
NANO(N) NANO(N)

NAME
nano - Tcl bindings for Nano

SYNOPSIS
nano::

address::
toPublicKey address ?-hex|-binary? ?-verify|-no-verify?
fr omPublicKey pubKey ?-xrb|-nano?
fr omPrivateKey privateKey ?-xrb|-nano?

key::
newSeed ?-hex|-binary?
newKey ?-hex|-binary?
fr omSeed seed ?index? ?-hex|-binary?
publicK eyFromPrivateKey privateKey ?-hex|-binary?

block::
json::toBlock blockJSON
json::fr omDict blockDict
json::fr omBlock blockData ?-xrb|-nano? ? -type=blockType ? ? -signKey=privateKey ?
json::sign blockJSON privateKey ?-update|-signature ?-hex|binary??
json::verifySignature blockJSON
json::work blockJSON ?-update|-work ?-hex|-binary??
json::validateWork blockJSON

dict::toBlock blockDict
dict::fr omJSON blockJSON
dict::fr omBlock blockData ?-xrb|-nano? ? -type=blockType ? ? -signKey=privateKey ?
dict::sign blockDict privateKey ?-update|-signature ?-hex|binary??
dict::v erifySignature blockDict
dict::w ork blockDict ?-update|-work ?-hex|-binary??
dict::v alidateWork blockDict

hash blockData ?-hex|-binary?
signBlockHash blockHash privateKey ?-hex|-binary?
sign blockData privateKey ?-hex|-binary?
verifyBlockHash blockHash signature publicKey
verify blockData signature publicKey

create::send args
create::receive args
create::setRepresentative args

work::
fr omWorkData blockHashOrPublicKey
fr omBlock blockData
validate workData work

account::
setFrontier account frontierHash balance representative
getFrontier account
getFrontier account ?frontierHash|balance|representative?
addPending account blockHash amount
getPending account ?blockHash?
clearPending account ?blockHash?

nano 1.0 09-Jul-2018 1

NANO(N) NANO(N)

receive account blockHash privateKey
receiveAllPending account privateKey
send fromAccount toAccount amount privateKey
setRepresentative account representative privateKey

INTRODUCTION
Nano is a low-latency payment platform that requires minimal resources, relying on a peer-to-peer network
to distribute "blocks", which are cryptographically signed transactions. This package provides bindings for
interacting with the Nano network from Tcl.

Nano uses Ed25519 with Blake2b as the cryptographic hashing primitive for digital signatures, rather than
the common construction of Ed25519 with the SHA2-512 cryptographic hashing function.

Nano implements a "blockchain", which is a cryptographic linked-list, by identifying every "block" by its
crytographic hash and providing a pointer from every block to its predecessor in the "chain" as part of the
hashed data.

This predecessors is referred to here as the "previous" block. In Nano, each account has its own blockchain
and they reference each other using a data structure referred to as "block lattice", where the individual
chains contain blocks that reference blocks in other chains to tie them together. The field within blocks that
reference other blocks on a different blockchain is referred to as either the "link" field or "source block
hash".

Each Nano block also encapsulates the full state of the account, containing, at a minimum, a tuple of
(account, balance, representative, previous).

Since Nano blocks are signed by independent actors, who may, for their own gain, generate multiple valid
blocks referring to the same predecessor (previous) block, an arbitration mechanism is employed by the
Nano network to decide which blocks are valid within a given chain. This arbitration mechanism operates
on the principles of consensus. Each account holder has a stake in the network operating nominally, other-
wise the balance represented by an account is not useful for a transfer of value. In Nano the stake an
account has in the network is equal to the account’s balance. The larger the stake an account has the more
incentivized the account-holder is to ensure the network is operating nominally and not accepting multiple
blocks that reference the same predecessor.

Nano utilizes a mechanism called voting to determine which blocks are valid and which blocks are not
valid. Each stakeholder votes their stake upon seeing a new subordinate block (i.e., a block with a unique
previous value). Since voting is an active and on-going process that occurs on the Nano peer-to-peer net-
work, participants must be online to vote their stake. As this is often inconvienent or impossible, stakehold-
ers may select another stakeholder to vote their share of the network. This delegate is referred to as a repre-
sentative.

Representatives should be chosen carefully by stakeholders since malicious representatives may attempt to
gather voting power and destablize the Nano network by altering decisions made by consensus previously.

Nano accounts are referred to by address. A Nano address starts with the prefix "nano_" or "xrb_". A
Nano address is actually the public portion of a private/public keypair, plus the prefix, and a checksum to
ensure that no digits are mistyped by users when communicating them. Nano public keys are 256-bit keys
in the Ed25519 algorithm.

