NANO(N) NANO(N)

NAME
nano — Tcl bindings for Nano

SYNOPSIS
nano::
address::
toPublicK ey addess ?-hex|-binary? ?erify|-no-verify?
fromPublicKkey pubkey ?-xrb|-nano?
fromPrivateKey privatekey ?-xrb|-nano?

key::
newSeed ?-hex|-binary?
newKey ?-hex|-binary?
fromSeed seed ?ind@ ?-hex|-binary?
publicK eyFromPrivateKey privatekey ?-hex|-binary?

block::
json::toBlock blockJSON
json::fromDict blockDict
json::fromBlock blokData ?-xrb|-nano? ? -type=blddype ? ? -signley=privateky ?
json::sign blokJSON privateBy ?-update|-signatue ?-hex|binary??
json::verifySignature blokJSON
json::work blockJSON ?-update|-ark ?-hex|-binary??
json::validateWork blockJSON

dict::toBlock blockDict

dict::fr omJSON blo&JSON

dict::fr omBlock blodkData ?-xrb|-nano? ? -type=blddype ? ? -signkey=privatekey ?
dict::sign blockDict privatekey ?-update|-signatue ?-hex|binary??

dict::v erifySignature blokDict

dict::w ork blockDict ?-update|-vork ?-hex|-binary??

dict::v alidateWork blockDict

hash blo&Data ?-hex|-binary?

signBlockHash blo&Hash privatelgy ?-hex|-binary?
sign blokData privateley ?-hex|-binary?
verifyBlockHash blodkHash signatw publickey
verify blockData signatue publickey

create::send ags
create::receve amgs
create::setRepesentatie amgs

work::
fromWorkData blockHashOrPublickey
fromBlock blokData
validate workData work

account::
setFrontier account fontierHash balanceapresentative
getFrontier account
getFrontier account ?fontierHash|balance|epresentative?
addPending account blokHash amount
getPending account ?blddHash?
clearPending account ?blddHash?

nano 1.0 09-Jul-2018

NANO(N) NANO(N)

receve account blokHash privateléy
receveAllPending account privately

send fomAccount toAccount amount privaggK
setRepiesentative account epresentative privated

INTRODUCTION
Nano is a lev-lateny payment platform that requires minimal resources, relying on a@@eer netwrk
to distribute "blocks", which are cryptographically signed transactions. This packagdgsdindings for
interacting with the Nano netwk from Tcl.

Nano uses Ed25519 with BlaRb as the cryptographic hashing priwgtfor digital signatures, rather than
the common construction of Ed25519 with the SHA2-512 cryptographic hashing function.

Nano implements a "blockchain®, which is a cryptographicelihlist, by identifying eery "block" by its
crytographic hash and prding a pointer from wery block to its predecessor in the "chain" as part of the
hashed data.

This predecessors is referred to here as theitug' block. In Nano, each account has isidlockchain
and thg reference each other using a data structure referred to as "block lattice", wherevideahdi
chains contain blocks that reference blocks in other chains to tie them togéibdreld within blocks that
reference other blocks on afdifent blockchain is referred to as either the "link" field or "source block
hash".

Each Nano block also encapsulates the full state of the account, containing, at a minimum, a tuple of
(account, balance gpresentative, mvious).

Since Nano blocks are signed by independent actors, whofondkieir avn gain, generate multiplealid
blocks referring to the same predecessoedipus) block, an arbitration mechanism is ergphb by the
Nano netwrk to decide which blocks arahd within a gven chain. This arbitration mechanism operates
on the principles of consensus. Each account holder haseaistidde netwrk operating nominallyother
wise the balance represented by an account is not useful for a transédueof in Nano the stakan
account has in the netrk is equal to the accoustbalance. The lger the stai an account has the more
incentvized the account-holder is to ensure the petvis operating nominally and not accepting multiple
blocks that reference the same predecessor

Nano utilizes a mechanism called voting to determine which blocksadice and which blocks are not
valid. Each staiholder wtes their sta& upon seeing a mesubordinate block (i.ea block with a unique
previous \alue). Since oting is an actie and on-going process that occurs on the Nanctpgerer net-
work, participants must be online tote their stak. As this is often incorienent or impossible, stakold-
ers may select another stédiolder to wte their share of the netwk. This delgate is referred to as apre-
sentative.

Representates should be chosen carefully by staédders since malicious represendi may attempt to
gather wting paver and destablize the Nano netWwby altering decisions made by consensugipusly.

Nano accounts are referred to by address. A Nano address starts with the prefix "nano_" or "xrb_". A
Nano address is actually the public portion of agie/public lkeypair, plus the prefix, and a checksum to
ensure that no digits are mistyped by users when communicating them. Nano @ulcek256-bit &/'s

in the Ed25519 algorithm.

