#include "monocypher.h" ///////////////// /// Utilities /// ///////////////// // By default, EdDSA signatures use blake2b. SHA-512 is provided as an // option for full ed25519 compatibility. To use with SHA-512, compile // with option -DED25519_SHA512 and provide the "sha512" header. #ifdef ED25519_SHA512 #define HASH crypto_sha512 #else #define HASH crypto_blake2b #endif #define COMBINE1(x, y) x ## y #define COMBINE2(x, y) COMBINE1(x, y) #define HASH_CTX COMBINE2(HASH, _ctx) #define HASH_INIT COMBINE2(HASH, _init) #define HASH_UPDATE COMBINE2(HASH, _update) #define HASH_FINAL COMBINE2(HASH, _final) #define FOR(i, start, end) for (size_t (i) = (start); (i) < (end); (i)++) #define WIPE_CTX(ctx) crypto_wipe(ctx , sizeof(*(ctx))) #define WIPE_BUFFER(buffer) crypto_wipe(buffer, sizeof(buffer)) #define MIN(a, b) ((a) <= (b) ? (a) : (b)) #define ALIGN(x, block_size) ((~(x) + 1) & ((block_size) - 1)) typedef int8_t i8; typedef uint8_t u8; typedef uint32_t u32; typedef int32_t i32; typedef int64_t i64; typedef uint64_t u64; static const u8 zero[128] = {0}; static u32 load24_le(const u8 s[3]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16); } static u32 load32_le(const u8 s[4]) { return (u32)s[0] | ((u32)s[1] << 8) | ((u32)s[2] << 16) | ((u32)s[3] << 24); } static u64 load64_le(const u8 s[8]) { return load32_le(s) | ((u64)load32_le(s+4) << 32); } static void store32_le(u8 out[4], u32 in) { out[0] = in & 0xff; out[1] = (in >> 8) & 0xff; out[2] = (in >> 16) & 0xff; out[3] = (in >> 24) & 0xff; } static void store64_le(u8 out[8], u64 in) { store32_le(out , (u32)in ); store32_le(out + 4, in >> 32); } static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); } static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); } static int neq0(u64 diff) { // constant time comparison to zero // return diff != 0 ? -1 : 0 u64 half = (diff >> 32) | ((u32)diff); return (1 & ((half - 1) >> 32)) - 1; } static u64 x16(const u8 a[16], const u8 b[16]) { return (load64_le(a + 0) ^ load64_le(b + 0)) | (load64_le(a + 8) ^ load64_le(b + 8)); } static u64 x32(const u8 a[16],const u8 b[16]){return x16(a,b)| x16(a+16, b+16);} static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);} int crypto_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); } int crypto_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); } int crypto_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); } static int zerocmp32(const u8 p[32]) { return crypto_verify32(p, zero); } void crypto_wipe(void *secret, size_t size) { volatile u8 *v_secret = (u8*)secret; FOR (i, 0, size) { v_secret[i] = 0; } } ///////////////// /// Chacha 20 /// ///////////////// #define QUARTERROUND(a, b, c, d) \ a += b; d = rotl32(d ^ a, 16); \ c += d; b = rotl32(b ^ c, 12); \ a += b; d = rotl32(d ^ a, 8); \ c += d; b = rotl32(b ^ c, 7) static void chacha20_rounds(u32 out[16], const u32 in[16]) { // The temporary variables make Chacha20 10% faster. u32 t0 = in[ 0]; u32 t1 = in[ 1]; u32 t2 = in[ 2]; u32 t3 = in[ 3]; u32 t4 = in[ 4]; u32 t5 = in[ 5]; u32 t6 = in[ 6]; u32 t7 = in[ 7]; u32 t8 = in[ 8]; u32 t9 = in[ 9]; u32 t10 = in[10]; u32 t11 = in[11]; u32 t12 = in[12]; u32 t13 = in[13]; u32 t14 = in[14]; u32 t15 = in[15]; FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop. QUARTERROUND(t0, t4, t8 , t12); // column 0 QUARTERROUND(t1, t5, t9 , t13); // column 1 QUARTERROUND(t2, t6, t10, t14); // column 2 QUARTERROUND(t3, t7, t11, t15); // column 3 