A user may have many accounts. To simplify the process of maintaining the private/public keypairs for all
the accounts, Nano supports the concept of a wallet. A wallet is a conceptual entity that is used to refer to
a seed, which is a random 256-bit number that can be used to derive mulitple private/public keypairs from.

nano 1.0 09-Jul-2018 2

NANO(N) NANO(N)

Balances in Nano are stored in a 128-bit integer value. There are various units for representing the balance,
the smallest and base unit is called "raw". The most common unit for users to use is called "Nano", one of
which is equal to 1e30 raw.

PROCEDURES
Addr esses

::nano::addr ess::toPublicKey
address ?-hex|-binary? ?-verify|-no-verify? -> publicKey

Converts a Nano address to a public key. The -hex option indicates that the public key should be
returned in hexidecimal form. The option indicates that the public key should be returned in
binary form. The -verify option verifies the checksum embedded in the Nano address before
returning. The -no-verify option inhibits verifying the checksum embedded in the Nano address.

::nano::addr ess::fromPublicKey
pubKey ?-xrb|-nano? -> address

Converts a public key to a Nano address. The option specifies that the returned address should be
prefixed with the old-style "xrb_" prefix, where the -nano option specifies that the returned
address should be prefixed with the new-style "nano_" prefix.

::nano::addr ess::fromPrivateKey
privateKey ?-xrb|-nano? -> address

Converts a private key to a Nano address. It accepts the same arguments as fromPublicKey.

Key Management
::nano::k ey::newSeed

?-hex|-binary? -> seed

Generates a new seed. A seed is a 256-bit bitfield which, along with a 32-bit index, is used to
derive enumerated keys from a single point of entropy. See the fromSeed procedure. The -hex
and -binary options determine the formatting of the result.

::nano::k ey::newKey
?-hex|-binary? -> privateKey

Generates a new private key. A private key can be used to sign transactions, which can then be
verified with its cooresponding public key (see publicKeyFromPrivateKey). This procedure is
normally not used, but rather private keys are derived from a seed and index pair using the from-
Seed procedure. The -hex and -binary options determine the formatting of the result.

::nano::k ey::fr omSeed
seed ?index? ?-hex|-binary? -> privateKey

Derive a private key from the seed specified as seed and the index indicated. This procedure is
deterministic (i.e., the same seed and index will always give you the same private key). This pro-
cedure is used to derive many keypairs from a single user-managed piece of data, so the user does
not have to manage multiple private keys. If the index is not specified it defaults to 0. The -hex
and -binary options determine the formatting of the result.

nano 1.0 09-Jul-2018 3

NANO(N) NANO(N)

::nano::k ey::publicK eyFromPrivateKey
privateKey ?-hex|-binary? -> publicKey

Converts a private key into its corresponding public key. Normally Ed25519 private keys are a
concatencation of the private and public keys, however in this package they are each treated sepa-
rately. The -hex and -binary options determine the formatting of the result.

Low-level Block
::nano::block::r epresentation::toBlock

blockRepresentation -> blockData

Converts from one of the internal representations (either Tcl dictionary or JSON) to a Nano block.
The representation portion of the command name may be one of dict or json.

::nano::block::json::fr omDict
blockDict -> blockJSON

Converts from a Tcl dictionary representation to a JSON representation of a block.

::nano::block::dict::fr omJSON
blockJSON -> blockDict

Converts from a JSON object representation to a Tcl dictionary representation of a block.

::nano::block::r epresentation::fromBlock
blockData ?-xrb|-nano? ? -type=blockType ? ? -signKey=privateKey ? -> blockRepresenta-
tion

Parses a Nano block and returns either a Tcl dictionary or a JSON object. The -xrb option causes
all parsed addresses to be prefixed with the old-style "xrb_" address prefix, while the -nano option
causes them to be prefixed with the new-style "nano_prefix". The representation portion of the
command name may be one of dict or json.

::nano::block::r epresentation::sign
blockRepresentation privateKey ?-update|-signature ?-hex|binary?? -> signature|blockJSON

Sign a block, in either Tcl dictionary or JSON representation, with the specified privateKey. If the
-update option is used, return the object with the updated attribute. If the -signature option is
used, return just the signature. The -hex and -binary options determine the formatting of the
result. The representation portion of the command name may be one of dict or json.

