function that performs memory-hard hashing with certain degree of parallelism * @param context Pointer to the Argon2 internal structure * @return Error code if smth is wrong, ARGON2_OK otherwise */ ARGON2_PUBLIC int argon2_ctx(argon2_context *context, argon2_type type); /** * Hashes a password with Argon2i, producing an encoded hash * @param t_cost Number of iterations * @param m_cost Sets memory usage to m_cost kibibytes * @param parallelism Number of threads and compute lanes * @param pwd Pointer to password * @param pwdlen Password size in bytes * @param salt Pointer to salt * @param saltlen Salt size in bytes * @param hashlen Desired length of the hash in bytes * @param encoded Buffer where to write the encoded hash * @param encodedlen Size of the buffer (thus max size of the encoded hash) * @pre Different parallelism levels will give different results * @pre Returns ARGON2_OK if successful */ ARGON2_PUBLIC int argon2i_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen); /** * Hashes a password with Argon2i, producing a raw hash at @hash * @param t_cost Number of iterations * @param m_cost Sets memory usage to m_cost kibibytes * @param parallelism Number of threads and compute lanes * @param pwd Pointer to password * @param pwdlen Password size in bytes * @param salt Pointer to salt * @param saltlen Salt size in bytes * @param hash Buffer where to write the raw hash - updated by the function * @param hashlen Desired length of the hash in bytes * @pre Different parallelism levels will give different results * @pre Returns ARGON2_OK if successful */ ARGON2_PUBLIC int argon2i_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen); ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen); ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen); ARGON2_PUBLIC int argon2id_hash_encoded(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, const size_t hashlen, char *encoded, const size_t encodedlen); ARGON2_PUBLIC int argon2id_hash_raw(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen); /* generic function underlying the above ones */ ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost, const uint32_t parallelism, const void *pwd, const size_t pwdlen, const void *salt, const size_t saltlen, void *hash, const size_t hashlen, char *encoded, const size_t encodedlen, argon2_type type, const uint32_t version); /** * Verifies a password against an encoded string * Encoded string is restricted as in validate_inputs() * @param encoded String encoding parameters, salt, hash * @param pwd Pointer to password * @pre Returns ARGON2_OK if successful */ ARGON2_PUBLIC int argon2i_verify(const char *encoded, const void *pwd, const size_t pwdlen); ARGON2_PUBLIC int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen); ARGON2_PUBLIC int argon2id_verify(const char *encoded, const void *pwd, const size_t pwdlen); /* generic function underlying the above ones */ ARGON2_PUBLIC int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen, argon2_type type); /** * Argon2d: Version of Argon2 that picks memory blocks depending * on the password and salt. Only for side-channel-free * environment!! ***** * @param context Pointer to current Argon2 context * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2d_ctx(argon2_context *context); /** * Argon2i: Version of Argon2 that picks memory blocks * independent on the password and salt. Good for side-channels, * but worse w.r.t. tradeoff attacks if only one pass is used. ***** * @param context Pointer to current Argon2 context * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2i_ctx(argon2_context *context); /** * Argon2id: Version of Argon2 where the first half-pass over memory is * password-independent, the rest are password-dependent (on the password and * salt). OK against side channels (they reduce to 1/2-pass Argon2i), and * better with w.r.t. tradeoff attacks (similar to Argon2d). ***** * @param context Pointer to current Argon2 context * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2id_ctx(argon2_context *context); /** * Verify if a given password is correct for Argon2d hashing * @param context Pointer to current Argon2 context * @param hash The password hash to verify. The length of the hash is * specified by the context outlen member * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2d_verify_ctx(argon2_context *context, const char *hash); /** * Verify if a given password is correct for Argon2i hashing * @param context Pointer to current Argon2 context * @param hash The password hash to verify. The length of the hash is * specified by the context outlen member * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2i_verify_ctx(argon2_context *context, const char *hash); /** * Verify if a given password is correct for Argon2id hashing * @param context Pointer to current Argon2 context * @param hash The password hash to verify. The length of the hash is * specified by the context outlen member * @return Zero if successful, a non zero error code otherwise */ ARGON2_PUBLIC int argon2id_verify_ctx(argon2_context *context, const char *hash); /* generic function underlying the above ones */ ARGON2_PUBLIC int argon2_verify_ctx(argon2_context *context, const char *hash, argon2_type type); /** * Get the associated error message for given error code * @return The error message associated with the given error code */ ARGON2_PUBLIC const char *argon2_error_message(int error_code); /** * Returns the encoded hash length for the given input parameters * @param t_cost Number of iterations * @param m_cost Memory usage in kibibytes * @param parallelism Number of threads; used to compute lanes * @param saltlen Salt size in bytes * @param hashlen Hash size in bytes * @param type The argon2_type that we want the encoded length for * @return The encoded hash length in bytes */ ARGON2_PUBLIC size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism, uint32_t saltlen, uint32_t hashlen, argon2_type type); #if defined(__cplusplus) } #endif #endif |
Added build/argon2/src/blake2b.c version [7813c84d03].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include <stdint.h> #include <string.h> #include <stdio.h> #include "blake2.h" #include "blake2-impl.h" static const uint64_t blake2b_IV[8] = { UINT64_C(0x6a09e667f3bcc908), UINT64_C(0xbb67ae8584caa73b), UINT64_C(0x3c6ef372fe94f82b), UINT64_C(0xa54ff53a5f1d36f1), UINT64_C(0x510e527fade682d1), UINT64_C(0x9b05688c2b3e6c1f), UINT64_C(0x1f83d9abfb41bd6b), UINT64_C(0x5be0cd19137e2179)}; static const unsigned int blake2b_sigma[12][16] = { {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4}, {7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8}, {9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13}, {2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9}, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11}, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10}, {6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5}, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3}, }; static BLAKE2_INLINE void blake2b_set_lastnode(blake2b_state *S) { S->f[1] = (uint64_t)-1; } static BLAKE2_INLINE void blake2b_set_lastblock(blake2b_state *S) { if (S->last_node) { blake2b_set_lastnode(S); } S->f[0] = (uint64_t)-1; } static BLAKE2_INLINE void blake2b_increment_counter(blake2b_state *S, uint64_t inc) { S->t[0] += inc; S->t[1] += (S->t[0] < inc); } static BLAKE2_INLINE void blake2b_invalidate_state(blake2b_state *S) { clear_internal_memory(S, sizeof(*S)); /* wipe */ blake2b_set_lastblock(S); /* invalidate for further use */ } static BLAKE2_INLINE void blake2b_init0(blake2b_state *S) { memset(S, 0, sizeof(*S)); memcpy(S->h, blake2b_IV, sizeof(S->h)); } int blake2b_init_param(blake2b_state *S, const blake2b_param *P) { const unsigned char *p = (const unsigned char *)P; unsigned int i; if (NULL == P || NULL == S) { return -1; } blake2b_init0(S); /* IV XOR Parameter Block */ for (i = 0; i < 8; ++i) { S->h[i] ^= load64(&p[i * sizeof(S->h[i])]); } S->outlen = P->digest_length; return 0; } /* Sequential blake2b initialization */ int blake2b_init(blake2b_state *S, size_t outlen) { blake2b_param P; if (S == NULL) { return -1; } if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) { blake2b_invalidate_state(S); return -1; } /* Setup Parameter Block for unkeyed BLAKE2 */ P.digest_length = (uint8_t)outlen; P.key_length = 0; P.fanout = 1; P.depth = 1; P.leaf_length = 0; P.node_offset = 0; P.node_depth = 0; P.inner_length = 0; memset(P.reserved, 0, sizeof(P.reserved)); memset(P.salt, 0, sizeof(P.salt)); memset(P.personal, 0, sizeof(P.personal)); return blake2b_init_param(S, &P); } int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen) { blake2b_param P; if (S == NULL) { return -1; } if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) { blake2b_invalidate_state(S); return -1; } if ((key == 0) || (keylen == 0) || (keylen > BLAKE2B_KEYBYTES)) { blake2b_invalidate_state(S); return -1; } /* Setup Parameter Block for keyed BLAKE2 */ P.digest_length = (uint8_t)outlen; P.key_length = (uint8_t)keylen; P.fanout = 1; P.depth = 1; P.leaf_length = 0; P.node_offset = 0; P.node_depth = 0; P.inner_length = 0; memset(P.reserved, 0, sizeof(P.reserved)); memset(P.salt, 0, sizeof(P.salt)); memset(P.personal, 0, sizeof(P.personal)); if (blake2b_init_param(S, &P) < 0) { blake2b_invalidate_state(S); return -1; } { uint8_t block[BLAKE2B_BLOCKBYTES]; memset(block, 0, BLAKE2B_BLOCKBYTES); memcpy(block, key, keylen); blake2b_update(S, block, BLAKE2B_BLOCKBYTES); /* Burn the key from stack */ clear_internal_memory(block, BLAKE2B_BLOCKBYTES); } return 0; } static void blake2b_compress(blake2b_state *S, const uint8_t *block) { uint64_t m[16]; uint64_t v[16]; unsigned int i, r; for (i = 0; i < 16; ++i) { m[i] = load64(block + i * sizeof(m[i])); } for (i = 0; i < 8; ++i) { v[i] = S->h[i]; } v[8] = blake2b_IV[0]; v[9] = blake2b_IV[1]; v[10] = blake2b_IV[2]; v[11] = blake2b_IV[3]; v[12] = blake2b_IV[4] ^ S->t[0]; v[13] = blake2b_IV[5] ^ S->t[1]; v[14] = blake2b_IV[6] ^ S->f[0]; v[15] = blake2b_IV[7] ^ S->f[1]; #define G(r, i, a, b, c, d) \ do { \ a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \ d = rotr64(d ^ a, 32); \ c = c + d; \ b = rotr64(b ^ c, 24); \ a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \ d = rotr64(d ^ a, 16); \ c = c + d; \ b = rotr64(b ^ c, 63); \ } while ((void)0, 0) #define ROUND(r) \ do { \ G(r, 0, v[0], v[4], v[8], v[12]); \ G(r, 1, v[1], v[5], v[9], v[13]); \ G(r, 2, v[2], v[6], v[10], v[14]); \ G(r, 3, v[3], v[7], v[11], v[15]); \ G(r, 4, v[0], v[5], v[10], v[15]); \ G(r, 5, v[1], v[6], v[11], v[12]); \ G(r, 6, v[2], v[7], v[8], v[13]); \ G(r, 7, v[3], v[4], v[9], v[14]); \ } while ((void)0, 0) for (r = 0; r < 12; ++r) { ROUND(r); } for (i = 0; i < 8; ++i) { S->h[i] = S->h[i] ^ v[i] ^ v[i + 8]; } #undef G #undef ROUND } int blake2b_update(blake2b_state *S, const void *in, size_t inlen) { const uint8_t *pin = (const uint8_t *)in; if (inlen == 0) { return 0; } /* Sanity check */ if (S == NULL || in == NULL) { return -1; } /* Is this a reused state? */ if (S->f[0] != 0) { return -1; } if (S->buflen + inlen > BLAKE2B_BLOCKBYTES) { /* Complete current block */ size_t left = S->buflen; size_t fill = BLAKE2B_BLOCKBYTES - left; memcpy(&S->buf[left], pin, fill); blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES); blake2b_compress(S, S->buf); S->buflen = 0; inlen -= fill; pin += fill; /* Avoid buffer copies when possible */ while (inlen > BLAKE2B_BLOCKBYTES) { blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES); blake2b_compress(S, pin); inlen -= BLAKE2B_BLOCKBYTES; pin += BLAKE2B_BLOCKBYTES; } } memcpy(&S->buf[S->buflen], pin, inlen); S->buflen += (unsigned int)inlen; return 0; } int blake2b_final(blake2b_state *S, void *out, size_t outlen) { uint8_t buffer[BLAKE2B_OUTBYTES] = {0}; unsigned int i; /* Sanity checks */ if (S == NULL || out == NULL || outlen < S->outlen) { return -1; } /* Is this a reused state? */ if (S->f[0] != 0) { return -1; } blake2b_increment_counter(S, S->buflen); blake2b_set_lastblock(S); memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */ blake2b_compress(S, S->buf); for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */ store64(buffer + sizeof(S->h[i]) * i, S->h[i]); } memcpy(out, buffer, S->outlen); clear_internal_memory(buffer, sizeof(buffer)); clear_internal_memory(S->buf, sizeof(S->buf)); clear_internal_memory(S->h, sizeof(S->h)); return 0; } int blake2b(void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen) { blake2b_state S; int ret = -1; /* Verify parameters */ if (NULL == in && inlen > 0) { goto fail; } if (NULL == out || outlen == 0 || outlen > BLAKE2B_OUTBYTES) { goto fail; } if ((NULL == key && keylen > 0) || keylen > BLAKE2B_KEYBYTES) { goto fail; } if (keylen > 0) { if (blake2b_init_key(&S, outlen, key, keylen) < 0) { goto fail; } } else { if (blake2b_init(&S, outlen) < 0) { goto fail; } } if (blake2b_update(&S, in, inlen) < 0) { goto fail; } ret = blake2b_final(&S, out, outlen); fail: clear_internal_memory(&S, sizeof(S)); return ret; } /* Argon2 Team - Begin Code */ int blake2b_long(void *pout, size_t outlen, const void *in, size_t inlen) { uint8_t *out = (uint8_t *)pout; blake2b_state blake_state; uint8_t outlen_bytes[sizeof(uint32_t)] = {0}; int ret = -1; if (outlen > UINT32_MAX) { goto fail; } /* Ensure little-endian byte order! */ store32(outlen_bytes, (uint32_t)outlen); #define TRY(statement) \ do { \ ret = statement; \ if (ret < 0) { \ goto fail; \ } \ } while ((void)0, 0) if (outlen <= BLAKE2B_OUTBYTES) { TRY(blake2b_init(&blake_state, outlen)); TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes))); TRY(blake2b_update(&blake_state, in, inlen)); TRY(blake2b_final(&blake_state, out, outlen)); } else { uint32_t toproduce; uint8_t out_buffer[BLAKE2B_OUTBYTES]; uint8_t in_buffer[BLAKE2B_OUTBYTES]; TRY(blake2b_init(&blake_state, BLAKE2B_OUTBYTES)); TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes))); TRY(blake2b_update(&blake_state, in, inlen)); TRY(blake2b_final(&blake_state, out_buffer, BLAKE2B_OUTBYTES)); memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2); out += BLAKE2B_OUTBYTES / 2; toproduce = (uint32_t)outlen - BLAKE2B_OUTBYTES / 2; while (toproduce > BLAKE2B_OUTBYTES) { memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES); TRY(blake2b(out_buffer, BLAKE2B_OUTBYTES, in_buffer, BLAKE2B_OUTBYTES, NULL, 0)); memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2); out += BLAKE2B_OUTBYTES / 2; toproduce -= BLAKE2B_OUTBYTES / 2; } memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES); TRY(blake2b(out_buffer, toproduce, in_buffer, BLAKE2B_OUTBYTES, NULL, 0)); memcpy(out, out_buffer, toproduce); } fail: clear_internal_memory(&blake_state, sizeof(blake_state)); return ret; #undef TRY } /* Argon2 Team - End Code */ |
Added build/argon2/src/blamka-round-ref.h version [20d8f57b67].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #ifndef BLAKE_ROUND_MKA_H #define BLAKE_ROUND_MKA_H #include "blake2.h" #include "blake2-impl.h" /* designed by the Lyra PHC team */ static BLAKE2_INLINE uint64_t fBlaMka(uint64_t x, uint64_t y) { const uint64_t m = UINT64_C(0xFFFFFFFF); const uint64_t xy = (x & m) * (y & m); return x + y + 2 * xy; } #define G(a, b, c, d) \ do { \ a = fBlaMka(a, b); \ d = rotr64(d ^ a, 32); \ c = fBlaMka(c, d); \ b = rotr64(b ^ c, 24); \ a = fBlaMka(a, b); \ d = rotr64(d ^ a, 16); \ c = fBlaMka(c, d); \ b = rotr64(b ^ c, 63); \ } while ((void)0, 0) #define BLAKE2_ROUND_NOMSG(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \ v12, v13, v14, v15) \ do { \ G(v0, v4, v8, v12); \ G(v1, v5, v9, v13); \ G(v2, v6, v10, v14); \ G(v3, v7, v11, v15); \ G(v0, v5, v10, v15); \ G(v1, v6, v11, v12); \ G(v2, v7, v8, v13); \ G(v3, v4, v9, v14); \ } while ((void)0, 0) #endif |
Added build/argon2/src/core.c version [9358844f3b].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ /*For memory wiping*/ #ifdef _MSC_VER #include <windows.h> #include <winbase.h> /* For SecureZeroMemory */ #endif #if defined __STDC_LIB_EXT1__ #define __STDC_WANT_LIB_EXT1__ 1 #endif #define VC_GE_2005(version) (version >= 1400) #include <stdio.h> #include <stdlib.h> #include <string.h> #include "core.h" #include "thread.h" #include "blake2/blake2.h" #include "blake2/blake2-impl.h" #ifdef GENKAT #include "genkat.h" #endif #if defined(__clang__) #if __has_attribute(optnone) #define NOT_OPTIMIZED __attribute__((optnone)) #endif #elif defined(__GNUC__) #define GCC_VERSION \ (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) #if GCC_VERSION >= 40400 #define NOT_OPTIMIZED __attribute__((optimize("O0"))) #endif #endif #ifndef NOT_OPTIMIZED #define NOT_OPTIMIZED #endif /***************Instance and Position constructors**********/ void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); } void copy_block(block *dst, const block *src) { memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK); } void xor_block(block *dst, const block *src) { int i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { dst->v[i] ^= src->v[i]; } } static void load_block(block *dst, const void *input) { unsigned i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i])); } } static void store_block(void *output, const block *src) { unsigned i; for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) { store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]); } } /***************Memory functions*****************/ int allocate_memory(const argon2_context *context, uint8_t **memory, size_t num, size_t size) { size_t memory_size = num*size; if (memory == NULL) { return ARGON2_MEMORY_ALLOCATION_ERROR; } /* 1. Check for multiplication overflow */ if (size != 0 && memory_size / size != num) { return ARGON2_MEMORY_ALLOCATION_ERROR; } /* 2. Try to allocate with appropriate allocator */ if (context->allocate_cbk) { (context->allocate_cbk)(memory, memory_size); } else { *memory = malloc(memory_size); } if (*memory == NULL) { return ARGON2_MEMORY_ALLOCATION_ERROR; } return ARGON2_OK; } void free_memory(const argon2_context *context, uint8_t *memory, size_t num, size_t size) { size_t memory_size = num*size; clear_internal_memory(memory, memory_size); if (context->free_cbk) { (context->free_cbk)(memory, memory_size); } else { free(memory); } } void NOT_OPTIMIZED secure_wipe_memory(void *v, size_t n) { #if defined(_MSC_VER) && VC_GE_2005(_MSC_VER) SecureZeroMemory(v, n); #elif defined memset_s memset_s(v, n, 0, n); #elif defined(__OpenBSD__) explicit_bzero(v, n); #else static void *(*const volatile memset_sec)(void *, int, size_t) = &memset; memset_sec(v, 0, n); #endif } /* Memory clear flag defaults to true. */ int FLAG_clear_internal_memory = 1; void clear_internal_memory(void *v, size_t n) { if (FLAG_clear_internal_memory && v) { secure_wipe_memory(v, n); } } void finalize(const argon2_context *context, argon2_instance_t *instance) { if (context != NULL && instance != NULL) { block blockhash; uint32_t l; copy_block(&blockhash, instance->memory + instance->lane_length - 1); /* XOR the last blocks */ for (l = 1; l < instance->lanes; ++l) { uint32_t last_block_in_lane = l * instance->lane_length + (instance->lane_length - 1); xor_block(&blockhash, instance->memory + last_block_in_lane); } /* Hash the result */ { uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE]; store_block(blockhash_bytes, &blockhash); blake2b_long(context->out, context->outlen, blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash and blockhash_bytes */ clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE); clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); } #ifdef GENKAT print_tag(context->out, context->outlen); #endif free_memory(context, (uint8_t *)instance->memory, instance->memory_blocks, sizeof(block)); } } uint32_t index_alpha(const argon2_instance_t *instance, const argon2_position_t *position, uint32_t pseudo_rand, int same_lane) { /* * Pass 0: * This lane : all already finished segments plus already constructed * blocks in this segment * Other lanes : all already finished segments * Pass 1+: * This lane : (SYNC_POINTS - 1) last segments plus already constructed * blocks in this segment * Other lanes : (SYNC_POINTS - 1) last segments */ uint32_t reference_area_size; uint64_t relative_position; uint32_t start_position, absolute_position; if (0 == position->pass) { /* First pass */ if (0 == position->slice) { /* First slice */ reference_area_size = position->index - 1; /* all but the previous */ } else { if (same_lane) { /* The same lane => add current segment */ reference_area_size = position->slice * instance->segment_length + position->index - 1; } else { reference_area_size = position->slice * instance->segment_length + ((position->index == 0) ? (-1) : 0); } } } else { /* Second pass */ if (same_lane) { reference_area_size = instance->lane_length - instance->segment_length + position->index - 1; } else { reference_area_size = instance->lane_length - instance->segment_length + ((position->index == 0) ? (-1) : 0); } } /* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce * relative position */ relative_position = pseudo_rand; relative_position = relative_position * relative_position >> 32; relative_position = reference_area_size - 1 - (reference_area_size * relative_position >> 32); /* 1.2.5 Computing starting position */ start_position = 0; if (0 != position->pass) { start_position = (position->slice == ARGON2_SYNC_POINTS - 1) ? 