QUARTERROUND(t0, t5, t10, t15); // diagonal 0 QUARTERROUND(t1, t6, t11, t12); // diagonal 1 QUARTERROUND(t2, t7, t8 , t13); // diagonal 2 QUARTERROUND(t3, t4, t9 , t14); // diagonal 3 } out[ 0] = t0; out[ 1] = t1; out[ 2] = t2; out[ 3] = t3; out[ 4] = t4; out[ 5] = t5; out[ 6] = t6; out[ 7] = t7; out[ 8] = t8; out[ 9] = t9; out[10] = t10; out[11] = t11; out[12] = t12; out[13] = t13; out[14] = t14; out[15] = t15; } static void chacha20_init_key(crypto_chacha_ctx *ctx, const u8 key[32]) { // constant ctx->input[0] = load32_le((u8*)"expa"); ctx->input[1] = load32_le((u8*)"nd 3"); ctx->input[2] = load32_le((u8*)"2-by"); ctx->input[3] = load32_le((u8*)"te k"); // key FOR (i, 0, 8) { ctx->input[i+4] = load32_le(key + i*4); } } static u8 chacha20_pool_byte(crypto_chacha_ctx *ctx) { u32 pool_word = ctx->pool[ctx->pool_idx >> 2]; u8 pool_byte = pool_word >> (8*(ctx->pool_idx & 3)); ctx->pool_idx++; return pool_byte; } // Fill the pool if needed, update the counters static void chacha20_refill_pool(crypto_chacha_ctx *ctx) { chacha20_rounds(ctx->pool, ctx->input); FOR (j, 0, 16) { ctx->pool[j] += ctx->input[j]; } ctx->pool_idx = 0; ctx->input[12]++; if (ctx->input[12] == 0) { ctx->input[13]++; } } void crypto_chacha20_H(u8 out[32], const u8 key[32], const u8 in[16]) { crypto_chacha_ctx ctx; chacha20_init_key(&ctx, key); FOR (i, 0, 4) { ctx.input[i+12] = load32_le(in + i*4); } u32 buffer[16]; chacha20_rounds(buffer, ctx.input); // prevents reversal of the rounds by revealing only half of the buffer. FOR (i, 0, 4) { store32_le(out + i*4, buffer[i ]); // constant store32_le(out + 16 + i*4, buffer[i + 12]); // counter and nonce } WIPE_CTX(&ctx); WIPE_BUFFER(buffer); } static void chacha20_encrypt(crypto_chacha_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { FOR (i, 0, text_size) { if (ctx->pool_idx == 64) { chacha20_refill_pool(ctx); } u8 plain = 0; if (plain_text != 0) { plain = *plain_text; plain_text++; } *cipher_text = chacha20_pool_byte(ctx) ^ plain; cipher_text++; } } void crypto_chacha20_init(crypto_chacha_ctx *ctx, const u8 key[32], const u8 nonce[8]) { chacha20_init_key (ctx, key); // key crypto_chacha20_set_ctr(ctx, 0 ); // counter ctx->input[14] = load32_le(nonce + 0); // nonce ctx->input[15] = load32_le(nonce + 4); // nonce } void crypto_chacha20_x_init(crypto_chacha_ctx *ctx, const u8 key[32], const u8 nonce[24]) { u8 derived_key[32]; crypto_chacha20_H(derived_key, key, nonce); crypto_chacha20_init(ctx, derived_key, nonce + 16); WIPE_BUFFER(derived_key); } void crypto_chacha20_set_ctr(crypto_chacha_ctx *ctx, u64 ctr) { ctx->input[12] = ctr & 0xffffffff; ctx->input[13] = ctr >> 32; ctx->pool_idx = 64; // The random pool (re)starts empty } void crypto_chacha20_encrypt(crypto_chacha_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->pool_idx, 64), text_size); chacha20_encrypt(ctx, cipher_text, plain_text, align); if (plain_text != 0) { plain_text += align; } cipher_text += align; text_size -= align; // Process the message block by block FOR (i, 0, text_size >> 6) { // number of blocks chacha20_refill_pool(ctx); if (plain_text != 0) { FOR (j, 0, 16) { u32 plain = load32_le(plain_text); store32_le(cipher_text, ctx->pool[j] ^ plain); plain_text += 4; cipher_text += 4; } } else { FOR (j, 0, 16) { store32_le(cipher_text, ctx->pool[j]); cipher_text += 4; } } ctx->pool_idx = 64; } text_size &= 63; // remaining bytes chacha20_encrypt(ctx, cipher_text, plain_text, text_size); } void crypto_chacha20_stream(crypto_chacha_ctx *ctx, uint8_t *stream, size_t size) { crypto_chacha20_encrypt(ctx, stream, 0, size); } ///////////////// /// Poly 1305 /// ///////////////// // h = (h + c) * r // preconditions: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff // ctx->c <= 1_ffffffff_ffffffff_ffffffff_ffffffff // ctx->r <= 0ffffffc_0ffffffc_0ffffffc_0fffffff // Postcondition: // ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff static void poly_block(crypto_poly1305_ctx *ctx) { // s = h + c, without carry propagation const u64 s0 = ctx->h[0] + (u64)ctx->c[0]; // s0 <= 1_fffffffe const u64 s1 = ctx->h[1] + (u64)ctx->c[1]; // s1 <= 1_fffffffe const u64 s2 = ctx->h[2] + (u64)ctx->c[2]; // s2 <= 1_fffffffe const u64 s3 = ctx->h[3] + (u64)ctx->c[3]; // s3 <= 1_fffffffe const u32 s4 = ctx->h[4] + ctx->c[4]; // s4 <= 5 // Local all the things! const u32 r0 = ctx->r[0]; // r0 <= 0fffffff const u32 r1 = ctx->r[1]; // r1 <= 0ffffffc const u32 r2 = ctx->r[2]; // r2 <= 0ffffffc const u32 r3 = ctx->r[3]; // r3 <= 0ffffffc const u32 rr0 = (r0 >> 2) * 5; // rr0 <= 13fffffb // lose 2 bits... const u32 rr1 = (r1 >> 2) + r1; // rr1 <= 13fffffb // rr1 == (r1 >> 2) * 5 const u32 rr2 = (r2 >> 2) + r2; // rr2 <= 13fffffb // rr1 == (r2 >> 2) * 5 const u32 rr3 = (r3 >> 2) + r3; // rr3 <= 13fffffb // rr1 == (r3 >> 2) * 5 // (h + c) * r, without carry propagation const u64 x0 = s0*r0 + s1*rr3 + s2*rr2 + s3*rr1 +s4*rr0;//<=97ffffe007fffff8 const u64 x1 = s0*r1 + s1*r0 + s2*rr3 + s3*rr2 +s4*rr1;//<=8fffffe20ffffff6 const u64 x2 = s0*r2 + s1*r1 + s2*r0 + s3*rr3 +s4*rr2;//<=87ffffe417fffff4 const u64 x3 = s0*r3 + s1*r2 + s2*r1 + s3*r0 +s4*rr3;//<=7fffffe61ffffff2 const u32 x4 = s4 * (r0 & 3); // ...recover 2 bits //<= f // partial reduction modulo 2^130 - 5 const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5 const u64 u0 = (u5 >> 2) * 5 + (x0 & 0xffffffff); const u64 u1 = (u0 >> 32) + (x1 & 0xffffffff) + (x0 >> 32); const u64 u2 = (u1 >> 32) + (x2 & 0xffffffff) + (x1 >> 32); const u64 u3 = (u2 >> 32) + (x3 & 0xffffffff) + (x2 >> 32); const u64 u4 = (u3 >> 32) + (u5 & 3); // Update the hash ctx->h[0] = u0 & 0xffffffff; // u0 <= 1_9ffffff0 ctx->h[1] = u1 & 0xffffffff; // u1 <= 1_97ffffe0 ctx->h[2] = u2 & 0xffffffff; // u2 <= 1_8fffffe2 ctx->h[3] = u3 & 0xffffffff; // u3 <= 1_87ffffe4 ctx->h[4] = (u32)u4; // u4 <= 4 } // (re-)initializes the input counter and input buffer static void poly_clear_c(crypto_poly1305_ctx *ctx) { ctx->c[0] = 0; ctx->c[1] = 0; ctx->c[2] = 0; ctx->c[3] = 0; ctx->c_idx = 0; } static void poly_take_input(crypto_poly1305_ctx *ctx, u8 input) { size_t word = ctx->c_idx >> 2; size_t byte = ctx->c_idx & 3; ctx->c[word] |= (u32)input << (byte * 8); ctx->c_idx++; } static void poly_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { poly_take_input(ctx, message[i]); if (ctx->c_idx == 16) { poly_block(ctx); poly_clear_c(ctx); } } } void crypto_poly1305_init(crypto_poly1305_ctx *ctx, const u8 key[32]) { // Initial hash is zero FOR (i, 0, 5) { ctx->h[i] = 0; } // add 2^130 to every input block ctx->c[4] = 1; poly_clear_c(ctx); // load r and pad (r has some of its bits cleared) FOR (i, 0, 1) { ctx->r [0] = load32_le(key ) & 0x0fffffff; } FOR (i, 1, 4) { ctx->r [i] = load32_le(key + i*4 ) & 0x0ffffffc; } FOR (i, 0, 4) { ctx->pad[i] = load32_le(key + i*4 + 16); } } void crypto_poly1305_update(crypto_poly1305_ctx *ctx, const u8 *message, size_t message_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->c_idx, 