A user may hae maiy accounts. @ simplify the process of maintaining thevaitie/public leypairs for all

the accounts, Nano supports the concept of a wallet. A wallet is a conceptual entity that is used to refer to
a seed, which is a random 256-bit number that can be usedve aeritple priate/public leypairs from.

nano 1.0 09-Jul-2018

NANO(N) NANO(N)

Balances in Nano are stored in a 128-bitgetealue. There arearious units for representing the balance,
the smallest and base unit is calleawlf. The most common unit for users to use is called "Nano", one of
which is equal to 1e30wa

PROCEDURES
Addresses
::nano::addr ess::toPublickey
address ?-hex|-binary? ?arify|-no-verify? -> publickey

Corverts a Nano address to a publay.k The -hex option indicates that the publieykshould be
returned in heidecimal form. The option indicates that the publay lshould be returned in
binary form. The -erify option verifies the checksum embedded in the Nano address before
returning. The -no-grify option inhibits erifying the checksum embedded in the Nano address.

::nano::addr ess::fromPublicKey
pubKkey ?-xrb|-nano? -> addess

Corverts a public & to a Nano address. The option specifies that the returned address should be
prefixed with the old-style "xrb_" prefix, where the -nano option specifies that the returned
address should be prefik with the ne-style "nano_" prefix.

::nano::addr ess::fromPrivateKey
privatekey ?-xrb|-nano? -> addess

Corverts a prrate ley to a Nano address. It accepts the samenaents as f-mPublicKey.

Key Management
:nano::key::newSeed
?-hex|-binary? -> seed

Generates a meseed. A seed is a 256-bit bitfield which, along with a 32-bitxingeused to
derive enumerateddgs from a single point of entrgp See the fomSeed procedure. The -hex
and -binary options determine the formatting of the result.

::nano::key::newKey
?-hex|-binary? -> privatelgy

Generates a meprivate ley. A private ley can be used to sign transactions, which can then be
verified with its cooresponding publiek (see publickeyFromPrivateKey). This procedure is
normally not used, Wi rather prate leys are dexied from a seed and indgair using the fom-
Seed procedure. The -hex and -binary options determine the formatting of the result.

:nano::key::fromSeed
seed ?inde? ?-hex|-binary? -> private#y

Derive a prvate ley from the seed specified as seed and theximo@icated. This procedure is
deterministic (i.e., the same seed and xnddl always gve you the same mate ley). This pro-
cedure is used to dee maty keypairs from a single useénanaged piece of data, so the user does
not have to manage multiple pate leys. If the inde is not specified it defults to 0. The -hex
and -binary options determine the formatting of the result.

nano 1.0 09-Jul-2018

NANO(N) NANO(N)

:nano::k ey::publick eyFromPrivateKey
privateKey ?-hex|-binary? -> publicky

Corverts a prate ley into its corresponding publicelc Normally Ed25519 priate leys are a
concatencation of the pete and public dys, havever in this package tlyeare each treated sepa-
rately The -hex and -binary options determine the formatting of the result.

Low-level Block
::nano::block::r epresentation::toBlock
blodkRepesentation -> blddData

Corverts from one of the internal representations (either Tcl dictionary or JSON) to a Nano block.
The representation portion of the command name may be one of dict or json.

::nano::block::json::fr omDict
blodkDict -> blokJSON

Corverts from a Tcl dictionary representation to a JSON representation of a block.

::nano::block::dict::fr omJSON
blockJSON -> blokDict

Corverts from a JSON object representation to a Tcl dictionary representation of a block.

::nano::block::r epresentation::flomBlock
blockData ?-xrb|-nano? ? -type=blddype ? ? -signky=privateky ? -> blo&kRepesenta-
tion

Parses a Nano block and returns either a Tcl dictionary or a JSON object. The -xrb option causes
all parsed addresses to be predixvith the old-style "xrb_" address prefix, while the -nano option
causes them to be predck with the nev-style "nano_prefix". Theepresentation portion of the
command name may be one of dict or json.

::nano::block::r epresentation::sign
blockRepesentation private# ?-update|-signatue ?-hex|binary?? -> signatetblo&kJSON

Sign a block, in either Tcl dictionary or JISON representation, with the specified payatiéihe
-update option is used, return the object with the updated aiteib If the -signatue option is

used, return just the signature. The -hex and -binary options determine the formatting of the
result. The epresentation portion of the command name may be one of dict or json.

::nano::block::r epresentation::erifySignature
blodkRepesentation -> boolean

Verify the signature on a block, in either Tcl dictionary or JSON representation, matches the pub-
lic key specified in the account attiiibe of that object. This may notovk correctly for old-style

blocks unless you manually add the account aiteb The epresentation portion of the com-
mand name may be one of dict or json.