0 : (position->slice + 1) * instance->segment_length; } /* 1.2.6. Computing absolute position */ absolute_position = (start_position + relative_position) % instance->lane_length; /* absolute position */ return absolute_position; } /* Single-threaded version for p=1 case */ static int fill_memory_blocks_st(argon2_instance_t *instance) { uint32_t r, s, l; for (r = 0; r < instance->passes; ++r) { for (s = 0; s < ARGON2_SYNC_POINTS; ++s) { for (l = 0; l < instance->lanes; ++l) { argon2_position_t position = {r, l, (uint8_t)s, 0}; fill_segment(instance, position); } } #ifdef GENKAT internal_kat(instance, r); /* Print all memory blocks */ #endif } return ARGON2_OK; } #if !defined(ARGON2_NO_THREADS) #ifdef _WIN32 static unsigned __stdcall fill_segment_thr(void *thread_data) #else static void *fill_segment_thr(void *thread_data) #endif { argon2_thread_data *my_data = thread_data; fill_segment(my_data->instance_ptr, my_data->pos); argon2_thread_exit(); return 0; } /* Multi-threaded version for p > 1 case */ static int fill_memory_blocks_mt(argon2_instance_t *instance) { uint32_t r, s; argon2_thread_handle_t *thread = NULL; argon2_thread_data *thr_data = NULL; int rc = ARGON2_OK; /* 1. Allocating space for threads */ thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t)); if (thread == NULL) { rc = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } thr_data = calloc(instance->lanes, sizeof(argon2_thread_data)); if (thr_data == NULL) { rc = ARGON2_MEMORY_ALLOCATION_ERROR; goto fail; } for (r = 0; r < instance->passes; ++r) { for (s = 0; s < ARGON2_SYNC_POINTS; ++s) { uint32_t l; /* 2. Calling threads */ for (l = 0; l < instance->lanes; ++l) { argon2_position_t position; /* 2.1 Join a thread if limit is exceeded */ if (l >= instance->threads) { if (argon2_thread_join(thread[l - instance->threads])) { rc = ARGON2_THREAD_FAIL; goto fail; } } /* 2.2 Create thread */ position.pass = r; position.lane = l; position.slice = (uint8_t)s; position.index = 0; thr_data[l].instance_ptr = instance; /* preparing the thread input */ memcpy(&(thr_data[l].pos), &position, sizeof(argon2_position_t)); if (argon2_thread_create(&thread[l], &fill_segment_thr, (void *)&thr_data[l])) { rc = ARGON2_THREAD_FAIL; goto fail; } /* fill_segment(instance, position); */ /*Non-thread equivalent of the lines above */ } /* 3. Joining remaining threads */ for (l = instance->lanes - instance->threads; l < instance->lanes; ++l) { if (argon2_thread_join(thread[l])) { rc = ARGON2_THREAD_FAIL; goto fail; } } } #ifdef GENKAT internal_kat(instance, r); /* Print all memory blocks */ #endif } fail: if (thread != NULL) { free(thread); } if (thr_data != NULL) { free(thr_data); } return rc; } #endif /* ARGON2_NO_THREADS */ int fill_memory_blocks(argon2_instance_t *instance) { if (instance == NULL || instance->lanes == 0) { return ARGON2_INCORRECT_PARAMETER; } #if defined(ARGON2_NO_THREADS) return fill_memory_blocks_st(instance); #else return instance->threads == 1 ? fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance); #endif } int validate_inputs(const argon2_context *context) { if (NULL == context) { return ARGON2_INCORRECT_PARAMETER; } if (NULL == context->out) { return ARGON2_OUTPUT_PTR_NULL; } /* Validate output length */ if (ARGON2_MIN_OUTLEN > context->outlen) { return ARGON2_OUTPUT_TOO_SHORT; } if (ARGON2_MAX_OUTLEN < context->outlen) { return ARGON2_OUTPUT_TOO_LONG; } /* Validate password (required param) */ if (NULL == context->pwd) { if (0 != context->pwdlen) { return ARGON2_PWD_PTR_MISMATCH; } } if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) { return ARGON2_PWD_TOO_SHORT; } if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) { return ARGON2_PWD_TOO_LONG; } /* Validate salt (required param) */ if (NULL == context->salt) { if (0 != context->saltlen) { return ARGON2_SALT_PTR_MISMATCH; } } if (ARGON2_MIN_SALT_LENGTH > context->saltlen) { return ARGON2_SALT_TOO_SHORT; } if (ARGON2_MAX_SALT_LENGTH < context->saltlen) { return ARGON2_SALT_TOO_LONG; } /* Validate secret (optional param) */ if (NULL == context->secret) { if (0 != context->secretlen) { return ARGON2_SECRET_PTR_MISMATCH; } } else { if (ARGON2_MIN_SECRET > context->secretlen) { return ARGON2_SECRET_TOO_SHORT; } if (ARGON2_MAX_SECRET < context->secretlen) { return ARGON2_SECRET_TOO_LONG; } } /* Validate associated data (optional param) */ if (NULL == context->ad) { if (0 != context->adlen) { return ARGON2_AD_PTR_MISMATCH; } } else { if (ARGON2_MIN_AD_LENGTH > context->adlen) { return ARGON2_AD_TOO_SHORT; } if (ARGON2_MAX_AD_LENGTH < context->adlen) { return ARGON2_AD_TOO_LONG; } } /* Validate memory cost */ if (ARGON2_MIN_MEMORY > context->m_cost) { return ARGON2_MEMORY_TOO_LITTLE; } if (ARGON2_MAX_MEMORY < context->m_cost) { return ARGON2_MEMORY_TOO_MUCH; } if (context->m_cost < 8 * context->lanes) { return ARGON2_MEMORY_TOO_LITTLE; } /* Validate time cost */ if (ARGON2_MIN_TIME > context->t_cost) { return ARGON2_TIME_TOO_SMALL; } if (ARGON2_MAX_TIME < context->t_cost) { return ARGON2_TIME_TOO_LARGE; } /* Validate lanes */ if (ARGON2_MIN_LANES > context->lanes) { return ARGON2_LANES_TOO_FEW; } if (ARGON2_MAX_LANES < context->lanes) { return ARGON2_LANES_TOO_MANY; } /* Validate threads */ if (ARGON2_MIN_THREADS > context->threads) { return ARGON2_THREADS_TOO_FEW; } if (ARGON2_MAX_THREADS < context->threads) { return ARGON2_THREADS_TOO_MANY; } if (NULL != context->allocate_cbk && NULL == context->free_cbk) { return ARGON2_FREE_MEMORY_CBK_NULL; } if (NULL == context->allocate_cbk && NULL != context->free_cbk) { return ARGON2_ALLOCATE_MEMORY_CBK_NULL; } return ARGON2_OK; } void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) { uint32_t l; /* Make the first and second block in each lane as G(H0||0||i) or G(H0||1||i) */ uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE]; for (l = 0; l < instance->lanes; ++l) { store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0); store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l); blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash, ARGON2_PREHASH_SEED_LENGTH); load_block(&instance->memory[l * instance->lane_length + 0], blockhash_bytes); store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1); blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash, ARGON2_PREHASH_SEED_LENGTH); load_block(&instance->memory[l * instance->lane_length + 1], blockhash_bytes); } clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); } void initial_hash(uint8_t *blockhash, argon2_context *context, argon2_type type) { blake2b_state BlakeHash; uint8_t value[sizeof(uint32_t)]; if (NULL == context || NULL == blockhash) { return; } blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH); store32(&value, context->lanes); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->outlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->m_cost); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->t_cost); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->version); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, (uint32_t)type); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); store32(&value, context->pwdlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->pwd != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->pwd, context->pwdlen); if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) { secure_wipe_memory(context->pwd, context->pwdlen); context->pwdlen = 0; } } store32(&value, context->saltlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->salt != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->salt, context->saltlen); } store32(&value, context->secretlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->secret != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->secret, context->secretlen); if (context->flags & ARGON2_FLAG_CLEAR_SECRET) { secure_wipe_memory(context->secret, context->secretlen); context->secretlen = 0; } } store32(&value, context->adlen); blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value)); if (context->ad != NULL) { blake2b_update(&BlakeHash, (const uint8_t *)context->ad, context->adlen); } blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH); } int initialize(argon2_instance_t *instance, argon2_context *context) { uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; int result = ARGON2_OK; if (instance == NULL || context == NULL) return ARGON2_INCORRECT_PARAMETER; instance->context_ptr = context; /* 1. Memory allocation */ result = allocate_memory(context, (uint8_t **)&(instance->memory), instance->memory_blocks, sizeof(block)); if (result != ARGON2_OK) { return result; } /* 2. Initial hashing */ /* H_0 + 8 extra bytes to produce the first blocks */ /* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */ /* Hashing all inputs */ initial_hash(blockhash, context, instance->type); /* Zeroing 8 extra bytes */ clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH); #ifdef GENKAT initial_kat(blockhash, context, instance->type); #endif /* 3. Creating first blocks, we always have at least two blocks in a slice */ fill_first_blocks(blockhash, instance); /* Clearing the hash */ clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH); return ARGON2_OK; } |
Added build/argon2/src/core.h version [a78495db9e].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #ifndef ARGON2_CORE_H #define ARGON2_CORE_H #include "argon2.h" #define CONST_CAST(x) (x)(uintptr_t) /**********************Argon2 internal constants*******************************/ enum argon2_core_constants { /* Memory block size in bytes */ ARGON2_BLOCK_SIZE = 1024, ARGON2_QWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 8, ARGON2_OWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 16, ARGON2_HWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 32, ARGON2_512BIT_WORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 64, /* Number of pseudo-random values generated by one call to Blake in Argon2i to generate reference block positions */ ARGON2_ADDRESSES_IN_BLOCK = 128, /* Pre-hashing digest length and its extension*/ ARGON2_PREHASH_DIGEST_LENGTH = 64, ARGON2_PREHASH_SEED_LENGTH = 72 }; /*************************Argon2 internal data types***********************/ /* * Structure for the (1KB) memory block implemented as 128 64-bit words. * Memory blocks can be copied, XORed. Internal words can be accessed by [] (no * bounds checking). */ typedef struct block_ { uint64_t v[ARGON2_QWORDS_IN_BLOCK]; } block; /*****************Functions that work with the block******************/ /* Initialize each byte of the block with @in */ void init_block_value(block *b, uint8_t in); /* Copy block @src to block @dst */ void copy_block(block *dst, const block *src); /* XOR @src onto @dst bytewise */ void xor_block(block *dst, const block *src); /* * Argon2 instance: memory pointer, number of passes, amount of memory, type, * and derived values. * Used to evaluate the number and location of blocks to construct in each * thread */ typedef struct Argon2_instance_t { block *memory; /* Memory pointer */ uint32_t version; uint32_t passes; /* Number of passes */ uint32_t memory_blocks; /* Number of blocks in memory */ uint32_t segment_length; uint32_t lane_length; uint32_t lanes; uint32_t threads; argon2_type type; int print_internals; /* whether to print the memory blocks */ argon2_context *context_ptr; /* points back to original context */ } argon2_instance_t; /* * Argon2 position: where we construct the block right now. Used to distribute * work between threads. */ typedef struct Argon2_position_t { uint32_t pass; uint32_t lane; uint8_t slice; uint32_t index; } argon2_position_t; /*Struct that holds the inputs for thread handling FillSegment*/ typedef struct Argon2_thread_data { argon2_instance_t *instance_ptr; argon2_position_t pos; } argon2_thread_data; /*************************Argon2 core functions********************************/ /* Allocates memory to the given pointer, uses the appropriate allocator as * specified in the context. Total allocated memory is num*size. * @param context argon2_context which specifies the allocator * @param memory pointer to the pointer to the memory * @param size the size in bytes for each element to be allocated * @param num the number of elements to be allocated * @return ARGON2_OK if @memory is a valid pointer and memory is allocated */ int allocate_memory(const argon2_context *context, uint8_t **memory, size_t num, size_t size); /* * Frees memory at the given pointer, uses the appropriate deallocator as * specified in the context. Also cleans the memory using clear_internal_memory. * @param context argon2_context which specifies the deallocator * @param memory pointer to buffer to be freed * @param size the size in bytes for each element to be deallocated * @param num the number of elements to be deallocated */ void free_memory(const argon2_context *context, uint8_t *memory, size_t num, size_t size); /* Function that securely cleans the memory. This ignores any flags set * regarding clearing memory. Usually one just calls clear_internal_memory. * @param mem Pointer to the memory * @param s Memory size in bytes */ void secure_wipe_memory(void *v, size_t n); /* Function that securely clears the memory if FLAG_clear_internal_memory is * set. If the flag isn't set, this function does nothing. * @param mem Pointer to the memory * @param s Memory size in bytes */ void clear_internal_memory(void *v, size_t n); /* * Computes absolute position of reference block in the lane following a skewed * distribution and using a pseudo-random value as input * @param instance Pointer to the current instance * @param position Pointer to the current position * @param pseudo_rand 32-bit pseudo-random value used to determine the position * @param same_lane Indicates if the block will be taken from the current lane. * If so we can reference the current segment * @pre All pointers must be valid */ uint32_t index_alpha(const argon2_instance_t *instance, const argon2_position_t *position, uint32_t pseudo_rand, int same_lane); /* * Function that validates all inputs against predefined restrictions and return * an error code * @param context Pointer to current Argon2 context * @return ARGON2_OK if everything is all right, otherwise one of error codes * (all defined in <argon2.h> */ int validate_inputs(const argon2_context *context); /* * Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears * password and secret if needed * @param context Pointer to the Argon2 internal structure containing memory * pointer, and parameters for time and space requirements. * @param blockhash Buffer for pre-hashing digest * @param type Argon2 type * @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes * allocated */ void initial_hash(uint8_t *blockhash, argon2_context *context, argon2_type type); /* * Function creates first 2 blocks per lane * @param instance Pointer to the current instance * @param blockhash Pointer to the pre-hashing digest * @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values */ void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance); /* * Function allocates memory, hashes the inputs with Blake, and creates first * two blocks. Returns the pointer to the main memory with 2 blocks per lane * initialized * @param context Pointer to the Argon2 internal structure containing memory * pointer, and parameters for time and space requirements. * @param instance Current Argon2 instance * @return Zero if successful, -1 if memory failed to allocate. @context->state * will be modified if successful. */ int initialize(argon2_instance_t *instance, argon2_context *context); /* * XORing the last block of each lane, hashing it, making the tag. Deallocates * the memory. * @param context Pointer to current Argon2 context (use only the out parameters * from it) * @param instance Pointer to current instance of Argon2 * @pre instance->state must point to necessary amount of memory * @pre context->out must point to outlen bytes of memory * @pre if context->free_cbk is not NULL, it should point to a function that * deallocates memory */ void finalize(const argon2_context *context, argon2_instance_t *instance); /* * Function that fills the segment using previous segments also from other * threads * @param context current context * @param instance Pointer to the current instance * @param position Current position * @pre all block pointers must be valid */ void fill_segment(const argon2_instance_t *instance, argon2_position_t position); /* * Function that fills the entire memory t_cost times based on the first two * blocks in each lane * @param instance Pointer to the current instance * @return ARGON2_OK if successful, @context->state */ int fill_memory_blocks(argon2_instance_t *instance); #endif |