16), message_size); poly_update(ctx, message, align); message += align; message_size -= align; // Process the message block by block size_t nb_blocks = message_size >> 4; FOR (i, 0, nb_blocks) { ctx->c[0] = load32_le(message + 0); ctx->c[1] = load32_le(message + 4); ctx->c[2] = load32_le(message + 8); ctx->c[3] = load32_le(message + 12); poly_block(ctx); message += 16; } if (nb_blocks > 0) { poly_clear_c(ctx); } message_size &= 15; // remaining bytes poly_update(ctx, message, message_size); } void crypto_poly1305_final(crypto_poly1305_ctx *ctx, u8 mac[16]) { // Process the last block (if any) if (ctx->c_idx != 0) { // move the final 1 according to remaining input length // (We may add less than 2^130 to the last input block) ctx->c[4] = 0; poly_take_input(ctx, 1); // one last hash update poly_block(ctx); } // check if we should subtract 2^130-5 by performing the // corresponding carry propagation. const u64 u0 = (u64)5 + ctx->h[0]; // <= 1_00000004 const u64 u1 = (u0 >> 32) + ctx->h[1]; // <= 1_00000000 const u64 u2 = (u1 >> 32) + ctx->h[2]; // <= 1_00000000 const u64 u3 = (u2 >> 32) + ctx->h[3]; // <= 1_00000000 const u64 u4 = (u3 >> 32) + ctx->h[4]; // <= 5 // u4 indicates how many times we should subtract 2^130-5 (0 or 1) // h + pad, minus 2^130-5 if u4 exceeds 3 const u64 uu0 = (u4 >> 2) * 5 + ctx->h[0] + ctx->pad[0]; // <= 2_00000003 const u64 uu1 = (uu0 >> 32) + ctx->h[1] + ctx->pad[1]; // <= 2_00000000 const u64 uu2 = (uu1 >> 32) + ctx->h[2] + ctx->pad[2]; // <= 2_00000000 const u64 uu3 = (uu2 >> 32) + ctx->h[3] + ctx->pad[3]; // <= 2_00000000 store32_le(mac , (u32)uu0); store32_le(mac + 4, (u32)uu1); store32_le(mac + 8, (u32)uu2); store32_le(mac + 12, (u32)uu3); WIPE_CTX(ctx); } void crypto_poly1305(u8 mac[16], const u8 *message, size_t message_size, const u8 key[32]) { crypto_poly1305_ctx ctx; crypto_poly1305_init (&ctx, key); crypto_poly1305_update(&ctx, message, message_size); crypto_poly1305_final (&ctx, mac); } //////////////// /// Blake2 b /// //////////////// static const u64 iv[8] = { 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, }; // increment the input offset static void blake2b_incr(crypto_blake2b_ctx *ctx) { u64 *x = ctx->input_offset; size_t y = ctx->input_idx; x[0] += y; if (x[0] < y) { x[1]++; } } static void blake2b_compress(crypto_blake2b_ctx *ctx, int is_last_block) { static const u8 sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, }; // init work vector u64 v0 = ctx->hash[0]; u64 v8 = iv[0]; u64 v1 = ctx->hash[1]; u64 v9 = iv[1]; u64 v2 = ctx->hash[2]; u64 v10 = iv[2]; u64 v3 = ctx->hash[3]; u64 v11 = iv[3]; u64 v4 = ctx->hash[4]; u64 v12 = iv[4] ^ ctx->input_offset[0]; u64 v5 = ctx->hash[5]; u64 v13 = iv[5] ^ ctx->input_offset[1]; u64 v6 = ctx->hash[6]; u64 v14 = iv[6] ^ is_last_block; u64 v7 = ctx->hash[7]; u64 v15 = iv[7]; // mangle work vector uint64_t *input = ctx->input; #define BLAKE2_G(v, a, b, c, d, x, y) \ v##a += v##b + x; v##d = rotr64(v##d ^ v##a, 32); \ v##c += v##d; v##b = rotr64(v##b ^ v##c, 24); \ v##a += v##b + y; v##d = rotr64(v##d ^ v##a, 16); \ v##c += v##d; v##b = rotr64(v##b ^ v##c, 63); #define BLAKE2_ROUND(i) \ BLAKE2_G(v, 0, 4, 8, 12, input[sigma[i][ 0]], input[sigma[i][ 1]]);\ BLAKE2_G(v, 1, 5, 9, 13, input[sigma[i][ 2]], input[sigma[i][ 3]]);\ BLAKE2_G(v, 2, 6, 10, 14, input[sigma[i][ 4]], input[sigma[i][ 5]]);\ BLAKE2_G(v, 3, 7, 11, 15, input[sigma[i][ 6]], input[sigma[i][ 7]]);\ BLAKE2_G(v, 0, 5, 10, 15, input[sigma[i][ 