::nano::block::r epresentation::verifySignature
blockRepresentation -> boolean

Verify the signature on a block, in either Tcl dictionary or JSON representation, matches the pub-
lic key specified in the account attribute of that object. This may not work correctly for old-style
blocks unless you manually add the account attribute. The representation portion of the com-
mand name may be one of dict or json.

::nano::block::r epresentation::work
blockRepresentation ?-update|-work ?-hex|binary?? -> work|blockRepresentation

nano 1.0 09-Jul-2018 4

NANO(N) NANO(N)

Generate proof-of-work (PoW) required to submit a given block to the network. Nano uses PoW
to increase the cost of submitting blocks to the network to cut down on spam. The work that is
computed is based on the hash of the previous block on this chain, or if there is no previous block
on this chain (i.e., because it is the first block on an account) the public key of the account. If the
-update option is used, return the object with the updated attribute. If the -work option is used,
just return the work. The -hex and -binary options determine the formatting of the result. The
representation portion of the command name may be one of dict or json.

::nano::block::r epresentation::validateWork
blockRepresentation -> boolean

Validate the proof-of-work (PoW) in the object specified as blockRepresentation with the attribute
work is valid for the block passed in. The representation portion of the command name may be
one of dict or json.

::nano::block::hash
blockData ?-hex|-binary? -> blockHash

Compute the cryptographic hash of a block. The cryptographic hashing algorithm used for Nano
is Blake2b. Blocks are typically identified by their hash (i.e., content addressable). The -hex and
-binary options determine the formatting of the result.

::nano::block::signBlockHash
blockHash privateKey ?-hex|-binary? -> signature

Compute an Ed25519-with-Blake2b signature of a given block hash specified as blockHash with
the private key specified as privateKey. In Nano, signed blocks are signed by signing the block’s
hash thus all that is needed to sign a block is its hash and the private key that corresponds to the
account. NOTE: Ensure that the privateKey specified matches the account the block belongs
to. The -hex and -binary options determine the formatting of the result.

::nano::block::sign
blockData privateKey ?-hex|-binary? -> signature

This is a convienence procedure which computes the hash of a block given as blockData, and then
calls signBlockHash. The -hex and -binary options determine the formatting of the result.

::nano::block::v erifyBlockHash
blockHash signature publicKey -> boolean

Verify that a block hash (blockHash) was signed (signature) by an account holding the private key
that corresponds to the public key specified as publicKey.

::nano::block::v erify
blockData signature publicKey -> boolean

This is a convienence procedure which computes the hash of a block given as blockData, and then
calls verifyBlockHash.

::nano::block::cr eate::send
fr om address to address previous blockHash representative address previousBalance integer
amount integer ? -json boolean ? -> blockJSON |blockDict

nano 1.0 09-Jul-2018 5

NANO(N) NANO(N)

This is a low-level interface for creating blocks which correspond to sending Nano from one
account to another. It constructs a block which sends the amount specified from the from address
to the destination (to). The previous block’s hash must be specified as the blockHash following
previous. Additionally the balance of the account at the previous block must be supplied as the
integer argument to previousBalance. All balance amounts are in units of raw. If the optional
-json argument is used and specified as true the result is a JSON representation, otherwise a Tcl
dict representation is used.

::nano::block::cr eate::receive
to address sourceBlock blockHash previous blockHash representative address previousBalance
integer amount integer ? -json boolean ? -> blockJSON |blockDict

This is a low-level interface for creating blocks which correspond to receiving (pocketing) Nano
previously sent from another account to the account specified as the address supplied to the to
argument. It constructs a block which receives the amount of Nano specified as the amount argu-
ment. The block hash (blockHash) of the send block which was used to send the Nano to this
account must be specified as the argument to the sourceBlock option. The previous block’s hash
must be specified as the blockHash following previous. Additionally the balance of the account at
the previous block must be supplied as the integer argument to previousBalance. All balance
amounts are in units of raw. If the optional -json argument is used and specified as true the result
is a JSON representation, otherwise a Tcl dict representation is used.

::nano::block::cr eate::setRepresentative
account address previous blockHash representative address ? -json boolean ? -> blockJ-
SON |blockDict

This is a low-level interface for creating blocks which correspond to an explicit change of repre-
sentative. Representatives in Nano are used as part of the Delegated Proof-of-Stake (dPoS) con-
sensus mechanism which is used by the Nano network to determine which block (if any) out of
many possible subordinate blocks in a chain are valid. So that every account holder does not have
to be online to vote for valid transactions, an account may delegate another account to vote its
stake on its behalf. That delegate is called a representative. An account may change its represen-
tative at any time by issuing a block with a new representative, such as a send or receive block, or
by issuing an explicit change of representative block. This procedure creates an explicit change of
representative block for the account specified. It changes to the delegate to the representative
specified. Further, the blockHash of the previous block must be specified as the argument to pre-
vious. If the optional -json argument is used and specified as true the result is a JSON representa-
tion, otherwise a Tcl dict representation is used.