Added build/argon2/src/encoding.c version [0ca1845e0f].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h> #include "encoding.h" #include "core.h" /* * Example code for a decoder and encoder of "hash strings", with Argon2 * parameters. * * This code comprises three sections: * * -- The first section contains generic Base64 encoding and decoding * functions. It is conceptually applicable to any hash function * implementation that uses Base64 to encode and decode parameters, * salts and outputs. It could be made into a library, provided that * the relevant functions are made public (non-static) and be given * reasonable names to avoid collisions with other functions. * * -- The second section is specific to Argon2. It encodes and decodes * the parameters, salts and outputs. It does not compute the hash * itself. * * The code was originally written by Thomas Pornin <pornin@bolet.org>, * to whom comments and remarks may be sent. It is released under what * should amount to Public Domain or its closest equivalent; the * following mantra is supposed to incarnate that fact with all the * proper legal rituals: * * --------------------------------------------------------------------- * This file is provided under the terms of Creative Commons CC0 1.0 * Public Domain Dedication. To the extent possible under law, the * author (Thomas Pornin) has waived all copyright and related or * neighboring rights to this file. This work is published from: Canada. * --------------------------------------------------------------------- * * Copyright (c) 2015 Thomas Pornin */ /* ==================================================================== */ /* * Common code; could be shared between different hash functions. * * Note: the Base64 functions below assume that uppercase letters (resp. * lowercase letters) have consecutive numerical codes, that fit on 8 * bits. All modern systems use ASCII-compatible charsets, where these * properties are true. If you are stuck with a dinosaur of a system * that still defaults to EBCDIC then you already have much bigger * interoperability issues to deal with. */ /* * Some macros for constant-time comparisons. These work over values in * the 0..255 range. Returned value is 0x00 on "false", 0xFF on "true". */ #define EQ(x, y) ((((0U - ((unsigned)(x) ^ (unsigned)(y))) >> 8) & 0xFF) ^ 0xFF) #define GT(x, y) ((((unsigned)(y) - (unsigned)(x)) >> 8) & 0xFF) #define GE(x, y) (GT(y, x) ^ 0xFF) #define LT(x, y) GT(y, x) #define LE(x, y) GE(y, x) /* * Convert value x (0..63) to corresponding Base64 character. */ static int b64_byte_to_char(unsigned x) { return (LT(x, 26) & (x + 'A')) | (GE(x, 26) & LT(x, 52) & (x + ('a' - 26))) | (GE(x, 52) & LT(x, 62) & (x + ('0' - 52))) | (EQ(x, 62) & '+') | (EQ(x, 63) & '/'); } /* * Convert character c to the corresponding 6-bit value. If character c * is not a Base64 character, then 0xFF (255) is returned. */ static unsigned b64_char_to_byte(int c) { unsigned x; x = (GE(c, 'A') & LE(c, 'Z') & (c - 'A')) | (GE(c, 'a') & LE(c, 'z') & (c - ('a' - 26))) | (GE(c, '0') & LE(c, '9') & (c - ('0' - 52))) | (EQ(c, '+') & 62) | (EQ(c, '/') & 63); return x | (EQ(x, 0) & (EQ(c, 'A') ^ 0xFF)); } /* * Convert some bytes to Base64. 'dst_len' is the length (in characters) * of the output buffer 'dst'; if that buffer is not large enough to * receive the result (including the terminating 0), then (size_t)-1 * is returned. Otherwise, the zero-terminated Base64 string is written * in the buffer, and the output length (counted WITHOUT the terminating * zero) is returned. */ static size_t to_base64(char *dst, size_t dst_len, const void *src, size_t src_len) { size_t olen; const unsigned char *buf; unsigned acc, acc_len; olen = (src_len / 3) << 2; switch (src_len % 3) { case 2: olen++; /* fall through */ case 1: olen += 2; break; } if (dst_len <= olen) { return (size_t)-1; } acc = 0; acc_len = 0; buf = (const unsigned char *)src; while (src_len-- > 0) { acc = (acc << 8) + (*buf++); acc_len += 8; while (acc_len >= 6) { acc_len -= 6; *dst++ = (char)b64_byte_to_char((acc >> acc_len) & 0x3F); } } if (acc_len > 0) { *dst++ = (char)b64_byte_to_char((acc << (6 - acc_len)) & 0x3F); } *dst++ = 0; return olen; } /* * Decode Base64 chars into bytes. The '*dst_len' value must initially * contain the length of the output buffer '*dst'; when the decoding * ends, the actual number of decoded bytes is written back in * '*dst_len'. * * Decoding stops when a non-Base64 character is encountered, or when * the output buffer capacity is exceeded. If an error occurred (output * buffer is too small, invalid last characters leading to unprocessed * buffered bits), then NULL is returned; otherwise, the returned value * points to the first non-Base64 character in the source stream, which * may be the terminating zero. */ static const char *from_base64(void *dst, size_t *dst_len, const char *src) { size_t len; unsigned char *buf; unsigned acc, acc_len; buf = (unsigned char *)dst; len = 0; acc = 0; acc_len = 0; for (;;) { unsigned d; d = b64_char_to_byte(*src); if (d == 0xFF) { break; } src++; acc = (acc << 6) + d; acc_len += 6; if (acc_len >= 8) { acc_len -= 8; if ((len++) >= *dst_len) { return NULL; } *buf++ = (acc >> acc_len) & 0xFF; } } /* * If the input length is equal to 1 modulo 4 (which is * invalid), then there will remain 6 unprocessed bits; * otherwise, only 0, 2 or 4 bits are buffered. The buffered * bits must also all be zero. */ if (acc_len > 4 || (acc & (((unsigned)1 << acc_len) - 1)) != 0) { return NULL; } *dst_len = len; return src; } /* * Decode decimal integer from 'str'; the value is written in '*v'. * Returned value is a pointer to the next non-decimal character in the * string. If there is no digit at all, or the value encoding is not * minimal (extra leading zeros), or the value does not fit in an * 'unsigned long', then NULL is returned. */ static const char *decode_decimal(const char *str, unsigned long *v) { const char *orig; unsigned long acc; acc = 0; for (orig = str;; str++) { int c; c = *str; if (c < '0' || c > '9') { break; } c -= '0'; if (acc > (ULONG_MAX / 10)) { return NULL; } acc *= 10; if ((unsigned long)c > (ULONG_MAX - acc)) { return NULL; } acc += (unsigned long)c; } if (str == orig || (*orig == '0' && str != (orig + 1))) { return NULL; } *v = acc; return str; } /* ==================================================================== */ /* * Code specific to Argon2. * * The code below applies the following format: * * $argon2<T>[$v=<num>]$m=<num>,t=<num>,p=<num>$<bin>$<bin> * * where <T> is either 'd', 'id', or 'i', <num> is a decimal integer (positive, * fits in an 'unsigned long'), and <bin> is Base64-encoded data (no '=' padding * characters, no newline or whitespace). * * The last two binary chunks (encoded in Base64) are, in that order, * the salt and the output. Both are required. The binary salt length and the * output length must be in the allowed ranges defined in argon2.h. * * The ctx struct must contain buffers large enough to hold the salt and pwd * when it is fed into decode_string. */ int decode_string(argon2_context *ctx, const char *str, argon2_type type) { /* check for prefix */ #define CC(prefix) \ do { \ size_t cc_len = strlen(prefix); \ if (strncmp(str, prefix, cc_len) != 0) { \ return ARGON2_DECODING_FAIL; \ } \ str += cc_len; \ } while ((void)0, 0) /* optional prefix checking with supplied code */ #define CC_opt(prefix, code) \ do { \ size_t cc_len = strlen(prefix); \ if (strncmp(str, prefix, cc_len) == 0) { \ str += cc_len; \ { code; } \ } \ } while ((void)0, 0) /* Decoding prefix into decimal */ #define DECIMAL(x) \ do { \ unsigned long dec_x; \ str = decode_decimal(str, &dec_x); \ if (str == NULL) { \ return ARGON2_DECODING_FAIL; \ } \ (x) = dec_x; \ } while ((void)0, 0) /* Decoding prefix into uint32_t decimal */ #define DECIMAL_U32(x) \ do { \ unsigned long dec_x; \ str = decode_decimal(str, &dec_x); \ if (str == NULL || dec_x > UINT32_MAX) { \ return ARGON2_DECODING_FAIL; \ } \ (x) = (uint32_t)dec_x; \ } while ((void)0, 0) /* Decoding base64 into a binary buffer */ #define BIN(buf, max_len, len) \ do { \ size_t bin_len = (max_len); \ str = from_base64(buf, &bin_len, str); \ if (str == NULL || bin_len > UINT32_MAX) { \ return ARGON2_DECODING_FAIL; \ } \ (len) = (uint32_t)bin_len; \ } while ((void)0, 0) size_t maxsaltlen = ctx->saltlen; size_t maxoutlen = ctx->outlen; int validation_result; const char* type_string; /* We should start with the argon2_type we are using */ type_string = argon2_type2string(type, 0); if (!type_string) { return ARGON2_INCORRECT_TYPE; } CC("$"); CC(type_string); /* Reading the version number if the default is suppressed */ ctx->version = ARGON2_VERSION_10; CC_opt("$v=", DECIMAL_U32(ctx->version)); CC("$m="); DECIMAL_U32(ctx->m_cost); CC(",t="); DECIMAL_U32(ctx->t_cost); CC(",p="); DECIMAL_U32(ctx->lanes); ctx->threads = ctx->lanes; CC("$"); BIN(ctx->salt, maxsaltlen, ctx->saltlen); CC("$"); BIN(ctx->out, maxoutlen, ctx->outlen); /* The rest of the fields get the default values */ ctx->secret = NULL; ctx->secretlen = 0; ctx->ad = NULL; ctx->adlen = 0; ctx->allocate_cbk = NULL; ctx->free_cbk = NULL; ctx->flags = ARGON2_DEFAULT_FLAGS; /* On return, must have valid context */ validation_result = validate_inputs(ctx); if (validation_result != ARGON2_OK) { return validation_result; } /* Can't have any additional characters */ if (*str == 0) { return ARGON2_OK; } else { return ARGON2_DECODING_FAIL; } #undef CC #undef CC_opt #undef DECIMAL #undef BIN } int encode_string(char *dst, size_t dst_len, argon2_context *ctx, argon2_type type) { #define SS(str) \ do { \ size_t pp_len = strlen(str); \ if (pp_len >= dst_len) { \ return ARGON2_ENCODING_FAIL; \ } \ memcpy(dst, str, pp_len + 1); \ dst += pp_len; \ dst_len -= pp_len; \ } while ((void)0, 0) #define SX(x) \ do { \ char tmp[30]; \ sprintf(tmp, "%lu", (unsigned long)(x)); \ SS(tmp); \ } while ((void)0, 0) #define SB(buf, len) \ do { \ size_t sb_len = to_base64(dst, dst_len, buf, len); \ if (sb_len == (size_t)-1) { \ return ARGON2_ENCODING_FAIL; \ } \ dst += sb_len; \ dst_len -= sb_len; \ } while ((void)0, 0) const char* type_string = argon2_type2string(type, 0); int validation_result = validate_inputs(ctx); if (!type_string) { return ARGON2_ENCODING_FAIL; } if (validation_result != ARGON2_OK) { return validation_result; } SS("$"); SS(type_string); SS("$v="); SX(ctx->version); SS("$m="); SX(ctx->m_cost); SS(",t="); SX(ctx->t_cost); SS(",p="); SX(ctx->lanes); SS("$"); SB(ctx->salt, ctx->saltlen); SS("$"); SB(ctx->out, ctx->outlen); return ARGON2_OK; #undef SS #undef SX #undef SB } size_t b64len(uint32_t len) { size_t olen = ((size_t)len / 3) << 2; switch (len % 3) { case 2: olen++; /* fall through */ case 1: olen += 2; break; } return olen; } size_t numlen(uint32_t num) { size_t len = 1; while (num >= 10) { ++len; num = num / 10; } return len; } |
Added build/argon2/src/encoding.h version [fd81495ccf].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #ifndef ENCODING_H #define ENCODING_H #include "argon2.h" #define ARGON2_MAX_DECODED_LANES UINT32_C(255) #define ARGON2_MIN_DECODED_SALT_LEN UINT32_C(8) #define ARGON2_MIN_DECODED_OUT_LEN UINT32_C(12) /* * encode an Argon2 hash string into the provided buffer. 'dst_len' * contains the size, in characters, of the 'dst' buffer; if 'dst_len' * is less than the number of required characters (including the * terminating 0), then this function returns ARGON2_ENCODING_ERROR. * * on success, ARGON2_OK is returned. */ int encode_string(char *dst, size_t dst_len, argon2_context *ctx, argon2_type type); /* * Decodes an Argon2 hash string into the provided structure 'ctx'. * The only fields that must be set prior to this call are ctx.saltlen and * ctx.outlen (which must be the maximal salt and out length values that are * allowed), ctx.salt and ctx.out (which must be buffers of the specified * length), and ctx.pwd and ctx.pwdlen which must hold a valid password. * * Invalid input string causes an error. On success, the ctx is valid and all * fields have been initialized. * * Returned value is ARGON2_OK on success, other ARGON2_ codes on error. */ int decode_string(argon2_context *ctx, const char *str, argon2_type type); /* Returns the length of the encoded byte stream with length len */ size_t b64len(uint32_t len); /* Returns the length of the encoded number num */ size_t numlen(uint32_t num); #endif |
Added build/argon2/src/ref.c version [4805673d20].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | /* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include <stdint.h> #include <string.h> #include <stdlib.h> #include "argon2.h" #include "core.h" #include "blake2/blamka-round-ref.h" #include "blake2/blake2-impl.h" #include "blake2/blake2.h" /* * Function fills a new memory block and optionally XORs the old block over the new one. * @next_block must be initialized. * @param prev_block Pointer to the previous block * @param ref_block Pointer to the reference block * @param next_block Pointer to the block to be constructed * @param with_xor Whether to XOR into the new block (1) or just overwrite (0) * @pre all block pointers must be valid */ static void fill_block(const block *prev_block, const block *ref_block, block *next_block, int with_xor) { block blockR, block_tmp; unsigned i; copy_block(&blockR, ref_block); xor_block(&blockR, prev_block); copy_block(&block_tmp, &blockR); /* Now blockR = ref_block + prev_block and block_tmp = ref_block + prev_block */ if (with_xor) { /* Saving the next block contents for XOR over: */ xor_block(&block_tmp, next_block); /* Now blockR = ref_block + prev_block and block_tmp = ref_block + prev_block + next_block */ } /* Apply Blake2 on columns of 64-bit words: (0,1,...,15) , then (16,17,..31)... finally (112,113,...127) */ for (i = 0; i < 8; ++i) { BLAKE2_ROUND_NOMSG( blockR.v[16 * i], blockR.v[16 * i + 1], blockR.v[16 * i + 2], blockR.v[16 * i + 3], blockR.v[16 * i + 4], blockR.v[16 * i + 5], blockR.v[16 * i + 6], blockR.v[16 * i + 7], blockR.v[16 * i + 8], blockR.v[16 * i + 9], blockR.v[16 * i + 10], blockR.v[16 * i + 11], blockR.v[16 * i + 12], blockR.v[16 * i + 13], blockR.v[16 * i + 14], blockR.v[16 * i + 15]); } /* Apply Blake2 on rows of 64-bit words: (0,1,16,17,...112,113), then (2,3,18,19,...,114,115).. finally (14,15,30,31,...,126,127) */ for (i = 0; i < 8; i++) { BLAKE2_ROUND_NOMSG( blockR.v[2 * i], blockR.v[2 * i + 1], blockR.v[2 * i + 16], blockR.v[2 * i + 17], blockR.v[2 * i + 32], blockR.v[2 * i + 33], blockR.v[2 * i + 48], blockR.v[2 * i + 49], blockR.v[2 * i + 64], blockR.v[2 * i + 65], blockR.v[2 * i + 80], blockR.v[2 * i + 81], blockR.v[2 * i + 96], blockR.v[2 * i + 97], blockR.v[2 * i + 112], blockR.v[2 * i + 113]); } copy_block(next_block, &block_tmp); xor_block(next_block, &blockR); } static void next_addresses(block *address_block, block *input_block, const block *zero_block) { input_block->v[6]++; fill_block(zero_block, input_block, address_block, 0); fill_block(zero_block, address_block, address_block, 0); } void fill_segment(const argon2_instance_t *instance, argon2_position_t position) { block *ref_block = NULL, *curr_block = NULL; block address_block, input_block, zero_block; uint64_t pseudo_rand, ref_index, ref_lane; uint32_t prev_offset, curr_offset; uint32_t starting_index; uint32_t i; int data_independent_addressing; if (instance == NULL) { return; } data_independent_addressing = (instance->type == Argon2_i) || (instance->type == Argon2_id && (position.pass == 0) && (position.slice < ARGON2_SYNC_POINTS / 2)); if (data_independent_addressing) { init_block_value(&zero_block, 0); init_block_value(&input_block, 0); input_block.v[0] = position.pass; input_block.v[1] = position.lane; input_block.v[2] = position.slice; input_block.v[3] = instance->memory_blocks; input_block.v[4] = instance->passes; input_block.v[5] = instance->type; } starting_index = 0; if ((0 == position.pass) && (0 == position.slice)) { starting_index = 2; /* we have already generated the first two blocks */ /* Don't forget to generate the first block of addresses: */ if (data_independent_addressing) { next_addresses(&address_block, &input_block, &zero_block); } } /* Offset of the current block */ curr_offset = position.lane * instance->lane_length + position.slice * instance->segment_length + starting_index; if (0 == curr_offset % instance->lane_length) { /* Last block in this lane */ prev_offset = curr_offset + instance->lane_length - 1; } else { /* Previous block */ prev_offset = curr_offset - 1; } for (i = starting_index; i < instance->segment_length; ++i, ++curr_offset, ++prev_offset) { /*1.1 Rotating prev_offset if needed */ if (curr_offset % instance->lane_length == 1) { prev_offset = curr_offset - 1; } /* 1.2 Computing the index of the reference block */ /* 1.2.1 Taking pseudo-random value from the previous block */ if (data_independent_addressing) { if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { next_addresses(&address_block, &input_block, &zero_block); } pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; } else { pseudo_rand = instance->memory[prev_offset].v[0]; } /* 1.2.2 Computing the lane of the reference block */ ref_lane = ((pseudo_rand >> 32)) % instance->lanes; if ((position.pass == 0) && (position.slice == 0)) { /* Can not reference other lanes yet */ ref_lane = position.lane; } /* 1.2.3 Computing the number of possible reference block within the * lane. */ position.index = i; ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, ref_lane == position.lane); /* 2 Creating a new block */ ref_block = instance->memory + instance->lane_length * ref_lane + ref_index; curr_block = instance->memory + curr_offset; if (ARGON2_VERSION_10 == instance->version) { /* version 1.2.1 and earlier: overwrite, not XOR */ fill_block(instance->memory + prev_offset, ref_block, curr_block, 0); } else { if(0 == position.pass) { fill_block(instance->memory + prev_offset, ref_block, curr_block, 0); } else { fill_block(instance->memory + prev_offset, ref_block, curr_block, 1); } } } } |
Deleted build/blake2b/Makefile version [43ab4a38f2].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/blake2b/blake2-nacl.c version [41e5cf5dd8].
|
| < < < < < < |
Deleted build/blake2b/blake2-nacl.h version [25d1438790].
|
| < < < < < < < < < < < < < < < < < < < < |
Deleted build/blake2b/src/blake2-impl.h version [d0bfa55cf5].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/blake2b/src/blake2.h version [69e1232ee2].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/blake2b/src/blake2b-ref.c version [297ab9afc5].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/tweetnacl/Makefile version [8da3d99efa].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/tweetnacl/patches/tweetnacl-derivepubkey.diff version [13b5ea391c].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/tweetnacl/patches/tweetnacl-ed25519blake2b.diff version [df305f7e81].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/tweetnacl/src/tweetnacl.c version [4925273a99].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Deleted build/tweetnacl/src/tweetnacl.h version [62a2504e0d].
|
| < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < |
Modified nano.c from [6d823f4967] to [d9395b5407].