8]], input[sigma[i][ 9]]);\ BLAKE2_G(v, 1, 6, 11, 12, input[sigma[i][10]], input[sigma[i][11]]);\ BLAKE2_G(v, 2, 7, 8, 13, input[sigma[i][12]], input[sigma[i][13]]);\ BLAKE2_G(v, 3, 4, 9, 14, input[sigma[i][14]], input[sigma[i][15]]) BLAKE2_ROUND(0); BLAKE2_ROUND(1); BLAKE2_ROUND(2); BLAKE2_ROUND(3); BLAKE2_ROUND(4); BLAKE2_ROUND(5); BLAKE2_ROUND(6); BLAKE2_ROUND(7); BLAKE2_ROUND(8); BLAKE2_ROUND(9); BLAKE2_ROUND(0); BLAKE2_ROUND(1); // update hash ctx->hash[0] ^= v0 ^ v8; ctx->hash[1] ^= v1 ^ v9; ctx->hash[2] ^= v2 ^ v10; ctx->hash[3] ^= v3 ^ v11; ctx->hash[4] ^= v4 ^ v12; ctx->hash[5] ^= v5 ^ v13; ctx->hash[6] ^= v6 ^ v14; ctx->hash[7] ^= v7 ^ v15; } static void blake2b_set_input(crypto_blake2b_ctx *ctx, u8 input, size_t index) { if (index == 0) { FOR (i, 0, 16) { ctx->input[i] = 0; } } size_t word = index >> 3; size_t byte = index & 7; ctx->input[word] |= (u64)input << (byte << 3); } static void blake2b_end_block(crypto_blake2b_ctx *ctx) { if (ctx->input_idx == 128) { // If buffer is full, blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, 0); // and compress the (not last) block ctx->input_idx = 0; } } static void blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { FOR (i, 0, message_size) { blake2b_end_block(ctx); blake2b_set_input(ctx, message[i], ctx->input_idx); ctx->input_idx++; } } void crypto_blake2b_general_init(crypto_blake2b_ctx *ctx, size_t hash_size, const u8 *key, size_t key_size) { // initial hash FOR (i, 0, 8) { ctx->hash[i] = iv[i]; } ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size; ctx->input_offset[0] = 0; // begining of the input, no offset ctx->input_offset[1] = 0; // begining of the input, no offset ctx->hash_size = hash_size; // remember the hash size we want ctx->input_idx = 0; // if there is a key, the first block is that key (padded with zeroes) if (key_size > 0) { crypto_blake2b_update(ctx, key , key_size); crypto_blake2b_update(ctx, zero, 128 - key_size); } } void crypto_blake2b_init(crypto_blake2b_ctx *ctx) { crypto_blake2b_general_init(ctx, 64, 0, 0); } void crypto_blake2b_update(crypto_blake2b_ctx *ctx, const u8 *message, size_t message_size) { // Align ourselves with block boundaries size_t align = MIN(ALIGN(ctx->input_idx, 128), message_size); blake2b_update(ctx, message, align); message += align; message_size -= align; // Process the message block by block FOR (i, 0, message_size >> 7) { // number of blocks blake2b_end_block(ctx); FOR (j, 0, 16) { ctx->input[j] = load64_le(message + j*8); } message += 128; ctx->input_idx = 128; } message_size &= 127; // remaining bytes blake2b_update(ctx, message, message_size); } void crypto_blake2b_final(crypto_blake2b_ctx *ctx, u8 *hash) { // Pad the end of the block with zeroes FOR (i, ctx->input_idx, 128) { blake2b_set_input(ctx, 0, i); } blake2b_incr(ctx); // update the input offset blake2b_compress(ctx, -1); // compress the last block size_t nb_words = ctx->hash_size >> 3; FOR (i, 0, nb_words) { store64_le(hash + i*8, ctx->hash[i]); } FOR (i, nb_words * 8, ctx->hash_size) { hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff; } WIPE_CTX(ctx); } void crypto_blake2b_general(u8 *hash , size_t hash_size, const u8 *key , size_t key_size, const u8 *message, size_t message_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, hash_size, key, key_size); crypto_blake2b_update(&ctx, message, message_size); crypto_blake2b_final(&ctx, hash); } void crypto_blake2b(u8 hash[64], const u8 *message, size_t