Work Generation
::nano::work::fr omWorkData

blockHashOrPublicKey -> work

Create proof-of-work (PoW) from a block hash or public key. Which one is used depends on
whether or not there are any other blocks in this account’s chain. If this is the first block in this
account’s chain then the public key of the account is used, otherwise the hash of the blocks prede-
cessor (previous) is used. The specific value needed should be accessible from the _workData
member of a JSON object or Tcl dictionary. Note that this attribute (and all attributes that begin
with an underscore) should be discarded when sending the block outside of the Tcl process.

::nano::work::fr omBlock
blockData -> work

nano 1.0 09-Jul-2018 6

NANO(N) NANO(N)

This is a convienence procedure which computes work data (either a block hash or a public key)
for a given block and then calls fromWorkData.

::nano::work::v alidate
workData work -> boolean

This procedure validates that the supplied work is valid for the supplied workData, which is either
a block hash or an account public key. For more information see the description of fromWork-
Data.

High-level Account
:nano::account::setFrontier

account frontierHash balance representative

This procedure is used as part of the High-level Account interface. It sets the frontier, which is the
block hash (frontierHash) and data (balance, representative) associated with that block that corre-
sponds to the head of an account’s chain.

:nano::account::getFrontier
account -> frontierInfo

This procedure is used as part of the High-level Account interface. It gets the Tcl dictionary asso-
ciated with the frontier most recently set for the specified account.

:nano::account::getFrontier
account ?frontierHash|balance|representative? -> frontierHash|balance|representative

This procedure is used as part of the High-level Account interface. It gets a specific item from Tcl
dictionary associated with the frontier most recently set for the specified account.

:nano::account::addPending
account blockHash amount

This procedure is used as part of the High-level Account interface. It is used to indicate than a
given account has a receive block that they could create. The block hash of the corresponding
send block should be supplied as the blockHash parameter. The amount of Nano that was sent in
the send block should be specified as the amount parameter (in units of raw).

:nano::account::getPending
account ?blockHash? -> dict

This procedure is used as part of the High-level Account interface. It is used to retrieve informa-
tion stored by addPending for a given account. If the blockHash parameter is supplied then a Tcl
dictionary is returned with a key called amount which contains the amount stored previously. If
the blockHash parameter is not supplied then a Tcl dictionary is returned with keys corresponding
to each block hash pending for the specified account, and containing a subordinate Tcl dictionary
with a key called amount as previously described.

::nano::account::clearPending
account ?blockHash?

nano 1.0 09-Jul-2018 7

NANO(N) NANO(N)

This procedure is used as part of the High-level Account interface. It is used to clear (that is,
remove from the conceptual state of "pending") entries created previously with addPending for a
given account. If the blockHash parameter is supplied then only the entry corresponding to that
blockhash is cleared, otherwise all entries for the specified account are cleared.

:nano::account::receive
account blockHash privateKey -> blockJSON |blockDict

This procedure is used as part of the High-level Account interface. It is used to generate a receive
block. Its interface is subject to change and not considered stable.

:nano::account::receiveAllPending
account privateKey -> listOfBlockJSON |listOfBlockDict

This procedure is used as part of the High-level Account interface. It is used to generate receive
blocks for every pending receive on a given account. Its interface is subject to change and not
considered stable.

:nano::account::send
fromAccount toAccount amount privateKey -> blockJSON |blockDict

This procedure is used as part of the High-level Account interface. It is used to generate a send
block. Its interface is subject to change and not considered stable.

::nano::account::setRepresentative
account representative privateKey -> blockJSON |blockDict

This procedure is used as part of the High-level Account interface. It is used to generate a block
that changes the representative for the given account. Its interface is subject to change and not
considered stable.

EXAMPLES
Example 1

package require nano 1.0

set seed [::nano::key::newSeed -hex]
puts "Generated seed: $seed"

for {set index 0} {$index < 10} {incr index} {
set accountPrivateKey [::nano::key::fromSeed $seed $index -hex]
set accountAddress [::nano::address::fromPrivateKey $accountPrivateKey]
puts " - $index: $accountAddress"

}

Example 2
Example 3

AUTHOR
Roy Keene <rkeene@nano.org>

nano 1.0 09-Jul-2018 8