1 2 3 4 5 6 7 8 9 10 11 | #include <stdint.h> #include <limits.h> #include <string.h> #include <stdlib.h> #include <unistd.h> #include <tcl.h> #ifdef NANO_TCL_HAVE_OPENMP # include <omp.h> #endif #include "randombytes.h" | > > > > | | | | | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | /* XXX:TODO: OpenMP support is currently incomplete */ #undef NANO_TCL_HAVE_OPENMP #include <stdint.h> #include <limits.h> #include <string.h> #include <stdlib.h> #include <unistd.h> #include <tcl.h> #ifdef NANO_TCL_HAVE_OPENMP # include <omp.h> #endif #include "randombytes.h" #include "monocypher.h" #include "argon2.h" #include "aes.h" #define NANO_SECRET_KEY_LENGTH 32 #define NANO_PUBLIC_KEY_LENGTH 32 #define NANO_BLOCK_HASH_LENGTH 32 #define NANO_BLOCK_SIGNATURE_LENGTH 64 #define NANO_WORK_VALUE_LENGTH 8 #define NANO_WORK_HASH_LENGTH 8 #define NANO_WORK_DEFAULT_MIN 0xffffffc000000000LLU #define NANO_KDF_ARGON2_MEMORY 64 * 1024 #define NANO_KDF_ARGON2_TIMING 1 #define NANO_KDF_ARGON2_THREADS 1 #define TclNano_AttemptAlloc(x) ((void *) Tcl_AttemptAlloc(x)) #define TclNano_Free(x) Tcl_Free((char *) x) #define TclNano_SetIntVar(interp, name, intValue) \ tclobj_ret = Tcl_SetVar2Ex(interp, name, NULL, Tcl_NewIntObj(intValue), TCL_GLOBAL_ONLY | TCL_LEAVE_ERR_MSG); \ if (!tclobj_ret) { \ return(TCL_ERROR); \ |
︙ | ︙ | |||
48 49 50 51 52 53 54 | #define TclNano_PkgProvide(interp, name, version) \ tclcmd_ret = Tcl_PkgProvide(interp, name, version); \ if (tclcmd_ret != TCL_OK) { \ return(tclcmd_ret); \ } | | | | | < < < < < < < < | < | | | | < < | < < | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | #define TclNano_PkgProvide(interp, name, version) \ tclcmd_ret = Tcl_PkgProvide(interp, name, version); \ if (tclcmd_ret != TCL_OK) { \ return(tclcmd_ret); \ } static unsigned char *nano_parse_secret_key(Tcl_Obj *secret_key_only_obj, unsigned char *public_key, int public_key_length) { unsigned char *secret_key_only; int secret_key_only_length; secret_key_only = Tcl_GetByteArrayFromObj(secret_key_only_obj, &secret_key_only_length); if (secret_key_only_length != NANO_SECRET_KEY_LENGTH) { return(NULL); } if (public_key_length != NANO_PUBLIC_KEY_LENGTH) { return(NULL); } crypto_sign_public_key(public_key, secret_key_only); return(public_key); } static int nano_tcl_generate_keypair(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { unsigned char secret_key[NANO_SECRET_KEY_LENGTH], public_key[NANO_PUBLIC_KEY_LENGTH]; unsigned char *seed, *buffer, buffer_s[NANO_SECRET_KEY_LENGTH + 4]; long seed_index; int seed_length, buffer_length; int tglfo_ret; if (objc != 1 && objc != 3) { Tcl_WrongNumArgs(interp, 1, objv, "?seed index?"); return(TCL_ERROR); } if (objc == 1) { randombytes(secret_key, NANO_SECRET_KEY_LENGTH); crypto_sign_public_key(public_key, secret_key); } else { seed = Tcl_GetByteArrayFromObj(objv[1], &seed_length); if (seed_length != NANO_SECRET_KEY_LENGTH) { Tcl_SetResult(interp, "Seed is not the right size", NULL); return(TCL_ERROR); } |
︙ | ︙ | |||
125 126 127 128 129 130 131 | buffer += seed_length; buffer[0] = (seed_index >> 24) & 0xff; buffer[1] = (seed_index >> 16) & 0xff; buffer[2] = (seed_index >> 8) & 0xff; buffer[3] = seed_index & 0xff; buffer -= seed_length; | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | buffer += seed_length; buffer[0] = (seed_index >> 24) & 0xff; buffer[1] = (seed_index >> 16) & 0xff; buffer[2] = (seed_index >> 8) & 0xff; buffer[3] = seed_index & 0xff; buffer -= seed_length; crypto_blake2b_general(secret_key, NANO_SECRET_KEY_LENGTH, NULL, 0, buffer, buffer_length); } Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(secret_key, NANO_SECRET_KEY_LENGTH)); return(TCL_OK); /* NOTREACH */ |
︙ | ︙ | |||
158 159 160 161 162 163 164 | return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_secret_key_to_public_key(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { | | > | | < < < < < | < < < | < < < < < < | | | | < < < < < < | | | | < | | < < < < | < < < < < < < | | | < | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_secret_key_to_public_key(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { Tcl_Obj *secret_key; unsigned char *public_key, public_key_buffer[NANO_PUBLIC_KEY_LENGTH]; int public_key_length; if (objc != 2) { Tcl_WrongNumArgs(interp, 1, objv, "secretKey"); return(TCL_ERROR); } secret_key = objv[1]; public_key_length = sizeof(public_key_buffer); public_key = nano_parse_secret_key(secret_key, public_key_buffer, public_key_length); Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(public_key, public_key_length)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_sign_detached(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { unsigned char signature[NANO_BLOCK_SIGNATURE_LENGTH]; unsigned char public_key_buffer[NANO_PUBLIC_KEY_LENGTH]; unsigned char *data, *secret_key, *public_key; int data_length, public_key_length, secret_key_length; if (objc != 3) { Tcl_WrongNumArgs(interp, 1, objv, "data secretKey"); return(TCL_ERROR); } data = Tcl_GetByteArrayFromObj(objv[1], &data_length); secret_key = Tcl_GetByteArrayFromObj(objv[2], &secret_key_length); if (secret_key_length != NANO_SECRET_KEY_LENGTH) { Tcl_SetResult(interp, "Secret key is not the right size", NULL); return(TCL_ERROR); } public_key_length = sizeof(public_key_buffer); public_key = nano_parse_secret_key(objv[2], public_key_buffer, public_key_length); if (!public_key) { Tcl_SetResult(interp, "Error converting secret key to public key", NULL); return(TCL_ERROR); } crypto_sign(signature, secret_key, public_key, data, data_length); Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(signature, NANO_BLOCK_SIGNATURE_LENGTH)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_verify_detached(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { int cc_ret; unsigned char *signature, *data, *public_key; int signature_length, data_length, public_key_length; int result; if (objc != 4) { Tcl_WrongNumArgs(interp, 1, objv, "data signature publicKey"); return(TCL_ERROR); } |
︙ | ︙ | |||
279 280 281 282 283 284 285 | public_key = Tcl_GetByteArrayFromObj(objv[3], &public_key_length); if (public_key_length != NANO_PUBLIC_KEY_LENGTH) { Tcl_SetResult(interp, "Public key is not the right size", NULL); return(TCL_ERROR); } | < < < < | < < < < < < < < < < < < < < < < < < | > | > | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | public_key = Tcl_GetByteArrayFromObj(objv[3], &public_key_length); if (public_key_length != NANO_PUBLIC_KEY_LENGTH) { Tcl_SetResult(interp, "Public key is not the right size", NULL); return(TCL_ERROR); } cc_ret = crypto_check(signature, public_key, data, data_length); result = 0; if (!cc_ret) { result = 1; } Tcl_SetObjResult(interp, Tcl_NewBooleanObj(result)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_derive_key_from_password(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { void *password, *salt; int password_length, salt_length; unsigned char result[32]; int hash_ret; if (objc != 3) { Tcl_WrongNumArgs(interp, 1, objv, "password salt"); return(TCL_ERROR); } password = Tcl_GetByteArrayFromObj(objv[1], &password_length); salt = Tcl_GetByteArrayFromObj(objv[2], &salt_length); hash_ret = argon2_hash(NANO_KDF_ARGON2_TIMING, NANO_KDF_ARGON2_MEMORY, NANO_KDF_ARGON2_THREADS, password, password_length, salt, salt_length, result, sizeof(result), NULL, 0, Argon2_d, 0x10); if (hash_ret != ARGON2_OK) { Tcl_SetResult(interp, (char *) argon2_error_message(hash_ret), NULL); return(TCL_ERROR); } Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(result, sizeof(result))); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_aes256_ctr(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { struct AES_ctx aes_handle; void *key, *iv, *data; int key_length, iv_length, data_length; unsigned char result[128]; if (objc != 4) { Tcl_WrongNumArgs(interp, 1, objv, "key iv data"); return(TCL_ERROR); } key = Tcl_GetByteArrayFromObj(objv[1], &key_length); iv = Tcl_GetByteArrayFromObj(objv[2], &iv_length); data = Tcl_GetByteArrayFromObj(objv[3], &data_length); if (key_length != AES_KEYLEN) { Tcl_SetResult(interp, "Key is not the right size", NULL); return(TCL_ERROR); } if (iv_length != AES_BLOCKLEN) { Tcl_SetResult(interp, "IV is not the right size", NULL); return(TCL_ERROR); } if (data_length > sizeof(result)) { Tcl_SetResult(interp, "Data exceeds maximum size", NULL); return(TCL_ERROR); } memcpy(result, data, data_length); AES_init_ctx_iv(&aes_handle, key, iv); AES_CTR_xcrypt_buffer(&aes_handle, result, data_length); Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(result, AES_KEYLEN)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_hash_data(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { |
︙ | ︙ | |||
342 343 344 345 346 347 348 | if (result_length > sizeof(result)) { Tcl_SetResult(interp, "Hash length too large", NULL); return(TCL_ERROR); } | | | | < | < < < < | < < < < | < < < < | < < < | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | if (result_length > sizeof(result)) { Tcl_SetResult(interp, "Hash length too large", NULL); return(TCL_ERROR); } crypto_blake2b_general(result, result_length, NULL, 0, data, data_length); } else { /* * Default to the same as the cryptographic primitive */ crypto_blake2b(result, data, data_length); result_length = NANO_BLOCK_SIGNATURE_LENGTH; } Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(result, result_length)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_validate_work(const unsigned char *blockhash, const unsigned char *work, uint64_t workMin) { unsigned char workReversed[NANO_WORK_VALUE_LENGTH], workCheck[NANO_WORK_HASH_LENGTH]; unsigned int idxIn, idxOut; crypto_blake2b_ctx workhash_state; uint64_t workValue; idxIn = sizeof(workReversed) - 1; idxOut = 0; while (idxOut < sizeof(workReversed)) { workReversed[idxOut] = work[idxIn]; idxOut++; idxIn--; } crypto_blake2b_general_init(&workhash_state, sizeof(workCheck), NULL, 0); crypto_blake2b_update(&workhash_state, workReversed, sizeof(workReversed)); crypto_blake2b_update(&workhash_state, blockhash, NANO_BLOCK_HASH_LENGTH); crypto_blake2b_final(&workhash_state, workCheck); workValue = 0; for (idxIn = sizeof(workCheck); idxIn > 0; idxIn--) { workValue <<= 8; workValue |= workCheck[idxIn - 1]; } |
︙ | ︙ | |||
415 416 417 418 419 420 421 | static void nano_generate_work(const unsigned char *blockhash, unsigned char *workOut, uint64_t workMin) { unsigned char work[NANO_WORK_VALUE_LENGTH]; unsigned int offset; int work_valid; memcpy(work, blockhash, sizeof(work)); | | | 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | static void nano_generate_work(const unsigned char *blockhash, unsigned char *workOut, uint64_t workMin) { unsigned char work[NANO_WORK_VALUE_LENGTH]; unsigned int offset; int work_valid; memcpy(work, blockhash, sizeof(work)); /* XXX:TODO: INCOMPLETE OpenMP support #pragma omp target map(tofrom:work) */ while (1) { work_valid = nano_validate_work(blockhash, work, workMin); if (work_valid) { break; } offset = 0; |
︙ | ︙ | |||
530 531 532 533 534 535 536 | return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_random_bytes(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { | | < < < < < < < < < | 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_random_bytes(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { unsigned char buffer[128]; int number_of_bytes; int tgifo_ret; if (objc != 2) { Tcl_WrongNumArgs(interp, 1, objv, "numberOfBytes"); return(TCL_ERROR); } tgifo_ret = Tcl_GetIntFromObj(interp, objv[1], &number_of_bytes); if (tgifo_ret != TCL_OK) { return(tgifo_ret); } if (number_of_bytes > 128) { Tcl_SetResult(interp, "May only request 128 bytes of random data at once", NULL); return(TCL_ERROR); } randombytes(buffer, number_of_bytes); Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(buffer, number_of_bytes)); return(TCL_OK); /* NOTREACH */ clientData = clientData; } static int nano_tcl_self_test(ClientData clientData, Tcl_Interp *interp, int objc, Tcl_Obj *const objv[]) { |
︙ | ︙ | |||
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | TclNano_CreateObjCommand(interp, "::nano::internal::selfTest", nano_tcl_self_test); TclNano_CreateObjCommand(interp, "::nano::internal::generateKey", nano_tcl_generate_keypair); TclNano_CreateObjCommand(interp, "::nano::internal::generateSeed", nano_tcl_generate_seed); TclNano_CreateObjCommand(interp, "::nano::internal::publicKey", nano_tcl_secret_key_to_public_key); TclNano_CreateObjCommand(interp, "::nano::internal::signDetached", nano_tcl_sign_detached); TclNano_CreateObjCommand(interp, "::nano::internal::verifyDetached", nano_tcl_verify_detached); TclNano_CreateObjCommand(interp, "::nano::internal::hashData", nano_tcl_hash_data); TclNano_CreateObjCommand(interp, "::nano::internal::validateWork", nano_tcl_validate_work); TclNano_CreateObjCommand(interp, "::nano::internal::generateWork", nano_tcl_generate_work); TclNano_CreateObjCommand(interp, "::nano::internal::randomBytes", nano_tcl_random_bytes); TclNano_Eval(interp, nanoInitScript); TclNano_PkgProvide(interp, "nano", PACKAGE_VERSION); return(TCL_OK); } | > > | 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | TclNano_CreateObjCommand(interp, "::nano::internal::selfTest", nano_tcl_self_test); TclNano_CreateObjCommand(interp, "::nano::internal::generateKey", nano_tcl_generate_keypair); TclNano_CreateObjCommand(interp, "::nano::internal::generateSeed", nano_tcl_generate_seed); TclNano_CreateObjCommand(interp, "::nano::internal::publicKey", nano_tcl_secret_key_to_public_key); TclNano_CreateObjCommand(interp, "::nano::internal::signDetached", nano_tcl_sign_detached); TclNano_CreateObjCommand(interp, "::nano::internal::verifyDetached", nano_tcl_verify_detached); TclNano_CreateObjCommand(interp, "::nano::internal::hashData", nano_tcl_hash_data); TclNano_CreateObjCommand(interp, "::nano::internal::deriveKeyFromPassword", nano_tcl_derive_key_from_password); TclNano_CreateObjCommand(interp, "::nano::internal::AES256-CTR", nano_tcl_aes256_ctr); TclNano_CreateObjCommand(interp, "::nano::internal::validateWork", nano_tcl_validate_work); TclNano_CreateObjCommand(interp, "::nano::internal::generateWork", nano_tcl_generate_work); TclNano_CreateObjCommand(interp, "::nano::internal::randomBytes", nano_tcl_random_bytes); TclNano_Eval(interp, nanoInitScript); TclNano_PkgProvide(interp, "nano", PACKAGE_VERSION); return(TCL_OK); } |
Added vendor/aes/aes.c version [3eb739bb6b].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | /* This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. The implementation is verified against the test vectors in: National Institute of Standards and Technology Special Publication 800-38A 2001 ED ECB-AES128 ---------- plain-text: 6bc1bee22e409f96e93d7e117393172a ae2d8a571e03ac9c9eb76fac45af8e51 30c81c46a35ce411e5fbc1191a0a52ef f69f2445df4f9b17ad2b417be66c3710 key: 2b7e151628aed2a6abf7158809cf4f3c resulting cipher 3ad77bb40d7a3660a89ecaf32466ef97 f5d3d58503b9699de785895a96fdbaaf 43b1cd7f598ece23881b00e3ed030688 7b0c785e27e8ad3f8223207104725dd4 NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) You should pad the end of the string with zeros if this is not the case. For AES192/256 the key size is proportionally larger. */ /*****************************************************************************/ /* Includes: */ /*****************************************************************************/ #include <stdint.h> #include <string.h> // CBC mode, for memset #include "aes.h" /*****************************************************************************/ /* Defines: */ /*****************************************************************************/ // The number of columns comprising a state in AES. This is a constant in AES. Value=4 #define Nb 4 #if defined(AES256) && (AES256 == 1) #define Nk 8 #define Nr 14 #elif defined(AES192) && (AES192 == 1) #define Nk 6 #define Nr 12 #else #define Nk 4 // The number of 32 bit words in a key. #define Nr 10 // The number of rounds in AES Cipher. #endif // jcallan@github points out that declaring Multiply as a function // reduces code size considerably with the Keil ARM compiler. // See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3 #ifndef MULTIPLY_AS_A_FUNCTION #define MULTIPLY_AS_A_FUNCTION 0 #endif /*****************************************************************************/ /* Private variables: */ /*****************************************************************************/ // state - array holding the intermediate results during decryption. typedef uint8_t state_t[4][4]; // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - // This can be useful in (embedded) bootloader applications, where ROM is often limited. static const uint8_t sbox[256] = { //0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // The round constant word array, Rcon[i], contains the values given by // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) static const uint8_t Rcon[11] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; /* * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), * that you can remove most of the elements in the Rcon array, because they are unused. * * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon * * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." */ /*****************************************************************************/ /* Private functions: */ /*****************************************************************************/ /* static uint8_t getSBoxValue(uint8_t num) { return sbox[num]; } */ #define getSBoxValue(num) (sbox[(num)]) /* static uint8_t getSBoxInvert(uint8_t num) { return rsbox[num]; } */ #define getSBoxInvert(num) (rsbox[(num)]) // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) { unsigned i, j, k; uint8_t tempa[4]; // Used for the column/row operations // The first round key is the key itself. for (i = 0; i < Nk; ++i) { RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } // All other round keys are found from the previous round keys. for (i = Nk; i < Nb * (Nr + 1); ++i) { { k = (i - 1) * 4; tempa[0]=RoundKey[k + 0]; tempa[1]=RoundKey[k + 1]; tempa[2]=RoundKey[k + 2]; tempa[3]=RoundKey[k + 3]; } if (i % Nk == 0) { // This function shifts the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] // Function RotWord() { const uint8_t u8tmp = tempa[0]; tempa[0] = tempa[1]; tempa[1] = tempa[2]; tempa[2] = tempa[3]; tempa[3] = u8tmp; } // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } tempa[0] = tempa[0] ^ Rcon[i/Nk]; } #if defined(AES256) && (AES256 == 1) if (i % Nk == 4) { // Function Subword() { tempa[0] = getSBoxValue(tempa[0]); tempa[1] = getSBoxValue(tempa[1]); tempa[2] = getSBoxValue(tempa[2]); tempa[3] = getSBoxValue(tempa[3]); } } #endif j = i * 4; k=(i - Nk) * 4; RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; } } void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) { KeyExpansion(ctx->RoundKey, key); } #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) { KeyExpansion(ctx->RoundKey, key); memcpy (ctx->Iv, iv, AES_BLOCKLEN); } void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) { memcpy (ctx->Iv, iv, AES_BLOCKLEN); } #endif // This function adds the round key to state. // The round key is added to the state by an XOR function. static void AddRoundKey(uint8_t round,state_t* state,uint8_t* RoundKey) { uint8_t i,j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; } } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void SubBytes(state_t* state) { uint8_t i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxValue((*state)[j][i]); } } } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. static void ShiftRows(state_t* state) { uint8_t temp; // Rotate first row 1 columns to left temp = (*state)[0][1]; (*state)[0][1] = (*state)[1][1]; (*state)[1][1] = (*state)[2][1]; (*state)[2][1] = (*state)[3][1]; (*state)[3][1] = temp; // Rotate second row 2 columns to left temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to left temp = (*state)[0][3]; (*state)[0][3] = (*state)[3][3]; (*state)[3][3] = (*state)[2][3]; (*state)[2][3] = (*state)[1][3]; (*state)[1][3] = temp; } static uint8_t xtime(uint8_t x) { return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); } // MixColumns function mixes the columns of the state matrix static void MixColumns(state_t* state) { uint8_t i; uint8_t Tmp, Tm, t; for (i = 0; i < 4; ++i) { t = (*state)[i][0]; Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; } } // Multiply is used to multiply numbers in the field GF(2^8) // Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary // The compiler seems to be able to vectorize the operation better this way. // See https://github.com/kokke/tiny-AES-c/pull/34 #if MULTIPLY_AS_A_FUNCTION static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ } #else #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xtime(x)) ^ \ ((y>>2 & 1) * xtime(xtime(x))) ^ \ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ #endif // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. static void InvMixColumns(state_t* state) { int i; uint8_t a, b, c, d; for (i = 0; i < 4; ++i) { a = (*state)[i][0]; b = (*state)[i][1]; c = (*state)[i][2]; d = (*state)[i][3]; (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. static void InvSubBytes(state_t* state) { uint8_t i, j; for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxInvert((*state)[j][i]); } } } static void InvShiftRows(state_t* state) { uint8_t temp; // Rotate first row 1 columns to right temp = (*state)[3][1]; (*state)[3][1] = (*state)[2][1]; (*state)[2][1] = (*state)[1][1]; (*state)[1][1] = (*state)[0][1]; (*state)[0][1] = temp; // Rotate second row 2 columns to right temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to right temp = (*state)[0][3]; (*state)[0][3] = (*state)[1][3]; (*state)[1][3] = (*state)[2][3]; (*state)[2][3] = (*state)[3][3]; (*state)[3][3] = temp; } // Cipher is the main function that encrypts the PlainText. static void Cipher(state_t* state, uint8_t* RoundKey) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(0, state, RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for (round = 1; round < Nr; ++round) { SubBytes(state); ShiftRows(state); MixColumns(state); AddRoundKey(round, state, RoundKey); } // The last round is given below. // The MixColumns function is not here in the last round. SubBytes(state); ShiftRows(state); AddRoundKey(Nr, state, RoundKey); } static void InvCipher(state_t* state,uint8_t* RoundKey) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(Nr, state, RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for (round = (Nr - 1); round > 0; --round) { InvShiftRows(state); InvSubBytes(state); AddRoundKey(round, state, RoundKey); InvMixColumns(state); } // The last round is given below. // The MixColumns function is not here in the last round. InvShiftRows(state); InvSubBytes(state); AddRoundKey(0, state, RoundKey); } /*****************************************************************************/ /* Public functions: */ /*****************************************************************************/ #if defined(ECB) && (ECB == 1) void AES_ECB_encrypt(struct AES_ctx *ctx, uint8_t* buf) { // The next function call encrypts the PlainText with the Key using AES algorithm. Cipher((state_t*)buf, ctx->RoundKey); } void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf) { // The next function call decrypts the PlainText with the Key using AES algorithm. InvCipher((state_t*)buf, ctx->RoundKey); } #endif // #if defined(ECB) && (ECB == 1) #if defined(CBC) && (CBC == 1) static void XorWithIv(uint8_t* buf, uint8_t* Iv) { uint8_t i; for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size { buf[i] ^= Iv[i]; } } void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length) { uintptr_t i; uint8_t *Iv = ctx->Iv; for (i = 0; i < length; i += AES_BLOCKLEN) { XorWithIv(buf, Iv); Cipher((state_t*)buf, ctx->RoundKey); Iv = buf; buf += AES_BLOCKLEN; //printf("Step %d - %d", i/16, i); } /* store Iv in ctx for next call */ memcpy(ctx->Iv, Iv, AES_BLOCKLEN); } void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) { uintptr_t i; uint8_t storeNextIv[AES_BLOCKLEN]; for (i = 0; i < length; i += AES_BLOCKLEN) { memcpy(storeNextIv, buf, AES_BLOCKLEN); InvCipher((state_t*)buf, ctx->RoundKey); XorWithIv(buf, ctx->Iv); memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); buf += AES_BLOCKLEN; } } #endif // #if defined(CBC) && (CBC == 1) #if defined(CTR) && (CTR == 1) /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) { uint8_t buffer[AES_BLOCKLEN]; unsigned i; int bi; for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) { if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ { memcpy(buffer, ctx->Iv, AES_BLOCKLEN); Cipher((state_t*)buffer,ctx->RoundKey); /* Increment Iv and handle overflow */ for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) { /* inc will owerflow */ if (ctx->Iv[bi] == 255) { ctx->Iv[bi] = 0; continue; } ctx->Iv[bi] += 1; break; } bi = 0; } buf[i] = (buf[i] ^ buffer[bi]); } } #endif // #if defined(CTR) && (CTR == 1) |
Added vendor/aes/aes.h version [056c815e5c].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | #ifndef _AES_H_ #define _AES_H_ #include <stdint.h> // #define the macros below to 1/0 to enable/disable the mode of operation. // // CBC enables AES encryption in CBC-mode of operation. // CTR enables encryption in counter-mode. // ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously. // The #ifndef-guard allows it to be configured before #include'ing or at compile time. #ifndef CBC #define CBC 1 #endif #ifndef ECB #define ECB 1 #endif #ifndef CTR #define CTR 1 #endif #define AES128 1 //#define AES192 1 //#define AES256 1 #define AES_BLOCKLEN 16 //Block length in bytes AES is 128b block only #if defined(AES256) && (AES256 == 1) #define AES_KEYLEN 32 #define AES_keyExpSize 240 #elif defined(AES192) && (AES192 == 1) #define AES_KEYLEN 24 #define AES_keyExpSize 208 #else #define AES_KEYLEN 16 // Key length in bytes #define AES_keyExpSize 176 #endif struct AES_ctx { uint8_t RoundKey[AES_keyExpSize]; #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) uint8_t Iv[AES_BLOCKLEN]; #endif }; void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key); #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv); void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv); #endif #if defined(ECB) && (ECB == 1) // buffer size is exactly AES_BLOCKLEN bytes; // you need only AES_init_ctx as IV is not used in ECB // NB: ECB is considered insecure for most uses void AES_ECB_encrypt(struct AES_ctx* ctx, uint8_t* buf); void AES_ECB_decrypt(struct AES_ctx* ctx, uint8_t* buf); #endif // #if defined(ECB) && (ECB == !) #if defined(CBC) && (CBC == 1) // buffer size MUST be mutile of AES_BLOCKLEN; // Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme // NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv() // no IV should ever be reused with the same key void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length); void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length); #endif // #if defined(CBC) && (CBC == 1) #if defined(CTR) && (CTR == 1) // Same function for encrypting as for decrypting. // IV is incremented for every block, and used after encryption as XOR-compliment for output // Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme // NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv() // no IV should ever be reused with the same key void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length); #endif // #if defined(CTR) && (CTR == 1) #endif //_AES_H_ |
Added vendor/aes/version version [29983c671d].