message_size) { crypto_blake2b_general(hash, 64, 0, 0, message, message_size); } //////////////// /// Argon2 i /// //////////////// // references to R, Z, Q etc. come from the spec // Argon2 operates on 1024 byte blocks. typedef struct { u64 a[128]; } block; static void wipe_block(block *b) { volatile u64* a = b->a; FOR (i, 0, 128) { a[i] = 0; } } // updates a blake2 hash with a 32 bit word, little endian. static void blake_update_32(crypto_blake2b_ctx *ctx, u32 input) { u8 buf[4]; store32_le(buf, input); crypto_blake2b_update(ctx, buf, 4); WIPE_BUFFER(buf); } static void load_block(block *b, const u8 bytes[1024]) { FOR (i, 0, 128) { b->a[i] = load64_le(bytes + i*8); } } static void store_block(u8 bytes[1024], const block *b) { FOR (i, 0, 128) { store64_le(bytes + i*8, b->a[i]); } } static void copy_block(block *o,const block*in){FOR(i,0,128)o->a[i] = in->a[i];} static void xor_block(block *o,const block*in){FOR(i,0,128)o->a[i]^= in->a[i];} // Hash with a virtually unlimited digest size. // Doesn't extract more entropy than the base hash function. // Mainly used for filling a whole kilobyte block with pseudo-random bytes. // (One could use a stream cipher with a seed hash as the key, but // this would introduce another dependency —and point of failure.) static void extended_hash(u8 *digest, u32 digest_size, const u8 *input , u32 input_size) { crypto_blake2b_ctx ctx; crypto_blake2b_general_init(&ctx, MIN(digest_size, 64), 0, 0); blake_update_32 (&ctx, digest_size); crypto_blake2b_update (&ctx, input, input_size); crypto_blake2b_final (&ctx, digest); if (digest_size > 64) { // the conversion to u64 avoids integer overflow on // ludicrously big hash sizes. u32 r = (((u64)digest_size + 31) >> 5) - 2; u32 i = 1; u32 in = 0; u32 out = 32; while (i < r) { // Input and output overlap. This is intentional crypto_blake2b(digest + out, digest + in, 64); i += 1; in += 32; out += 32; } crypto_blake2b_general(digest + out, digest_size - (32 * r), 0, 0, // no key digest + in , 64); } } #define LSB(x) ((x) & 0xffffffff) #define G(a, b, c, d) \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 32); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 24); \ a += b + 2 * LSB(a) * LSB(b); d ^= a; d = rotr64(d, 16); \ c += d + 2 * LSB(c) * LSB(d); b ^= c; b = rotr64(b, 63) #define ROUND(v0, v1, v2, v3, v4, v5, v6, v7, \ v8, v9, v10, v11, v12, v13, v14, v15) \ G(v0, v4, v8, v12); G(v1, v5, v9, v13); \ G(v2, v6, v10, v14); G(v3, v7, v11, v15); \ G(v0, v5, v10, v15); G(v1, v6, v11, v12); \ G(v2, v7, v8, v13); G(v3, v4, v9, v14) // Core of the compression function G. Computes Z from R in place. static void g_rounds(block *work_block) { // column rounds (work_block = Q) for (int i = 0; i < 128; i += 16) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 2], work_block->a[i + 3], work_block->a[i + 4], work_block->a[i + 5], work_block->a[i + 6], work_block->a[i + 7], work_block->a[i + 8], work_block->a[i + 9], work_block->a[i + 10], work_block->a[i + 11], work_block->a[i + 12], work_block->a[i + 13], work_block->a[i + 14], work_block->a[i + 15]); } // row rounds (work_block = Z) for (int i = 0; i < 16; i += 2) { ROUND(work_block->a[i ], work_block->a[i + 1], work_block->a[i + 16], work_block->a[i + 17], work_block->a[i + 32], work_block->a[i + 33], work_block->a[i + 48], work_block->a[i + 49], work_block->a[i + 64], work_block->a[i + 65], work_block->a[i + 80], work_block->a[i + 81], work_block->a[i + 96], work_block->a[i + 