::nano::block::r epresentation::verk
blodkRepesentation ?-update|-ark ?-hex|binary?? -> work|blokRepesentation

nano 1.0 09-Jul-2018

NANO(N)

NANO(N)

Generate proof-of-ark (PoW) required to submit avgin block to the netark. Nano uses PoW

to increase the cost of submitting blocks to the nstwo cut davn on spam. The work that is
computed is based on the hash of theiptes block on this chain, or if there is noioais block

on this chain (i.e., because it is the first block on an account) the peplit the account. If the
-update option is used, return the object with the updated aiteib If the -work option is used,
just return the wrk. The -hex and -binary options determine the formatting of the result. The
representation portion of the command name may be one of dict or json.

::nano::block::r epresentation::alidateWork

blodkRepesentation -> boolean

Validate the proof-of-ark (PoW) in the object specified as lBepesentation with the attriie
work is valid for the block passed in. Thepresentation portion of the command name may be
one of dict or json.

::nano::block::hash

.:nano::

.:nano::

.:nano::

blodkData ?-hex|-binary? -> blokHash

Compute the cryptographic hash of a block. The cryptographic hashing algorithm used for Nano
is Blake2h Blocks are typically identified by their hash (i.e., content addressable). The -hex and
-binary options determine the formatting of the result.

block::signBlockHash
blockHash privateléy ?-hex|-binary? -> signate

Compute an Ed25519-with-BlaRb signature of agn block hash specified as étash with
the private ley specified as private®. In Nano, signed blocks are signed by signing the bkck’
hash thus all that is needed to sign a block is its hash and vhtegdy that corresponds to the
account. NOE: Ensure that the privateley specified matches the account the block belongs
to. The -hex and -binary options determine the formatting of the result.

block::sign
blockData privateky ?-hex|-binary? -> signate

This is a comienence procedure which computes the hash of a bleek gis blokData, and then
calls signBlockHash. The -hex and -binary options determine the formatting of the result.

block::v erifyBlockHash
blockHash signatwe publickey -> boolean

Verify that a block hash (bl&tlash) vas signed (signataj by an account holding the yate ley
that corresponds to the publieykspecified as publicdy.

::nano::block::v erify

.:nano::

nano 1.0

blockData signatue publickey -> boolean

This is a comienence procedure which computes the hash of a bleek gis blokData, and then
calls \erifyBlockHash.

block::cr eate::send
from addess to addess pevious blokHash epresentatve addess peviousBalance intger
amount integer ? -json boolean ? -> bld@SON |blokDict

09-Jul-2018

NANO(N) NANO(N)

This is a lav-level interface for creating blocks which correspond to sending Nano from one
account to anothert constructs a block which sends the amount specified from tbenfaddress

to the destination (to). The prieus blocks hash must be specified as the kiiteesh folloving
previous. Additionally the balance of the account at thevpyaes block must be supplied as the
integer agument to peviousBalance. All balance amounts are in units of raw. If the optional
-json agument is used and specified as true the result is a JSON representation, otherwise a Tcl
dict representation is used.

::nano::block::cr eate::receve
to address souceBlock blokHash previous blokHash epresentative addess peviousBalance
integer amount integer ? -json boolean ? -> bl&@SON |blokDict

This is a lav-level interface for creating blocks which correspond to néngi (pocleting) Nano
previously sent from another account to the account specified as thesadsimpplied to the to
argument. It constructs a block which reees the amount of Nano specified as the amouagt-ar
ment. The block hash (blElash) of the send block whicha used to send the Nano to this
account must be specified as thguanent to the soweBlock option. The préous blocks hash
must be specified as the dkbtash follaving previous. Additionally the balance of the account at
the preious block must be supplied as the g#e agument to peviousBalance. All balance
amounts are in units of raw. If the optional -jsorgament is used and specified as true the result
is a JSON representation, otherwise a Tcl dict representation is used.

::nano::block::cr eate::setRepesentative
account addess pevious blokkHash epresentatve addess ? -json boolean ? -> blkéd-
SON |blo&Dict

This is a lov-level interface for creating blocks which correspond to mplieit change of repre-
sentatve. Representates in Nano are used as part of the Detied Proof-of-Stak (dPoS) con-
sensus mechanism which is used by the Nanoamktt® determine which block (if gh out of
mary possible subordinate blocks in a chain aidv So that gery account holder does notvea
to be online to wte for \alid transactions, an account may date another account tmte its
stale on its behalf. That dejate is called a representesti An account may change its represen-
tative at ag time by issuing a block with a werepresentate, such as a send or raeblock, or
by issuing anelicit change of representedi block. This procedure creates apleit change of
representatie block for the account specified. It changes to the ghle to the epresentatve
specified. Furthethe blo&Hash of the preious block must be specified as thguament to pe-
vious. If the optional -json agyument is used and specified as true the result is a JSON representa-
tion, otherwise a Tcl dict representation is used.