> | 1 | https://github.com/kokke/tiny-AES-c/commit/0677e48a4980cc3695bc0f4dab89bad8708d16ea |
Added vendor/monocypher/monocypher.c version [4ad4b5fa29].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 | #include "monocypher.h" ///////////////// /// Utilities /// ///////////////// // By default, EdDSA signatures use blake2b. SHA-512 is provided as an // option for full ed25519 compatibility. To use with SHA-512, compile // with option -DED25519_SHA512 and provide the "sha512" header. #ifdef ED25519_SHA512 #define HASH crypto_sha512 #else #define HASH crypto_blake2b #endif #define COMBINE1(x, y) x ## y #define COMBINE2(x, y) COMBINE1(x, y) #define HASH_CTX COMBINE2(HASH, _ctx) #define HASH_INIT COMBINE2(HASH, _init) #define HASH_UPDATE COMBINE2(HASH, _update) #define HASH_FINAL COMBINE2(HASH, _final) #define FOR(i, start, end) for (size_t (i) = (start); (i) < (end); (i)++) #define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx))) #define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer)) #define MIN(a, b) ((a) <= (b) ? (a) : (b)) #define ALIGN(x, block_size) ((~(x) + 1) & ((block_size) - 1)) typedef int8_t i8; typedef uint8_t u8; typedef uint32_t u32; typedef int32_t i32; typedef int64_t i64; typedef uint64_t u64; static const u8 zero[128] = {0}; static u32 load24_le(const u8 s[3]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16); } static u32 load32_le(const u8 s[4]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16) | ((u32)s[3] << 24); } static u64 load64_le(const u8 s[8]) { return load32_le(s) | ((u64)load32_le(s+4) << 32); } static void store32_le(u8 out[4], u32 in) { out[0] = in & 0xff; out[1] = (in >> 8) & 0xff; out[2] = (in >> 16) & 0xff; out[3] = (in >> 24) & 0xff; } static void store64_le(u8 out[8], u64 in) { store32_le(out , (u32)in ); store32_le(out + 4, in >> 32); } static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); } static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); } static int neq0(u64 diff) { // constant time comparison to zero // return diff != 0 ? -1 : 0 u64 half = (diff >> 32) | ((u32)diff); return (1 & ((half - 1) >> 32)) - 1; } static u64 x16(const u8 a[16], const u8 b[16]) { return (load64_le(a + 0) ^ load64_le(b + 0)) | (load64_le(a + 8) ^ load64_le(b + 8)); } static u64 x32(const u8 a[16],const u8 b[16]){return x16(a,b)| x16(a+16, b+16);} static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);} int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); } int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); } int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); } static int zerocmp32(const u8 p[32]) { return crypto_verify32(p, zero); } void crypto_wipe(void *secret, size_t size) { volatile u8 *v_secret = (u8*)secret; FOR (i, 0, size) { v_secret[i] = 0; } } ///////////////// /// Chacha 20 /// ///////////////// #define QUARTERROUND(a, b, c, d) \ a += b; d = rotl32(d ^ a, 16); \ c += d; b = rotl32(b ^ c, 12); \ a += b; d = rotl32(d ^ a, 8); \ c += d; b = rotl32(b ^ c, 7) static void chacha20_rounds(u32 out[16], const u32 in[16]) { // The temporary variables make Chacha20 10% faster. u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3]; u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7]; u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11]; u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15]; FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop. QUARTERROUND(t0, t4, t8 , t12); // column 0 QUARTERROUND(t1, t5, t9 , t13); // column 1 QUARTERROUND(t2, t6, t10, t14); // column 2 QUARTERROUND(t3, t7, t11, t15); // column 3 QUARTERROUND(t0, t5, t10, t15); // diagonal 0 QUARTERROUND(t1, t6, t11, t12); // diagonal 1 QUARTERROUND(t2, t7, t8 , t13); // diagonal 2 QUARTERROUND(t3, t4, t9 , t14); // diagonal 3 } out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3; out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7; out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11; out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15; } static void chacha20_init_key(crypto_chacha_ctx *ctx, const u8 key[32]) { // constant ctx->input[0] = load32_le((u8*)"expa"); ctx->input[1] = load32_le((u8*)"nd 3"); ctx->input[2] = load32_le((u8*)"2-by"); ctx->input[3] = load32_le((u8*)"te k"); // key FOR (i, 0, 8) { ctx->input[i+4] = load32_le(key + i*4); } } static u8 chacha20_pool_byte(crypto_chacha_ctx *ctx) { u32 pool_word = ctx->pool[ctx->pool_idx >> 2]; u8 pool_byte = pool_word >> (8*(ctx->pool_idx & 3)); ctx->pool_idx++; return pool_byte; } // Fill the pool if needed, update the counters static void chacha20_refill_pool(crypto_chacha_ctx *ctx) { chacha20_rounds(ctx->pool, ctx->input); FOR (j, 0, 16) { ctx->pool[j] += ctx->input[j]; } ctx->pool_idx = 0; ctx->input[12]++; if (ctx->input[12] == 0) { ctx->input[13]++; } } void crypto_chacha20_H(u8 out[32], const u8 key[32], const u8 in[16]) { crypto_chacha_ctx ctx; chacha20_init_key(&ctx, key); FOR (i, 0, 4) { ctx.input[i+12] = load32_le(in + i*4); } u32 buffer[16]; chacha20_rounds(buffer, ctx.input); // prevents reversal of the rounds by revealing only half of the buffer. FOR (i, 0, 4) { store32_le(out + i*4, buffer[i ]); // constant store32_le(out + 16 + i*4, buffer[i + 12]); // counter and nonce } WIPE_CTX(&ctx); WIPE_BUFFER(buffer); } static void chacha20_encrypt(crypto_chacha_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { FOR (i, 0, text_size) { if (ctx->pool_idx == 64) { chacha20_refill_pool(ctx); } u8 plain = 0; if (plain_text != 0) { plain = *plain_text; plain_text++; } *cipher_text = chacha20_pool_byte(ctx) ^ plain; cipher_text++; } } void crypto_chacha20_init(crypto_chacha_ctx *ctx, const u8 key[32], const u8 nonce[8]) { chacha20_init_key (ctx, key); // key crypto_chacha20_set_ctr(ctx, 0 ); // counter ctx->input[14] = load32_le(nonce + 0); // nonce ctx->input[15] = load32_le(nonce + 4); // nonce } void crypto_chacha20_x_init(crypto_chacha_ctx *ctx, const u8 key[32], const u8 nonce[24]) { u8 derived_key[32]; crypto_chacha20_H(derived_key, key, nonce); crypto_chacha20_init(ctx, derived_key, nonce + 16); WIPE_BUFFER(derived_key); } void crypto_chacha20_set_ctr(crypto_chacha_ctx *ctx, u64 ctr) { ctx->input[12] = ctr & 0xffffffff; ctx->input[13] = ctr >> 32; ctx->pool_idx = 64; // The random pool (re)starts empty } void crypto_chacha20_encrypt(crypto_chacha_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->pool_idx, 64), text_size); chacha20_encrypt(ctx, cipher_text, plain_text, align); if (plain_text != 0) { plain_text += align; } cipher_text += align; text_size -= align; // Process the message block by block FOR (i, 0, text_size >> 6) { // number of blocks chacha20_refill_pool(ctx); if (plain_text != 0) { FOR (j, 0, 16) { u32 plain = load32_le(plain_text); store32_le(cipher_text, ctx->pool[j] ^ plain); plain_text += 4; cipher_text += 4; } } else { FOR (j, 0, 16) { store32_le(cipher_text, ctx->pool[j]); cipher_text += 4; } } ctx->pool_idx = 64; } text_size &= 63; // remaining bytes chacha20_encrypt(ctx, cipher_text, plain_text, text_size); } void crypto_chacha20_stream(crypto_chacha_ctx *ctx, uint8_t *stream, size_t size) { crypto_chacha20_encrypt(ctx, stream, 0, size); } ///////////////// /// Poly 1305 /// ///////////////// // h = (h + c) * r // preconditions: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff // ctx->c <= 1_ffffffff_ffffffff_ffffffff_ffffffff // ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff // Postcondition: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff static void poly_block(crypto_poly1305_ctx *ctx) { // s = h + c, without carry propagation const u64 s0 = ctx->h[0] + (u64)ctx->c[0]; // s0 <= 1_fffffffe const u64 s1 = ctx->h[1] + (u64)ctx->c[1]; // s1 <= 1_fffffffe const u64 s2 = ctx->h[2] + (u64)ctx->c[2]; // s2 <= 1_fffffffe const u64 s3 = ctx->h[3] + (u64)ctx->c[3]; // s3 <= 1_fffffffe const u32 s4 = ctx->h[4] + ctx->c[4]; // s4 <= 5 // Local all the things! const u32 r0 = ctx->r[0]; // r0 <= 0fffffff const u32 r1 = ctx->r[1]; // r1 <= 0ffffffc const u32 r2 = ctx->r[2]; // r2 <= 0ffffffc const u32 r3 = ctx->r[3]; // r3 <= 0ffffffc const u32 rr0 = (r0 >> 2) * 5; // rr0 <= 13fffffb // lose 2 bits... const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5 const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5 const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5 // (h + c) * r, without carry propagation const u64 x0 = s0*r0 + s1*rr3 + s2*rr2 + s3*rr1 +s4*rr0;//<=97ffffe007fffff8 const u64 x1 = s0*r1 + s1*r0 + s2*rr3 + s3*rr2 +s4*rr1;//<=8fffffe20ffffff6 const u64 x2 = s0*r2 + s1*r1 + s2*r0 + s3*rr3 +s4*rr2;//<=87ffffe417fffff4 const u64 x3 = s0*r3 + s1*r2 + s2*r1 + s3*r0 +s4*rr3;//<=7fffffe61ffffff2 const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits //<= f // partial reduction modulo 2^130 - 5 const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5 const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff); const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32); const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32); const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32); const u64 u4 = (u3 >> 32) + (u5 & 3); // Update the hash ctx->h[0] = u0 & 0xffffffff; // u0 <= 1_9ffffff0 ctx->h[1] = u1 & 0xffffffff; // u1 <= 1_97ffffe0 ctx->h[2] = u2 & 0xffffffff; // u2 <= 1_8fffffe2 ctx->h[3] = u3 & 0xffffffff; // u3 <= 1_87ffffe4 ctx->h[4] = (u32)u4; // u4 <= 4 } // (re-)initializes the input counter and input buffer static void poly_clear_c(crypto_poly1305_ctx *ctx) { ctx->c[0] = 0; ctx->c[1] = 0; ctx->c[2] = 0; ctx->c[3] = 0; ctx->c_idx = 0; } static void poly_take_input(crypto_poly1305_ctx *ctx, u8 input) { size_t word = ctx->c_idx >> 2; size_t byte = ctx->c_idx & 3; ctx->c[word] |= (u32)input << (byte * 8); ctx->c_idx++; } static void poly_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { poly_take_input(ctx, message[i]); if (ctx->c_idx == 16) { poly_block(ctx); poly_clear_c(ctx); } } } void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32]) { // Initial hash is zero FOR (i, 0, 5) { ctx->h[i] = 0; } // add 2^130 to every input block ctx->c[4] = 1; poly_clear_c(ctx); // load r and pad (r has some of its bits cleared) FOR (i, 0, 1) { ctx->r [0] = load32_le(key ) & 0x0fffffff; } FOR (i, 1, 4) { ctx->r [i] = load32_le(key + i*4 ) & 0x0ffffffc; } FOR (i, 0, 4) { ctx->pad[i] = load32_le(key + i*4 + 16); } } void crypto_poly1305_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->c_idx, 16), message_size); poly_update(ctx, message, align); message += align; message_size -= align; // Process the message block by block size_t nb_blocks = message_size >> 4; FOR (i, 0, nb_blocks) { ctx->c[0] = load32_le(message + 0); ctx->c[1] = load32_le(message + 4); ctx->c[2] = load32_le(message + 8); ctx->c[3] = load32_le(message + 12); poly_block(ctx); message += 16; } if (nb_blocks > 0) { poly_clear_c(ctx); } message_size &= 15; // remaining bytes poly_update(ctx, message, message_size); } void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16]) { // Process the last block (if any) if (ctx->c_idx != 0) { // move the final 1 according to remaining input length // (We may add less than 2^130 to the last input block) ctx->c[4] = 0; poly_take_input(ctx, 1); // one last hash update poly_block(ctx); } // check if we should subtract 2^130-5 by performing the // corresponding carry propagation. const u64 u0 = (u64)5 + ctx->h[0]; // <= 1_00000004 const u64 u1 = (u0 >> 32) + ctx->h[1]; // <= 1_00000000 const u64 u2 = (u1 >> 32) + ctx->h[2]; // <= 1_00000000 const u64 u3 = (u2 >> 32) + ctx->h[3]; // <= 1_00000000 const u64 u4 = (u3 >> 32) + ctx->h[4]; // <= 5 // u4 indicates how many times we should subtract 2^130-5 (0 or 1) // h + pad, minus 2^130-5 if u4 exceeds 3 const u64 uu0 = (u4 >> 2) * 5 + ctx->h[0] + ctx->pad[0]; // <= 2_00000003 const u64 uu1 = (uu0 >> 32) + ctx->h[1] + ctx->pad[1]; // <= 2_00000000 const u64 uu2 = (uu1 >> 32) + ctx->h[2] + ctx->pad[2]; // <= 2_00000000 const u64 uu3 = (uu2 >> 32) + ctx->h[3] + ctx->pad[3]; // <= 2_00000000 store32_le(mac , (u32)uu0); store32_le(mac + 4, (u32)uu1); store32_le(mac + 8, (u32)uu2); store32_le(mac + 12, (u32)uu3); WIPE_CTX(ctx); } void crypto_poly1305(u8 mac[16], const u8 *message, size_t message_size, const u8 key[32]) { crypto_poly1305_ctx ctx; crypto_poly1305_init (&ctx, key); crypto_poly1305_update(&ctx, message, message_size); crypto_poly1305_final (&ctx, mac); } //////////////// /// Blake2 b /// //////////////// static const u64 iv[8] = { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, }; // increment the input offset static void blake2b_incr(crypto_blake2b_ctx *ctx) { u64 *x = ctx->input_offset; size_t y = ctx->input_idx; x[0] += y; if (x[0] < y) { x[1]++; } } static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block) { static const u8 sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, }; // init work vector u64 v0 = ctx->hash[0]; u64 v8 = iv[0]; u64 v1 = ctx->hash[1]; u64 v9 = iv[1]; u64 v2 = ctx->hash[2]; u64 v10 = iv[2]; u64 v3 = ctx->hash[3]; u64 v11 = iv[3]; u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0]; u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1]; u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ is_last_block; u64 v7 = ctx->hash[7]; u64 v15 = iv[7]; // mangle work vector uint64_t *input = ctx->input; #define BLAKE2_G(v, a, b, c, d, x, y) \ v##a += v##b + x; v##d = rotr64(v##d ^ v##a, 32); \ v##c += v##d; v##b = rotr64(v##b ^ v##c, 24); \ v##a += v##b + y; v##d = rotr64(v##d ^ v##a, 16); \ v##c += v##d; v##b = rotr64(v##b ^ v##c, 63); #define BLAKE2_ROUND(i) \ BLAKE2_G(v, 0, 4, 8, 12, input[sigma[i][ 0]], input[sigma[i][ 1]]);\ BLAKE2_G(v, 1, 5, 9, 13, input[sigma[i][ 2]], input[sigma[i][ 3]]);\ BLAKE2_G(v, 2, 6, 10, 14, input[sigma[i][ 4]], input[sigma[i][ 5]]);\ BLAKE2_G(v, 3, 7, 11, 15, input[sigma[i][ 6]], input[sigma[i][ 7]]);\ BLAKE2_G(v, 0, 5, 10, 15, input[sigma[i][ 8]], input[sigma[i][ 9]]);\ BLAKE2_G(v, 1, 6, 11, 12, input[sigma[i][10]], input[sigma[i][11]]);\ BLAKE2_G(v, 2, 7, 8, 13, input[sigma[i][12]], input[sigma[i][13]]);\ BLAKE2_G(v, 3, 4, 9, 14, input[sigma[i][14]], input[sigma[i][15]]) BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3); BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7); BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(0); BLAKE2_ROUND(1); // update hash ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9; ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11; ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13; ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15; } static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index) { if (index == 0) { FOR (i, 0, 16) { ctx->input[i] = 0; } } size_t word = index >> 3; size_t byte = index & 7; ctx->input[word] |= (u64)input << (byte << 3); } static void blake2b_end_block(crypto_blake2b_ctx *ctx) { if (ctx->input_idx == 128) { // If buffer is full, blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, 0); // and compress the (not last) block ctx->input_idx = 0; } } static void blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { blake2b_end_block(ctx); blake2b_set_input(ctx, message[i], ctx->input_idx); ctx->input_idx++; } } void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, const u8 *key, size_t key_size) { // initial hash FOR (i, 0, 8) { ctx->hash[i] = iv[i]; } ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size; ctx->input_offset[0] = 0; // begining of the input, no offset ctx->input_offset[1] = 0; // begining of the input, no offset ctx->hash_size = hash_size; // remember the hash size we want ctx->input_idx = 0; // if there is a key, the first block is that key (padded with zeroes) if (key_size > 0) { crypto_blake2b_update(ctx, key , key_size); crypto_blake2b_update(ctx, zero, 128 - key_size); } } void crypto_blake2b_init(crypto_blake2b_ctx *ctx) { crypto_blake2b_general_init(ctx, 64, 0, 0); } void crypto_blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->input_idx, 128), message_size); blake2b_update(ctx, message, align); message += align; message_size -= align; // Process the message block by block FOR (i, 0, message_size >> 7) { // number of blocks blake2b_end_block(ctx); FOR (j, 0, 16) { ctx->input[j] = load64_le(message + j*8); } message += 128; ctx->input_idx = 128; } message_size &= 127; // remaining bytes blake2b_update(ctx, message, message_size); } void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash) { // Pad the end of the block with zeroes FOR (i, ctx->input_idx, 128) { blake2b_set_input(ctx, 0, i); } blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, -1); // compress the last block size_t nb_words = ctx->hash_size >> 3; FOR (i, 0, nb_words) { store64_le(hash + i*8, ctx->hash[i]); } FOR (i, nb_words * 8, ctx->hash_size) { hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff; } WIPE_CTX(ctx); } void crypto_blake2b_general(u8 *hash , size_t hash_size, const u8 *key , size_t