97], work_block->a[i + 112], work_block->a[i + 113]); } } // The compression function G (copy version for the first pass) static void g_copy(block *result, const block *x, const block *y, block* tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R copy_block(result, tmp); // result = R (only difference with g_xor) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ Z } // The compression function G (xor version for subsequent passes) static void g_xor(block *result, const block *x, const block *y, block *tmp) { copy_block(tmp , x ); // tmp = X xor_block (tmp , y ); // tmp = X ^ Y = R xor_block (result, tmp); // result = R ^ old (only difference with g_copy) g_rounds (tmp); // tmp = Z xor_block (result, tmp); // result = R ^ old ^ Z } // unary version of the compression function. // The missing argument is implied zero. // Does the transformation in place. static void unary_g(block *work_block) { // work_block == R block tmp; copy_block(&tmp, work_block); // tmp = R g_rounds(work_block); // work_block = Z xor_block(work_block, &tmp); // work_block = Z ^ R wipe_block(&tmp); } // Argon2i uses a kind of stream cipher to determine which reference // block it will take to synthesise the next block. This context hold // that stream's state. (It's very similar to Chacha20. The block b // is anologous to Chacha's own pool) typedef struct { block b; u32 pass_number; u32 slice_number; u32 nb_blocks; u32 nb_iterations; u32 ctr; u32 offset; } gidx_ctx; // The block in the context will determine array indices. To avoid // timing attacks, it only depends on public information. No looking // at a previous block to seed the next. This makes offline attacks // easier, but timing attacks are the bigger threat in many settings. static void gidx_refresh(gidx_ctx *ctx) { // seed the begining of the block... ctx->b.a[0] = ctx->pass_number; ctx->b.a[1] = 0; // lane number (we have only one) ctx->b.a[2] = ctx->slice_number; ctx->b.a[3] = ctx->nb_blocks; ctx->b.a[4] = ctx->nb_iterations; ctx->b.a[5] = 1; // type: Argon2i ctx->b.a[6] = ctx->ctr; FOR (i, 7, 128) { ctx->b.a[i] = 0; } // ...then zero the rest out // Shuffle the block thus: ctx->b = G((G(ctx->b, zero)), zero) // (G "square" function), to get cheap pseudo-random numbers. unary_g(&ctx->b); unary_g(&ctx->b); } static void gidx_init(gidx_ctx *ctx, u32 pass_number, u32 slice_number, u32 nb_blocks, u32 nb_iterations) { ctx->pass_number = pass_number; ctx->slice_number = slice_number; ctx->nb_blocks = nb_blocks; ctx->nb_iterations = nb_iterations; ctx->ctr = 0; // Offset from the begining of the segment. For the first slice // of the first pass, we start at the *third* block, so the offset // starts at 2, not 0. if (pass_number != 0 || slice_number != 0) { ctx->offset = 0; } else { ctx->offset = 2; ctx->ctr++; // Compensates for missed lazy creation gidx_refresh(ctx); // at the start of gidx_next() } } static u32 gidx_next(gidx_ctx *ctx) { // lazily creates the offset block we need if ((ctx->offset & 127) == 0) { ctx->ctr++; gidx_refresh(ctx); } u32 index = ctx->offset & 127; // save index for current call u32 offset = ctx->offset; // save offset for current call ctx->offset++; // update offset for next call // Computes the area size. // Pass 0 : all already finished segments plus already constructed // blocks in this segment // Pass 1+: 3 last segments plus already constructed // blocks in this segment. THE SPEC SUGGESTS OTHERWISE. // I CONFORM TO THE REFERENCE IMPLEMENTATION. int first_pass = ctx->pass_number == 0; u32 slice_size = ctx->nb_blocks >> 2; u32 nb_segments = first_pass ? ctx->slice_number : 3; u32 area_size = nb_segments * slice_size + offset - 1; // Computes the starting position of the reference area. // CONTRARY TO WHAT THE SPEC SUGGESTS, IT STARTS AT THE // NEXT SEGMENT, NOT THE NEXT BLOCK. u32 next_slice = ((ctx->slice_number + 1) & 3) * slice_size; u32 start_pos = first_pass ? 