Work Generation
::nano::work::fr omWorkData
blodkHashOrPublicky ->work

Create proof-of-wrk (PoW) from a block hash or publiek Which one is used depends on
whether or not there areyaother blocks in this accoustthain. If this is the first block in this
accounts chain then the publicgk of the account is used, otherwise the hash of the blocks prede-
cessor (pavious) is used. The specifialue needed should be accessible from therkBata
member of a JSON object or Tcl dictionafyiote that this attribte (and all attribtes that bgin

with an underscore) should be discarded when sending the block outside of the Tcl process.

::nano::work::fr omBlock
blockData -> work

nano 1.0 09-Jul-2018

NANO(N) NANO(N)

This is a comienence procedure which computesrkvdata (either a block hash or a publéy)k
for a given block and then callsdmWorkData.

::nano::work::v alidate
workData work -> boolean

This procedure alidates that the supplied work iglid for the supplied workData, which is either
a block hash or an account publieyk For more information see the description abrfrWork-
Data.

High-level Account
:nano::account::setFrontier
account fontierHash balanceapresentative

This procedure is used as part of the Higlelé\ccount interdce. It sets the dintier, which is the
block hash (fntierHash) and data (balancepresentative) associated with that block that corre-
sponds to the head of an accosittain.

:nano::account::getFrontier
account -> fontierinfo

This procedure is used as part of the Higlelé\ccount interice. It gets the Tcl dictionary asso-
ciated with the frontier most recently set for the specified account.

:nano::account::getFrontier
account ?fontierHash|balance|epresentatve? -> fontierHash|balancedpresentative

This procedure is used as part of the Higleléccount interéce. It gets a specific item from Tcl
dictionary associated with the frontier most recently set for the specified account.

:nano::account::addPending
account blokHash amount

This procedure is used as part of the HigleleAccount interéice. It is used to indicate than a
given account has aeceie block that thg could create. The block hash of the corresponding
send block should be supplied as the Iidash parameterThe amount of Nano thatas sent in
the send block should be specified as the amount parameter (in units)of ra

‘nano::account::getPending
account ?blokHash? -> dict

This procedure is used as part of the Higlelédccount interfice. It is used to retne informa-

tion stored by addBnding for a given account. If the blddHash parameter is supplied then a Tcl
dictionary is returned with aey called amount which contains the amount storedvpasly. If

the blo&Hash parameter is not supplied then a Tcl dictionary is returned wjth &orresponding

to each block hash pending for the specified account, and containing a subordinate Tcl dictionary
with a key called amount as prgously described.

::nano::account::clearPending
account ?blokHash?

nano 1.0 09-Jul-2018

NANO(N) NANO(N)

This procedure is used as part of the HigleléAccount interéce. It is used to clear (that is,
remove from the conceptual state of "pending”) entries createdopdy with addRending for a
given account. If the blddHash parameter is supplied then only the entry corresponding to that
blockhash is cleared, otherwise all entries for the specified account are cleared.

:nano::account::receve
account blokHash privatelgy -> blodkJSON |blokDict

This procedure is used as part of the Higlelé\ccount interice. It is used to generate a reeei
block. Its interfce is subject to change and not considered stable.

‘nano::account::receveAllPending
account privateldy -> listOfBlodkJSON |listOfBlokDict

This procedure is used as part of the HigleléAccount interice. It is used to generate recei
blocks for @ery pending recee on a gien account. Its inteaice is subject to change and not
considered stable.

:nano::account::send
fromAccount toAccount amount privaggK-> blodJSON |blokDict

This procedure is used as part of the HigleléAccount interéice. It is used to generate a send
block. Its interfce is subject to change and not considered stable.

::nano::account::setRepresentatve
account epresentative privated -> blodkJSON |blokDict

This procedure is used as part of the HigreléAccount interice. It is used to generate a block
that changes the representatior the gren account. Its integice is subject to change and not
considered stable.

EXAMPLES
Example 1
package require nano 1.0

set seed [::nano::key::newSeed -hex]
puts "Generated seed: $seed"

for {set index 0} {$index < 10} {incr index} {
set accountPrivateKey [::nano::key::fromSeed $seed $index -hex]
set accountAddress [::nano::address::fromPrivateKey $accountPrivateKey]
puts " - $index: $accountAddress"

Example 2
Example 3
AUTHOR
Roy Keene <rkene@nano.gr

nano 1.0 09-Jul-2018