key_size, const u8 *message, size_t message_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, hash_size, key, key_size); crypto_blake2b_update(&ctx, message, message_size); crypto_blake2b_final(&ctx, hash); } void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size) { crypto_blake2b_general(hash, 64, 0, 0, message, message_size); } //////////////// /// Argon2 i /// //////////////// // references to R, Z, Q etc. come from the spec // Argon2 operates on 1024 byte blocks. typedef struct { u64 a[128]; } block; static void wipe_block(block *b) { volatile u64* a = b->a; FOR (i, 0, 128) { a[i] = 0; } } // updates a blake2 hash with a 32 bit word, little endian. static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input) { u8 buf[4]; store32_le(buf, input); crypto_blake2b_update(ctx, buf, 4); WIPE_BUFFER(buf); } static void load_block(block *b, const u8 bytes[1024]) { FOR (i, 0, 128) { b->a[i] = load64_le(bytes + i*8); } } static void store_block(u8 bytes[1024], const block *b) { FOR (i, 0, 128) { store64_le(bytes + i*8, b->a[i]); } } static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];} static void xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];} // Hash with a virtually unlimited digest size. // Doesn't extract more entropy than the base hash function. // Mainly used for filling a whole kilobyte block with pseudo-random bytes. // (One could use a stream cipher with a seed hash as the key, but // this would introduce another dependency —and point of failure.) static void extended_hash(u8 *digest, u32 digest_size, const u8 *input , u32 input_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0); blake_update_32 (&ctx, digest_size); crypto_blake2b_update (&ctx, input, input_size); crypto_blake2b_final (&ctx, digest); if (digest_size > 64) { // the conversion to u64 avoids integer overflow on // ludicrously big hash sizes. u32 r = (((u64)digest_size + 31) >> 5) - 2; u32 i = 1; u32 in = 0; u32 out = 32; while (i < r) { // Input and output overlap. This is intentional crypto_blake2b(digest + out, digest + in, 64); i += 1; in += 32; out += 32; } crypto_blake2b_general(digest + out, digest_size - (32 * r), 0, 0, // no key digest + in , 64); } } #define LSB(x) ((x) & 0xffffffff) #define G(a, b, c, d) \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 32); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 24); \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 16); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 63) #define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \ v8, v9, v10, v11, v12, v13, v14, v15) \ G(v0, v4, v8, v12); G(v1, v5, v9, v13); \ G(v2, v6, v10, v14); G(v3, v7, v11, v15); \ G(v0, v5, v10, v15); G(v1, v6, v11, v12); \ G(v2, v7, v8, v13); G(v3, v4, v9, v14) // Core of the compression function G. Computes Z from R in place. static void g_rounds(block *work_block) { // column rounds (work_block = Q) for (int i = 0; i < 128; i += 16) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 2], work_block->a[i + 3], work_block->a[i + 4], work_block->a[i + 5], work_block->a[i + 6], work_block->a[i + 7], work_block->a[i + 8], work_block->a[i + 9], work_block->a[i + 10], work_block->a[i + 11], work_block->a[i + 12], work_block->a[i + 13], work_block->a[i + 14], work_block->a[i + 15]); } // row rounds (work_block = Z) for (int i = 0; i < 16; i += 2) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 16], work_block->a[i + 17], work_block->a[i + 32], work_block->a[i + 33], work_block->a[i + 48], work_block->a[i + 49], work_block->a[i + 64], work_block->a[i + 65], work_block->a[i + 80], work_block->a[i + 81], work_block->a[i + 96], work_block->a[i + 97], work_block->a[i + 112], work_block->a[i + 113]); } } // The compression function G (copy version for the first pass) static void g_copy(block *result, const block *x, const block *y, block* tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R copy_block(result, tmp); // result = R (only difference with g_xor) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ Z } // The compression function G (xor version for subsequent passes) static void g_xor(block *result, const block *x, const block *y, block *tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R xor_block (result, tmp); // result = R ^ old (only difference with g_copy) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ old ^ Z } // unary version of the compression function. // The missing argument is implied zero. // Does the transformation in place. static void unary_g(block *work_block) { // work_block == R block tmp; copy_block(&tmp, work_block); // tmp = R g_rounds(work_block); // work_block = Z xor_block(work_block, &tmp); // work_block = Z ^ R wipe_block(&tmp); } // Argon2i uses a kind of stream cipher to determine which reference // block it will take to synthesise the next block. This context hold // that stream's state. (It's very similar to Chacha20. The block b // is anologous to Chacha's own pool) typedef struct { block b; u32 pass_number; u32 slice_number; u32 nb_blocks; u32 nb_iterations; u32 ctr; u32 offset; } gidx_ctx; // The block in the context will determine array indices. To avoid // timing attacks, it only depends on public information. No looking // at a previous block to seed the next. This makes offline attacks // easier, but timing attacks are the bigger threat in many settings. static void gidx_refresh(gidx_ctx *ctx) { // seed the begining of the block... ctx->b.a[0] = ctx->pass_number; ctx->b.a[1] = 0; // lane number (we have only one) ctx->b.a[2] = ctx->slice_number; ctx->b.a[3] = ctx->nb_blocks; ctx->b.a[4] = ctx->nb_iterations; ctx->b.a[5] = 1; // type: Argon2i ctx->b.a[6] = ctx->ctr; FOR (i, 7, 128) { ctx->b.a[i] = 0; } // ...then zero the rest out // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero) // (G "square" function), to get cheap pseudo-random numbers. unary_g(&ctx->b); unary_g(&ctx->b); } static void gidx_init(gidx_ctx *ctx, u32 pass_number, u32 slice_number, u32 nb_blocks, u32 nb_iterations) { ctx->pass_number = pass_number; ctx->slice_number = slice_number; ctx->nb_blocks = nb_blocks; ctx->nb_iterations = nb_iterations; ctx->ctr = 0; // Offset from the begining of the segment. For the first slice // of the first pass, we start at the *third* block, so the offset // starts at 2, not 0. if (pass_number != 0 || slice_number != 0) { ctx->offset = 0; } else { ctx->offset = 2; ctx->ctr++; // Compensates for missed lazy creation gidx_refresh(ctx); // at the start of gidx_next() } } static u32 gidx_next(gidx_ctx *ctx) { // lazily creates the offset block we need if ((ctx->offset & 127) == 0) { ctx->ctr++; gidx_refresh(ctx); } u32 index = ctx->offset & 127; // save index for current call u32 offset = ctx->offset; // save offset for current call ctx->offset++; // update offset for next call // Computes the area size. // Pass 0 : all already finished segments plus already constructed // blocks in this segment // Pass 1+: 3 last segments plus already constructed // blocks in this segment. THE SPEC SUGGESTS OTHERWISE. // I CONFORM TO THE REFERENCE IMPLEMENTATION. int first_pass = ctx->pass_number == 0; u32 slice_size = ctx->nb_blocks >> 2; u32 nb_segments = first_pass ? ctx->slice_number : 3; u32 area_size = nb_segments * slice_size + offset - 1; // Computes the starting position of the reference area. // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE // NEXT SEGMENT, NOT THE NEXT BLOCK. u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size; u32 start_pos = first_pass ? 0 : next_slice; // Generate offset from J1 (no need for J2, there's only one lane) u64 j1 = ctx->b.a[index] & 0xffffffff; // pseudo-random number u64 x = (j1 * j1) >> 32; u64 y = (area_size * x) >> 32; u64 z = (area_size - 1) - y; return (start_pos + z) % ctx->nb_blocks; } // Main algorithm void crypto_argon2i_general(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size, const u8 *key, u32 key_size, const u8 *ad, u32 ad_size) { // work area seen as blocks (must be suitably aligned) block *blocks = (block*)work_area; { crypto_blake2b_ctx ctx; crypto_blake2b_init(&ctx); blake_update_32 (&ctx, 1 ); // p: number of threads blake_update_32 (&ctx, hash_size ); blake_update_32 (&ctx, nb_blocks ); blake_update_32 (&ctx, nb_iterations); blake_update_32 (&ctx, 0x13 ); // v: version number blake_update_32 (&ctx, 1 ); // y: Argon2i blake_update_32 (&ctx, password_size); crypto_blake2b_update(&ctx, password, password_size); blake_update_32 (&ctx, salt_size); crypto_blake2b_update(&ctx, salt, salt_size); blake_update_32 (&ctx, key_size); crypto_blake2b_update(&ctx, key, key_size); blake_update_32 (&ctx, ad_size); crypto_blake2b_update(&ctx, ad, ad_size); u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes crypto_blake2b_final(&ctx, initial_hash); // fill first 2 blocks block tmp_block; u8 hash_area[1024]; store32_le(initial_hash + 64, 0); // first additional word store32_le(initial_hash + 68, 0); // second additional word extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks, &tmp_block); store32_le(initial_hash + 64, 1); // slight modification extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks + 1, &tmp_block); WIPE_BUFFER(initial_hash); WIPE_BUFFER(hash_area); wipe_block(&tmp_block); } // Actual number of blocks nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread) const u32 segment_size = nb_blocks >> 2; // fill (then re-fill) the rest of the blocks block tmp; gidx_ctx ctx; FOR (pass_number, 0, nb_iterations) { int first_pass = pass_number == 0; FOR (segment, 0, 4) { gidx_init(&ctx, (u32)pass_number, (u32)segment, nb_blocks, nb_iterations); // On the first segment of the first pass, // blocks 0 and 1 are already filled. // We use the offset to skip them. u32 start_offset = first_pass && segment == 0 ? 2 : 0; u32 segment_start = (u32)segment * segment_size + start_offset; u32 segment_end = ((u32)segment + 1) * segment_size; FOR (current_block, segment_start, segment_end) { u32 reference_block = gidx_next(&ctx); u32 previous_block = current_block == 0 ? nb_blocks - 1 : (u32)current_block - 1; block *c = blocks + current_block; block *p = blocks + previous_block; block *r = blocks + reference_block; if (first_pass) { g_copy(c, p, r, &tmp); } else { g_xor (c, p, r, &tmp); } } } } wipe_block(&ctx.b); wipe_block(&tmp); // hash the very last block with H' into the output hash u8 final_block[1024]; store_block(final_block, blocks + (nb_blocks - 1)); extended_hash(hash, hash_size, final_block, 1024); WIPE_BUFFER(final_block); // wipe work area volatile u64 *p = (u64*)work_area; FOR (i, 0, 128 * nb_blocks) { p[i] = 0; } } void crypto_argon2i(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size) { crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations, password, password_size, salt , salt_size, 0, 0, 0, 0); } //////////////////////////////////// /// Arithmetic modulo 2^255 - 19 /// //////////////////////////////////// // Taken from Supercop's ref10 implementation. // A bit bigger than TweetNaCl, over 4 times faster. // field element typedef i32 fe[10]; static void fe_0(fe h) { FOR(i, 0, 10) h[i] = 0; } static void fe_1(fe h) { h[0] = 1; FOR(i, 1, 10) h[i] = 0; } static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; } static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; } static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];} static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];} static void fe_cswap(fe f, fe g, int b) { FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & -b; f[i] = f[i] ^ x; g[i] = g[i] ^ x; } } static void fe_ccopy(fe f, const fe g, int b) { FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & -b; f[i] = f[i] ^ x; } } #define FE_CARRY \ i64 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; \ c9 = (t9 + (i64) (1<<24)) >> 25; t0 += c9 * 19; t9 -= c9 * (1 << 25); \ c1 = (t1 + (i64) (1<<24)) >> 25; t2 += c1; t1 -= c1 * (1 << 25); \ c3 = (t3 + (i64) (1<<24)) >> 25; t4 += c3; t3 -= c3 * (1 << 25); \ c5 = (t5 + (i64) (1<<24)) >> 25; t6 += c5; t5 -= c5 * (1 << 25); \ c7 = (t7 + (i64) (1<<24)) >> 25; t8 += c7; t7 -= c7 * (1 << 25); \ c0 = (t0 + (i64) (1<<25)) >> 26; t1 += c0; t0 -= c0 * (1 << 26); \ c2 = (t2 + (i64) (1<<25)) >> 26; t3 += c2; t2 -= c2 * (1 << 26); \ c4 = (t4 + (i64) (1<<25)) >> 26; t5 += c4; t4 -= c4 * (1 << 26); \ c6 = (t6 + (i64) (1<<25)) >> 26; t7 += c6; t6 -= c6 * (1 << 26); \ c8 = (t8 + (i64) (1<<25)) >> 26; t9 += c8; t8 -= c8 * (1 << 26); \ h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \ h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9 static void fe_frombytes(fe h, const u8 s[32]) { i64 t0 = load32_le(s); i64 t1 = load24_le(s + 4) << 6; i64 t2 = load24_le(s + 7) << 5; i64 t3 = load24_le(s + 10) << 3; i64 t4 = load24_le(s + 13) << 2; i64 t5 = load32_le(s + 16); i64 t6 = load24_le(s + 20) << 7; i64 t7 = load24_le(s + 23) << 5; i64 t8 = load24_le(s + 26) << 4; i64 t9 = (load24_le(s + 29) & 8388607) << 2; FE_CARRY; } static void fe_mul_small(fe h, const fe f, i32 g) { i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g; i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g; i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g; i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g; i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g; FE_CARRY; } static void fe_mul121666(fe h, const fe f) { fe_mul_small(h, f, 121666); } static void fe_mul(fe h, const fe f, const fe g) { // Everything is unrolled and put in temporary variables. // We could roll the loop, but that would make curve25519 twice as slow. i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4]; i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9]; i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2; i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19; i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19; i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19; i64 h0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6 + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1; i64 h1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7 + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2; i64 h2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8 + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3; i64 h3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9 + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4; i64 h4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0 + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5; i64 h5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1 + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6; i64 h6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2 + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7; i64 h7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3 + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8; i64 h8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4 + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9; i64 h9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5 + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0; #define CARRY \ i64 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; \ c0 = (h0 + (i64) (1<<25)) >> 26; h1 += c0; h0 -= c0 * (1 << 26); \ c4 = (h4 + (i64) (1<<25)) >> 26; h5 += c4; h4 -= c4 * (1 << 26); \ c1 = (h1 + (i64) (1<<24)) >> 25; h2 += c1; h1 -= c1 * (1 << 25); \ c5 = (h5 + (i64) (1<<24)) >> 25; h6 += c5; h5 -= c5 * (1 << 25); \ c2 = (h2 + (i64) (1<<25)) >> 26; h3 += c2; h2 -= c2 * (1 << 26); \ c6 = (h6 + (i64) (1<<25)) >> 26; h7 += c6; h6 -= c6 * (1 << 26); \ c3 = (h3 + (i64) (1<<24)) >> 25; h4 += c3; h3 -= c3 * (1 << 25); \ c7 = (h7 + (i64) (1<<24)) >> 25; h8 += c7; h7 -= c7 * (1 << 25); \ c4 = (h4 + (i64) (1<<25)) >> 26; h5 += c4; h4 -= c4 * (1 << 26); \ c8 = (h8 + (i64) (1<<25)) >> 26; h9 += c8; h8 -= c8 * (1 << 26); \ c9 = (h9 + (i64) (1<<24)) >> 25; h0 += c9 * 19; h9 -= c9 * (1 << 25); \ c0 = (h0 + (i64) (1<<25)) >> 26; h1 += c0; h0 -= c0 * (1 << 26); \ h[0]=(i32)h0; h[1]=(i32)h1; h[2]=(i32)h2; h[3]=(i32)h3; h[4]=(i32)h4; \ h[5]=(i32)h5; h[6]=(i32)h6; h[7]=(i32)h7; h[8]=(i32)h8; h[9]=(i32)h9; \ CARRY; } // we could use fe_mul() for this, but this is significantly faster static void fe_sq(fe h, const fe f) { i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2; i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2; i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38; i32 f8_19 = f8*19; i32 f9_38 = f9*38; i64 h0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19 + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38; i64 h1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19 + f4 *(i64)f7_38 + f5_2*(i64)f6_19; i64 h2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38 + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19; i64 h3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38 + f5_2*(i64)f8_19 + f6 *(i64)f7_38; i64 h4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2 + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38; i64 h5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3 + f6 *(i64)f9_38 + f7_2*(i64)f8_19; i64 h6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4 + f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19; i64 h7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5 + f3_2*(i64)f4 + f8 *(i64)f9_38; i64 h8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6 + f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38; i64 h9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7 + f3_2*(i64)f6 + f4 *(i64)f5_2; CARRY; } static void fe_sq2(fe h, const fe f) { fe_sq(h, f); fe_mul_small(h, h, 2); } // This could be simplified, but it would be slower static void fe_invert(fe out, const fe z) { fe t0, t1, t2, t3; fe_sq(t0, z ); fe_sq(t1, t0); fe_sq(t1, t1); fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t2, t0); fe_mul(t1 , t1, t2); fe_sq(t2, t1); FOR (i, 1, 5) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t2, t1); FOR (i, 1, 10) fe_sq(t2, t2); fe_mul(t2 , t2, t1); fe_sq(t3, t2); FOR (i, 1, 20) fe_sq(t3, t3); fe_mul(t2 , t3, t2); fe_sq(t2, t2); FOR (i, 1, 10) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t2, t1); FOR (i, 1, 50) fe_sq(t2, t2); fe_mul(t2 , t2, t1); fe_sq(t3, t2); FOR (i, 1, 100) fe_sq(t3, t3); fe_mul(t2 , t3, t2); fe_sq(t2, t2); FOR (i, 1, 50) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t1, t1); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(out, t1, t0); WIPE_BUFFER(t0); WIPE_BUFFER(t1); WIPE_BUFFER(t2); WIPE_BUFFER(t3); } // This could be simplified, but it would be slower static void fe_pow22523(fe out, const fe z) { fe t0, t1, t2; fe_sq(t0, z); fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t0, t0); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 20) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 100) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t0, t0); FOR (i, 1, 2) fe_sq(t0, t0); fe_mul(out, t0, z); WIPE_BUFFER(t0); WIPE_BUFFER(t1); WIPE_BUFFER(t2); } static void fe_tobytes(u8 s[32], const fe h) { i32 t[10]; FOR (i, 0, 10) { t[i] = h[i]; } i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25; FOR (i, 0, 5) { q += t[2*i ]; q >>= 26; q += t[2*i+1]; q >>= 25; } t[0] += 19 * q; i32 c0 = t[0] >> 26; t[1] += c0; t[0] -= c0 * (1 << 26); i32 c1 = t[1] >> 25; t[2] += c1; t[1] -= c1 * (1 << 25); i32 c2 = t[2] >> 26; t[3] += c2; t[2] -= c2 * (1 << 26); i32 c3 = t[3] >> 25; t[4] += c3; t[3] -= c3 * (1 << 25); i32 c4 = t[4] >> 26; t[5] += c4; t[4] -= c4 * (1 << 26); i32 c5 = t[5] >> 25; t[6] += c5; t[5] -= c5 * (1 << 25); i32 c6 = t[6] >> 26; t[7] += c6; t[6] -= c6 * (1 << 26); i32 c7 = t[7] >> 25; t[8] += c7; t[7] -= c7 * (1 << 25); i32 c8 = t[8] >> 26; t[9] += c8; t[8] -= c8 * (1 << 26); i32 c9 = t[9] >> 25; t[9] -= c9 * (1 << 25); store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26)); store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19)); store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13)); store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6)); store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25)); store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19)); store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12)); store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6)); WIPE_BUFFER(t); } // Parity check. Returns 0 if even, 1 if odd static int fe_isnegative(const fe f) { u8 s[32]; fe_tobytes(s, f); u8 isneg = s[0] & 1; WIPE_BUFFER(s); return isneg; } static int fe_isnonzero(const fe f) { u8 s[32]; fe_tobytes(s, f); u8 isnonzero = zerocmp32(s); WIPE_BUFFER(s); return isnonzero; } /////////////// /// X-25519 /// Taken from Supercop's ref10 implementation. /////////////// static void trim_scalar(u8 s[32]) { s[ 0] &= 248; s[31] &= 127; s[31] |= 64; } static int scalar_bit(const u8 s[32], int i) { return (s[i>>3] >> (i&7)) & 1; } int crypto_x25519(u8 raw_shared_secret[32], const u8 your_secret_key [32], const u8 their_public_key [32]) { // computes the scalar product fe x1; fe_frombytes(x1, their_public_key); // restrict the possible scalar values u8 e[32]; FOR (i, 0, 32) { e[i] = your_secret_key[i]; } trim_scalar(e); // computes the actual scalar product (the result is in x2 and z2) fe x2, z2, x3, z3, t0, t1; // Montgomery ladder // In projective coordinates, to avoid divisons: x = X / Z // We don't care about the y coordinate, it's only 1 bit of information fe_1(x2); fe_0(z2); // "zero" point fe_copy(x3, x1); fe_1(z3); // "one" point int swap = 0; for (int pos = 254; pos >= 0; --pos) { // constant time conditional swap before ladder step int b = scalar_bit(e, pos); swap ^= b; // xor trick avoids swapping at the end of the loop fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); swap = b; // anticipates one last swap after the loop // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3) // with differential addition fe_sub(t0, x3, z3); fe_sub(t1, x2, z2); fe_add(x2, x2, z2); fe_add(z2, x3, z3); fe_mul(z3, t0, x2); fe_mul(z2, z2, t1); fe_sq (t0, t1 ); fe_sq (t1, x2 ); fe_add(x3, z3, z2); fe_sub(z2, z3, z2); fe_mul(x2, t1, t0); fe_sub(t1, t1, t0); fe_sq (z2, z2 ); fe_mul121666(z3, t1); fe_sq (x3, x3 ); fe_add(t0, t0, z3); fe_mul(z3, x1, z2); fe_mul(z2, t1, t0); } // last swap is necessary to compensate for the xor trick // Note: after this swap, P3 == P2 + P1. fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); // normalises the coordinates: x == X / Z fe_invert(z2, z2); fe_mul(x2, x2, z2); fe_tobytes(raw_shared_secret, x2); WIPE_BUFFER(x1); WIPE_BUFFER(e ); WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t0); WIPE_BUFFER(t1); // Returns -1 if the output is all zero // (happens with some malicious public keys) return -1 - zerocmp32(raw_shared_secret); } void crypto_x25519_public_key(u8 public_key[32], const u8 secret_key[32]) { static const u8 base_point[32] = {9}; crypto_x25519(public_key, secret_key, base_point); } /////////////// /// Ed25519 /// /////////////// static const u64 L[32] = { 0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10}; static void modL(u8 *r, i64 x[64]) { for (unsigned i = 63; i >= 32; i--) { i64 carry = 0; FOR (j, i-32, i-12) { x[j] += carry - 16 * x[i] * L[j - (i - 32)]; carry = (x[j] + 128) >> 8; x[j] -= carry * (1 << 8); } x[i-12] += carry; x[i] = 0; } i64 carry = 0; FOR (i, 0, 32) { x[i] += carry - (x[31] >> 4) * L[i]; carry = x[i] >> 8; x[i] &= 255; } FOR (i, 0, 32) { x[i] -= carry * L[i]; } FOR (i, 0, 32) { x[i+1] += x[i] >> 8; r[i ] = x[i] & 255; } } static void reduce(u8 r[64]) { i64 x[64]; FOR (i, 0, 64) { x[i] = (u64) r[i]; r[i] = 0; } modL(r, x); WIPE_BUFFER(x); } // r = (a * b) + c static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32]) { i64 s[64]; FOR (i, 0, 32) { s[i] = (u64) c[i]; } FOR (i, 32, 64) { s[i] = 0; } FOR (i, 0, 32) { FOR (j, 0, 32) { s[i+j] += a[i] * (u64) b[j]; } } modL(r, s); WIPE_BUFFER(s); } static int is_above_L(const u8 a[32]) { for (int i = 31; i >= 0; i--) { if (a[i] > L[i]) { return 1; } if (a[i] < L[i]) { return 0; } } return 1; } // Point in a twisted Edwards curve, // in extended projective coordinates. // x = X/Z, y = Y/Z, T = XY/Z typedef struct { fe X; fe Y; fe Z; fe T; } ge; typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached; static void ge_zero(ge *p) { fe_0(p->X); fe_1(p->Y); fe_1(p->Z); fe_0(p->T); } static void ge_tobytes(u8 s[32], const ge *h) { fe recip, x, y; fe_invert(recip, h->Z); fe_mul(x, h->X, recip); fe_mul(y, h->Y, recip); fe_tobytes(s, y); s[31] ^= fe_isnegative(x) << 7; WIPE_BUFFER(recip); WIPE_BUFFER(x); WIPE_BUFFER(y); } // Variable time! s must not be secret! static int ge_frombytes_neg_vartime(ge *h, const u8 s[32]) { static const fe d = { -10913610, 13857413, -15372611, 6949391, 114729, -8787816, -6275908, -3247719, -18696448, -12055116 } ; static const fe sqrtm1 = { -32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482 } ; fe u, v, v3, vxx, check; // no secret, no wipe fe_frombytes(h->Y, s); fe_1(h->Z); fe_sq(u, h->Y); // y^2 fe_mul(v, u, d); fe_sub(u, u, h->Z); // u = y^2-1 fe_add(v, v, h->Z); // v = dy^2+1 fe_sq(v3, v); fe_mul(v3, v3, v); // v3 = v^3 fe_sq(h->X, v3); fe_mul(h->X, h->X, v); fe_mul(h->X, h->X, u); // x = uv^7 fe_pow22523(h->X, h->X); // x = (uv^7)^((q-5)/8) fe_mul(h->X, h->X, v3); fe_mul(h->X, h->X, u); // x = uv^3(uv^7)^((q-5)/8) fe_sq(vxx, h->X); fe_mul(vxx, vxx, v); fe_sub(check, vxx, u); // vx^2-u if (fe_isnonzero(check)) { fe_add(check, vxx, u); // vx^2+u if (fe_isnonzero(check)) { return -1; } fe_mul(h->X, h->X, sqrtm1); } if (fe_isnegative(h->X) == (s[31] >> 7)) { fe_neg(h->X, h->X); } fe_mul(h->T, h->X, h->Y); return 0; } static void ge_cache(ge_cached *c, const ge *p) { static const fe D2 = { // - 2 * 121665 / 121666 -21827239, -5839606, -30745221, 13898782, 229458, 15978800, -12551817, -6495438, 29715968, 9444199 }; fe_add (c->Yp, p->Y, p->X); fe_sub (c->Ym, p->Y, p->X); fe_copy(c->Z , p->Z ); fe_mul (c->T2, p->T, D2 ); } static void ge_add(ge *s, const ge *p, const ge_cached *q) { fe a, b; // not used to process secrets, no need to wipe fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , q->Yp); fe_mul(b , b , q->Ym); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->Z, s->Z, q->Z ); fe_mul(s->T, p->T, q->T2); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_sub(ge *s, const ge *p, const ge_cached *q) { ge_cached neg; fe_copy(neg.Ym, q->Yp); fe_copy(neg.Yp, q->Ym); fe_copy(neg.Z , q->Z ); fe_neg (neg.T2, q->T2); ge_add(s, p, &neg); } static void ge_madd(ge *s, const ge *p, const fe yp, const fe ym, const fe t2, fe a, fe b) { fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , yp ); fe_mul(b , b , ym ); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->T, p->T, t2 ); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_double(ge *s, const ge *p, ge *q) { fe_sq (q->X, p->X); fe_sq (q->Y, p->Y); fe_sq2(q->Z, p->Z); fe_add(q->T, p->X, p->Y); fe_sq (s->T, q->T); fe_add(q->T, q->Y, q->X); fe_sub(q->Y, q->Y, q->X); fe_sub(q->X, s->T, q->T); fe_sub(q->Z, q->Z, q->Y); fe_mul(s->X, q->X , q->Z); fe_mul(s->Y, q->T , q->Y); fe_mul(s->Z, q->Y , q->Z); fe_mul(s->T, q->X , q->T); } // Compute signed sliding windows (either 0, or odd numbers between -15 and 15) static void slide(i8 adds[258], const u8 scalar[32]) { FOR (i, 0, 256) { adds[i] = scalar_bit(scalar, i); } FOR (i, 256, 258) { adds[i] = 0; } FOR (i, 0, 254) { if (adds[i] != 0) { // base value of the 5-bit window FOR (j, 1, 5) { adds[i ] |= adds[i+j] << j; adds[i+j] = 0; } if (adds[i] > 16) { // go back to [-15, 15], propagate carry. adds[i] -= 32; int j = i + 5; while (adds[j] != 0) { adds[j] = 0; j++; } adds[j] = 1; } } } } // Look up table for sliding windows static void ge_precompute(ge_cached lut[8], const ge *P1) { ge P2, tmp; ge_double(&P2, P1, &tmp); ge_cache(&lut[0], P1); FOR (i, 0, 7) { ge_add(&tmp, &P2, &lut[i]); ge_cache(&lut[i+1], &tmp); } } // Could be a function, but the macro avoids some overhead. #define LUT_ADD(sum, lut, adds, i) \ if (adds[i] > 0) { ge_add(sum, sum, &lut[ adds[i] / 2]); } \ if (adds[i] < 0) { ge_sub(sum, sum, &lut[-adds[i] / 2]); } // Variable time! P, sP, and sB must not be secret! static void ge_double_scalarmult_vartime(ge *sum, const ge *P, u8 p[32], u8 b[32]) { static const fe X = { -14297830, -7645148, 16144683, -16471763, 27570974, -2696100, -26142465, 8378389, 20764389, 8758491 }; static const fe Y = { -26843541, -6710886, 13421773, -13421773, 26843546, 6710886, -13421773, 13421773, -26843546, -6710886 }; ge B; fe_copy(B.X, X); fe_copy(B.Y, Y); fe_1 (B.Z); fe_mul (B.T, X, Y); // cached points for addition ge_cached cP[8]; ge_precompute(cP, P); ge_cached cB[8]; ge_precompute(cB, &B); i8 p_adds[258]; slide(p_adds, p); i8 b_adds[258]; slide(b_adds, b); // Avoid the first doublings int i = 253; while (i >= 0 && p_adds[i] == 0 && b_adds[i] == 0) { i--; } // Merged double and add ladder ge_zero(sum); LUT_ADD(sum, cP, p_adds, i); LUT_ADD(sum, cB, b_adds, i); i--; while (i >= 0) { ge_double(sum, sum, &B); // B is no longer used, we can overwrite it LUT_ADD(sum, cP, p_adds, i); LUT_ADD(sum, cB, b_adds, i); i--; } } // 5-bit signed comb in cached format (Niels coordinates, Z=1) static const fe comb_Yp[16] = { {2615675, 9989699, 17617367, -13953520, -8802803, 1447286, -8909978, -270892, -12199203, -11617247}, {-1271192, 4785266, -29856067, -6036322, -10435381, 15493337, 20321440, -6036064, 15902131, 13420909}, {-26170888, -12891603, 9568996, -6197816, 26424622, 16308973, -4518568, -3771275, -15522557, 3991142}, {-25875044, 1958396, 19442242, -9809943, -26099408, -18589, -30794750, -14100910, 4971028, -10535388}, {-13896937, -7357727, -12131124, 617289, -33188817, 10080542, 6402555, 10779157, 1176712, 2472642}, {71503, 12662254, -17008072, -8370006, 23408384, -12897959, 32287612, 11241906, -16724175, 15336924}, {27397666, 4059848, 23573959, 8868915, -10602416, -10456346, -22812831, -9666299, 31810345, -2695469}, {-3418193, -694531, 2320482, -11850408, -1981947, -9606132, 23743894, 3933038, -25004889, -4478918}, {-4448372, 5537982, -4805580, 14016777, 15544316, 16039459, -7143453, -8003716, -21904564, 8443777}, {32495180, 15749868, 2195406, -15542321, -3213890, -4030779, -2915317, 12751449, -1872493, 11926798}, {26779741, 12553580, -24344000, -4071926, -19447556, -13464636, 21989468, 7826656, -17344881, 10055954}, {5848288, -1639207, -10452929, -11760637, 6484174, -5895268, -11561603, 587105, -19220796, 14378222}, {32050187, 12536702, 9206308, -10016828, -13333241, -4276403, -24225594, 14562479, -31803624, -9967812}, {23536033, -6219361, 199701, 4574817, 30045793, 7163081, -2244033, 883497, 10960746, -14779481}, {-8143354, -11558749, 15772067, 14293390, 5914956, -16702904, -7410985, 7536196, 6155087, 16571424}, {6211591, -11166015, 24568352, 2768318, -10822221, 11922793, 33211827, 3852290, -13160369, -8855385}, }; static const fe comb_Ym[16] = { {8873912, 14981221, 13714139, 6923085, 25481101, 4243739, 4646647, -203847, 9015725, -16205935}, {-1827892, 15407265, 2351140, -11810728, 28403158, -1487103, -15057287, -4656433, -3780118, -1145998}, {-30623162, -11845055, -11327147, -16008347, 17564978, -1449578, -20580262, 14113978, 29643661, 15580734}, {-15109423, 13348938, -14756006, 14132355, 30481360, 1830723, -240510, 9371801, -13907882, 8024264}, {25119567, 5628696, 10185251, -9279452, 683770, -14523112, -7982879, -16450545, 1431333, -13253541}, {-8390493, 1276691, 19008763, -12736675, -9249429, -12526388, 17434195, -13761261, 18962694, -1227728}, {26361856, -12366343, 8941415, 15163068, 7069802, -7240693, -18656349, 8167008, 31106064, -1670658}, {-5677136, -11012483, -1246680, -6422709, 14772010, 1829629, -11724154, -15914279, -18177362, 1301444}, {937094, 12383516, -22597284, 7580462, -18767748, 13813292, -2323566, 13503298, 11510849, -10561992}, {28028043, 14715827, -6558532, -1773240, 27563607, -9374554, 3201863, 8865591, -16953001, 7659464}, {13628467, 5701368, 4674031, 11935670, 11461401, 10699118, 31846435, -114971, -8269924, -14777505}, {-22124018, -12859127, 11966893, 1617732, 30972446, -14350095, -21822286, 8369862, -29443219, -15378798}, {290131, -471434, 8840522, -2654851, 25963762, -11578288, -7227978, 13847103, 30641797, 6003514}, {-23547482, -11475166, -11913550, 9374455, 22813401, -5707910, 26635288, 9199956, 20574690, 2061147}, {9715324, 7036821, -17981446, -11505533, 26555178, -3571571, 5697062, -14128022, 2795223, 9694380}, {14864569, -6319076, -3080, -8151104, 4994948, -1572144, -41927, 9269803, 13881712, -13439497}, }; static const fe comb_T2[16] = { {-18494317, 2686822, 18449263, -13905325, 5966562, -3368714, 2738304, -8583315, 15987143, 12180258}, {-33336513, -13705917, -18473364, -5039204, -4268481, -4136039, -8192211, -2935105, -19354402, 5995895}, {-19753139, -1729018, 21880604, 13471713, 28315373, -8530159, -17492688, 11730577, -8790216, 3942124}, {17278020, 3905045, 29577748, 11151940, 18451761, -6801382, 31480073, -13819665, 26308905, 10868496}, {26937294, 3313561, 28601532, -3497112, -22814130, 11073654, 8956359, -16757370, 13465868, 16623983}, {-5468054, 6059101, -31275300, 2469124, 26532937, 8152142, 6423741, -11427054, -15537747, -10938247}, {-11303505, -9659620, -12354748, -9331434, 19501116, -9146390, -841918, -5315657, 8903828, 8839982}, {16603354, -215859, 1591180, 3775832, -705596, -13913449, 26574704, 14963118, 19649719, 6562441}, {33188866, -12232360, -24929148, -6133828, 21818432, 11040754, -3041582, -3524558, -29364727, -10264096}, {-20704194, -12560423, -1235774, -785473, 13240395, 4831780, -472624, -3796899, 25480903, -15422283}, {-2204347, -16313180, -21388048, 7520851, -8697745, -14460961, 20894017, 12210317, -475249, -2319102}, {-16407882, 4940236, -21194947, 10781753, 22248400, 14425368, 14866511, -7552907, 12148703, -7885797}, {16376744, 15908865, -30663553, 4663134, -30882819, -10105163, 19294784, -10800440, -33259252, 2563437}, {30208741, 11594088, -15145888, 15073872, 5279309, -9651774, 8273234, 4796404, -31270809, -13316433}, {-17802574, 14455251, 27149077, -7832700, -29163160, -7246767, 17498491, -4216079, 31788733, -14027536}, {-25233439, -9389070, -6618212, -3268087, -521386, -7350198, 21035059, -14970947, 25910190, 11122681}, }; static void ge_scalarmult_base(ge *p, const u8 scalar[32]) { // 5-bits signed comb, from Mike Hamburg's // Fast and compact elliptic-curve cryptography (2012) static const u8 half_mod_L[32] = { // 1 / 2 modulo L 0xf7, 0xe9, 0x7a, 0x2e, 0x8d, 0x31, 0x09, 0x2c, 0x6b, 0xce, 0x7b, 0x51, 0xef, 0x7c, 0x6f, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, }; static const u8 half_ones[32] = { // (2^255 - 1) / 2 modulo L 0x42, 0x9a, 0xa3, 0xba, 0x23, 0xa5, 0xbf, 0xcb, 0x11, 0x5b, 0x9d, 0xc5, 0x74, 0x95, 0xf3, 0xb6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, }; // All bits set form: 1 means 1, 0 means -1 u8 s_scalar[32]; mul_add(s_scalar, scalar, half_mod_L, half_ones); // Double and add ladder fe yp, ym, t2, n2, a, b; // temporaries for addition ge dbl; // temporary for doublings ge_zero(p); for (int i = 50; i >= 0; i--) { if (i < 50) { ge_double(p, p, &dbl); } fe_1(yp); fe_1(ym); fe_0(t2); u8 teeth = scalar_bit(s_scalar, i) + (scalar_bit(s_scalar, i + 51) << 1) + (scalar_bit(s_scalar, i + 102) << 2) + (scalar_bit(s_scalar, i + 153) << 3) + (scalar_bit(s_scalar, i + 204) << 4); u8 high = teeth >> 4; u8 index = (teeth ^ (high - 1)) & 15; FOR (j, 0, 16) { i32 select = 1 & (((j ^ index) - 1) >> 8); fe_ccopy(yp, comb_Yp[j], select); fe_ccopy(ym, comb_Ym[j], select); fe_ccopy(t2, comb_T2[j], select); } fe_neg(n2, t2); fe_cswap(t2, n2, high); fe_cswap(yp, ym, high); ge_madd(p, p, ym, yp, n2, a, b); } WIPE_CTX(&dbl); WIPE_BUFFER(a); WIPE_BUFFER(yp); WIPE_BUFFER(t2); WIPE_BUFFER(b); WIPE_BUFFER(ym); WIPE_BUFFER(n2); WIPE_BUFFER(s_scalar); } void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32]) { u8 a[64]; HASH(a, secret_key, 32); trim_scalar(a); ge A; ge_scalarmult_base(&A, a); ge_tobytes(public_key, &A); WIPE_BUFFER(a); WIPE_CTX(&A); } void crypto_sign_init_first_pass(crypto_sign_ctx *ctx, const u8 secret_key[32], const u8 public_key[32]) { u8 *a = ctx->buf; u8 *prefix = ctx->buf + 32; HASH(a, secret_key, 32); trim_scalar(a); if (public_key == 0) { crypto_sign_public_key(ctx->pk, secret_key); } else { FOR (i, 0, 32) { ctx->pk[i] = public_key[i]; } } // Constructs the "random" nonce from the secret key and message. // An actual random number would work just fine, and would save us // the trouble of hashing the message twice. If we did that // however, the user could fuck it up and reuse the nonce. HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, prefix , 32); } void crypto_sign_update(crypto_sign_ctx *ctx, const u8 *msg, size_t msg_size) { HASH_UPDATE(&ctx->hash, msg, msg_size); } void crypto_sign_init_second_pass(crypto_sign_ctx *ctx) { u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; HASH_FINAL(&ctx->hash, r); reduce(r); // first half of the signature = "random" nonce times basepoint ge R; ge_scalarmult_base(&R, r); ge_tobytes(half_sig, &R); WIPE_CTX(&R); // Hash R, the public key, and the message together. // It cannot be done in parallel with the first hash. HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, half_sig, 32); HASH_UPDATE(&ctx->hash, ctx->pk , 32); } void crypto_sign_final(crypto_sign_ctx *ctx, u8 signature[64]) { u8 *a = ctx->buf; u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; u8 h_ram[64]; HASH_FINAL(&ctx->hash, h_ram); reduce(h_ram); // reduce the hash modulo L FOR (i, 0, 32) { signature[i] = half_sig[i]; } mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r WIPE_CTX(ctx); WIPE_BUFFER(h_ram); } void crypto_sign(u8 signature[64], const u8 secret_key[32], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_sign_ctx ctx; crypto_sign_init_first_pass (&ctx, secret_key, public_key); crypto_sign_update (&ctx, message, message_size); crypto_sign_init_second_pass(&ctx); crypto_sign_update (&ctx, message, message_size); crypto_sign_final (&ctx, signature); } void crypto_check_init(crypto_check_ctx *ctx, const u8 signature[64], const u8 public_key[32]) { FOR (i, 0, 64) { ctx->sig[i] = signature [i]; } FOR (i, 0, 32) { ctx->pk [i] = public_key[i]; } HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, signature , 32); HASH_UPDATE(&ctx->hash, public_key, 32); } void crypto_check_update(crypto_check_ctx *ctx, const u8 *msg, size_t msg_size) { HASH_UPDATE(&ctx->hash, msg , msg_size); } int crypto_check_final(crypto_check_ctx *ctx) { ge diff, A; u8 h_ram[64], R_check[32]; u8 *s = ctx->sig + 32; // s u8 *R = ctx->sig; // R if (ge_frombytes_neg_vartime(&A, ctx->pk) || is_above_L(s)) { // prevent s malleability return -1; } HASH_FINAL(&ctx->hash, h_ram); reduce(h_ram); ge_double_scalarmult_vartime(&diff, &A, h_ram, s); ge_tobytes(R_check, &diff); // R_check = s*B - h_ram*A return crypto_verify32(R, R_check); // R == R_check ? OK : fail // No secret, no wipe } int crypto_check(const u8 signature[64], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_check_ctx ctx; crypto_check_init(&ctx, signature, public_key); crypto_check_update(&ctx, message, message_size); return crypto_check_final(&ctx); } //////////////////// /// Key exchange /// //////////////////// int crypto_key_exchange(u8 shared_key[32], const u8 your_secret_key [32], const u8 their_public_key[32]) { u8 raw_shared_secret[32]; int status = crypto_x25519(raw_shared_secret, your_secret_key, their_public_key); crypto_chacha20_H(shared_key, raw_shared_secret, zero); WIPE_BUFFER(raw_shared_secret); return status; } //////////////////////////////// /// Authenticated encryption /// //////////////////////////////// static void lock_ad_padding(crypto_lock_ctx *ctx) { if (ctx->ad_phase) { ctx->ad_phase = 0; crypto_poly1305_update(&ctx->poly, zero, ALIGN(ctx->ad_size, 16)); } } void crypto_lock_init(crypto_lock_ctx *ctx, const u8 key[32], const u8 nonce[24]) { u8 auth_key[64]; // "Wasting" the whole Chacha block is faster ctx->ad_phase = 1; ctx->ad_size = 0; ctx->message_size = 0; crypto_chacha20_x_init(&ctx->chacha, key, nonce); crypto_chacha20_stream(&ctx->chacha, auth_key, 64); crypto_poly1305_init (&ctx->poly , auth_key); WIPE_BUFFER(auth_key); } void crypto_lock_auth_ad(crypto_lock_ctx *ctx, const u8 *msg, size_t msg_size) { crypto_poly1305_update(&ctx->poly, msg, msg_size); ctx->ad_size += msg_size; } void crypto_lock_auth_message(crypto_lock_ctx *ctx, const u8 *cipher_text, size_t text_size) { lock_ad_padding(ctx); ctx->message_size += text_size; crypto_poly1305_update(&ctx->poly, cipher_text, text_size); } void crypto_lock_update(crypto_lock_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { crypto_chacha20_encrypt(&ctx->chacha, cipher_text, plain_text, text_size); crypto_lock_auth_message(ctx, cipher_text, text_size); } void crypto_lock_final(crypto_lock_ctx *ctx, u8 mac[16]) { lock_ad_padding(ctx); u8 sizes[16]; // Not secret, not wiped store64_le(sizes + 0, ctx->ad_size); store64_le(sizes + 8, ctx->message_size); crypto_poly1305_update(&ctx->poly, zero, ALIGN(ctx->message_size, 16)); crypto_poly1305_update(&ctx->poly, sizes, 16); crypto_poly1305_final (&ctx->poly, mac); WIPE_CTX(ctx); } void crypto_unlock_update(crypto_lock_ctx *ctx, u8 *plain_text, const u8 *cipher_text, size_t text_size) { crypto_unlock_auth_message(ctx, cipher_text, text_size); crypto_chacha20_encrypt(&ctx->chacha, plain_text, cipher_text, text_size); } int crypto_unlock_final(crypto_lock_ctx *ctx, const u8 mac[16]) { u8 real_mac[16]; crypto_lock_final(ctx, real_mac); int mismatch = crypto_verify16(real_mac, mac); WIPE_BUFFER(real_mac); return mismatch; } void crypto_lock_aead(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *ad , size_t ad_size, const u8 *plain_text, size_t text_size) { crypto_lock_ctx ctx; crypto_lock_init (&ctx, key, nonce); crypto_lock_auth_ad(&ctx, ad, ad_size); crypto_lock_update (&ctx, cipher_text, plain_text, text_size); crypto_lock_final (&ctx, mac); } int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *ad , size_t ad_size, const u8 *cipher_text, size_t text_size) { crypto_unlock_ctx ctx; crypto_unlock_init (&ctx, key, nonce); crypto_unlock_auth_ad (&ctx, ad, ad_size); crypto_unlock_auth_message(&ctx, cipher_text, text_size); crypto_chacha_ctx chacha_ctx = ctx.chacha; // avoid the wiping... if (crypto_unlock_final(&ctx, mac)) { // ...that occurs here WIPE_CTX(&chacha_ctx); return -1; // reject forgeries before wasting our time decrypting } crypto_chacha20_encrypt(&chacha_ctx, plain_text, cipher_text, text_size); WIPE_CTX(&chacha_ctx); return 0; } void crypto_lock(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *plain_text, size_t text_size) { crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size); } int crypto_unlock(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *cipher_text, size_t text_size) { return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0, cipher_text, text_size); } |
Added vendor/monocypher/monocypher.h version [a867570941].
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | #ifndef MONOCYPHER_H #define MONOCYPHER_H #include <inttypes.h> #include <stddef.h> //////////////////////// /// Type definitions /// //////////////////////// // Do not rely on the size or content on any of those types, // they may change without notice. // Chacha20 typedef struct { uint32_t input[16]; // current input, unencrypted uint32_t pool [16]; // last input, encrypted size_t pool_idx; // pointer to random_pool } crypto_chacha_ctx; // Poly1305 typedef struct { uint32_t r[4]; // constant multiplier (from the secret key) uint32_t h[5]; // accumulated hash uint32_t c[5]; // chunk of the message uint32_t pad[4]; // random number added at the end (from the secret key) size_t c_idx; // How many bytes are there in the chunk. } crypto_poly1305_ctx; // Authenticated encryption typedef struct { crypto_chacha_ctx chacha; crypto_poly1305_ctx poly; uint64_t ad_size; uint64_t message_size; int ad_phase; } crypto_lock_ctx; #define crypto_unlock_ctx crypto_lock_ctx // Hash (Blake2b) typedef struct { uint64_t hash[8]; uint64_t input_offset[2]; uint64_t input[16]; size_t input_idx; size_t hash_size; } crypto_blake2b_ctx; // Signatures (EdDSA) #ifdef ED25519_SHA512 #include "sha512.h" typedef crypto_sha512_ctx crypto_hash_ctx; #else typedef crypto_blake2b_ctx crypto_hash_ctx; #endif typedef struct { crypto_hash_ctx hash; uint8_t buf[96]; uint8_t pk [32]; } crypto_sign_ctx; typedef struct { crypto_hash_ctx hash; uint8_t sig[64]; uint8_t pk [32]; } crypto_check_ctx; //////////////////////////// /// High level interface /// //////////////////////////// // Constant time comparisons // ------------------------- // Return 0 if a and b are equal, -1 otherwise int crypto_verify16(const uint8_t a[16], const uint8_t b[16]); int crypto_verify32(const uint8_t a[32], const uint8_t b[32]); int crypto_verify64(const uint8_t a[64], const uint8_t b[64]); // Erase sensitive data // -------------------- // Please erase all copies void crypto_wipe(void *secret, size_t size); // Authenticated encryption // ------------------------ // Direct interface void crypto_lock(uint8_t mac[16], uint8_t *cipher_text, const uint8_t key[32], const uint8_t nonce[24], const uint8_t *plain_text, size_t text_size); int crypto_unlock(uint8_t *plain_text, const uint8_t key[32], const uint8_t nonce[24], const uint8_t mac[16], const uint8_t *cipher_text, size_t text_size); // Direct interface with additional data void crypto_lock_aead(uint8_t mac[16], uint8_t *cipher_text, const uint8_t key[32], const uint8_t nonce[24], const uint8_t *ad , size_t ad_size, const uint8_t *plain_text, size_t text_size); int crypto_unlock_aead(uint8_t *plain_text, const uint8_t key[32], const uint8_t nonce[24], const uint8_t mac[16], const uint8_t *ad , size_t ad_size, const uint8_t *cipher_text, size_t text_size); // Incremental interface (encryption) void crypto_lock_init(crypto_lock_ctx *ctx, const uint8_t key[32], const uint8_t nonce[24]); void crypto_lock_auth_ad(crypto_lock_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_lock_auth_message(crypto_lock_ctx *ctx, const uint8_t *cipher_text, size_t text_size); void crypto_lock_update(crypto_lock_ctx *ctx, uint8_t *cipher_text, const uint8_t *plain_text, size_t text_size); void crypto_lock_final(crypto_lock_ctx *ctx, uint8_t mac[16]); // Incremental interface (decryption) #define crypto_unlock_init crypto_lock_init #define crypto_unlock_auth_ad crypto_lock_auth_ad #define crypto_unlock_auth_message crypto_lock_auth_message void crypto_unlock_update(crypto_unlock_ctx *ctx, uint8_t *plain_text, const uint8_t *cipher_text, size_t text_size); int crypto_unlock_final(crypto_unlock_ctx *ctx, const uint8_t mac[16]); // General purpose hash (Blake2b) // ------------------------------ // Direct interface void crypto_blake2b(uint8_t hash[64], const uint8_t *message, size_t message_size); void crypto_blake2b_general(uint8_t *hash , size_t hash_size, const uint8_t *key , size_t key_size, // optional const uint8_t *message , size_t message_size); // Incremental interface void crypto_blake2b_init (crypto_blake2b_ctx *ctx); void crypto_blake2b_update(crypto_blake2b_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_blake2b_final (crypto_blake2b_ctx *ctx, uint8_t *hash); void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, const uint8_t *key, size_t key_size); // Password key derivation (Argon2 i) // ---------------------------------- void crypto_argon2i(uint8_t *hash, uint32_t hash_size, // >= 4 void *work_area, uint32_t nb_blocks, // >= 8 uint32_t nb_iterations, // >= 1 const uint8_t *password, uint32_t password_size, const uint8_t *salt, uint32_t salt_size); void crypto_argon2i_general(uint8_t *hash, uint32_t hash_size,// >= 4 void *work_area, uint32_t nb_blocks,// >= 8 uint32_t nb_iterations, // >= 1 const uint8_t *password, uint32_t password_size, const uint8_t *salt, uint32_t salt_size,// >= 8 const uint8_t *key, uint32_t key_size, const uint8_t *ad, uint32_t ad_size); // Key exchange (x25519 + HChacha20) // --------------------------------- #define crypto_key_exchange_public_key crypto_x25519_public_key int crypto_key_exchange(uint8_t shared_key [32], const uint8_t your_secret_key [32], const uint8_t their_public_key[32]); // Signatures (EdDSA with curve25519 + Blake2b) // -------------------------------------------- // Generate public key void crypto_sign_public_key(uint8_t public_key[32], const uint8_t secret_key[32]); // Direct interface void crypto_sign(uint8_t signature [64], const uint8_t secret_key[32], const uint8_t public_key[32], // optional, may be 0 const uint8_t *message, size_t message_size); int crypto_check(const uint8_t signature [64], const uint8_t public_key[32], const uint8_t *message, size_t message_size); // Incremental interface for signatures (2 passes) void crypto_sign_init_first_pass(crypto_sign_ctx *ctx, const uint8_t secret_key[32], const uint8_t public_key[32]); void crypto_sign_update(crypto_sign_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_sign_init_second_pass(crypto_sign_ctx *ctx); // use crypto_sign_update() again. void crypto_sign_final(crypto_sign_ctx *ctx, uint8_t signature[64]); // Incremental interface for verification (1 pass) void crypto_check_init (crypto_check_ctx *ctx, const uint8_t signature[64], const uint8_t public_key[32]); void crypto_check_update(crypto_check_ctx *ctx, const uint8_t *message, size_t message_size); int crypto_check_final (crypto_check_ctx *ctx); //////////////////////////// /// Low level primitives /// //////////////////////////// // For experts only. You have been warned. // Chacha20 // -------- // Specialised hash. void crypto_chacha20_H(uint8_t out[32], const uint8_t key[32], const uint8_t in [16]); void crypto_chacha20_init(crypto_chacha_ctx *ctx, const uint8_t key[32], const uint8_t nonce[8]); void crypto_chacha20_x_init(crypto_chacha_ctx *ctx, const uint8_t key[32], const uint8_t nonce[24]); void crypto_chacha20_set_ctr(crypto_chacha_ctx *ctx, uint64_t ctr); void crypto_chacha20_encrypt(crypto_chacha_ctx *ctx, uint8_t *cipher_text, const uint8_t *plain_text, size_t text_size); void crypto_chacha20_stream(crypto_chacha_ctx *ctx, uint8_t *stream, size_t size); // Poly 1305 // --------- // Direct interface void crypto_poly1305(uint8_t mac[16], const uint8_t *message, size_t message_size, const uint8_t key[32]); // Incremental interface void crypto_poly1305_init (crypto_poly1305_ctx *ctx, const uint8_t key[32]); void crypto_poly1305_update(crypto_poly1305_ctx *ctx, const uint8_t *message, size_t message_size); void crypto_poly1305_final (crypto_poly1305_ctx *ctx, uint8_t mac[16]); // X-25519 // ------- void crypto_x25519_public_key(uint8_t public_key[32], const uint8_t secret_key[32]); int crypto_x25519(uint8_t raw_shared_secret[32], const uint8_t your_secret_key [32], const uint8_t their_public_key [32]); #endif // MONOCYPHER_H |
Added vendor/monocypher/version version [e41df87aa4].
> | 1 | 2.0.5 |