0 : next_slice; // Generate offset from J1 (no need for J2, there's only one lane) u64 j1 = ctx->b.a[index] & 0xffffffff; // pseudo-random number u64 x = (j1 * j1) >> 32; u64 y = (area_size * x) >> 32; u64 z = (area_size - 1) - y; return (start_pos + z) % ctx->nb_blocks; } // Main algorithm void crypto_argon2i_general(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size, const u8 *key, u32 key_size, const u8 *ad, u32 ad_size) { // work area seen as blocks (must be suitably aligned) block *blocks = (block*)work_area; { crypto_blake2b_ctx ctx; crypto_blake2b_init(&ctx); blake_update_32 (&ctx, 1 ); // p: number of threads blake_update_32 (&ctx, hash_size ); blake_update_32 (&ctx, nb_blocks ); blake_update_32 (&ctx, nb_iterations); blake_update_32 (&ctx, 0x13 ); // v: version number blake_update_32 (&ctx, 1 ); // y: Argon2i blake_update_32 (&ctx, password_size); crypto_blake2b_update(&ctx, password, password_size); blake_update_32 (&ctx, salt_size); crypto_blake2b_update(&ctx, salt, salt_size); blake_update_32 (&ctx, key_size); crypto_blake2b_update(&ctx, key, key_size); blake_update_32 (&ctx, ad_size); crypto_blake2b_update(&ctx, ad, ad_size); u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes crypto_blake2b_final(&ctx, initial_hash); // fill first 2 blocks block tmp_block; u8 hash_area[1024]; store32_le(initial_hash + 64, 0); // first additional word store32_le(initial_hash + 68, 0); // second additional word extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks, &tmp_block); store32_le(initial_hash + 64, 1); // slight modification extended_hash(hash_area, 1024, initial_hash, 72); load_block(&tmp_block, hash_area); copy_block(blocks + 1, &tmp_block); WIPE_BUFFER(initial_hash); WIPE_BUFFER(hash_area); wipe_block(&tmp_block); } // Actual number of blocks nb_blocks -= nb_blocks & 3; // round down to 4 p (p == 1 thread) const u32 segment_size = nb_blocks >> 2; // fill (then re-fill) the rest of the blocks block tmp; gidx_ctx ctx; FOR (pass_number, 0, nb_iterations) { int first_pass = pass_number == 0; FOR (segment, 0, 4) { gidx_init(&ctx, (u32)pass_number, (u32)segment, nb_blocks, nb_iterations); // On the first segment of the first pass, // blocks 0 and 1 are already filled. // We use the offset to skip them. u32 start_offset = first_pass && segment == 0 ? 2 : 0; u32 segment_start = (u32)segment * segment_size + start_offset; u32 segment_end = ((u32)segment + 1) * segment_size; FOR (current_block, segment_start, segment_end) { u32 reference_block = gidx_next(&ctx); u32 previous_block = current_block == 0 ? nb_blocks - 1 : (u32)current_block - 1; block *c = blocks + current_block; block *p = blocks + previous_block; block *r = blocks + reference_block; if (first_pass) { g_copy(c, p, r, &tmp); } else { g_xor (c, p, r, &tmp); } } } } wipe_block(&ctx.b); wipe_block(&tmp); // hash the very last block with H' into the output hash u8 final_block[1024]; store_block(final_block, blocks + (nb_blocks - 1)); extended_hash(hash, hash_size, final_block, 1024); WIPE_BUFFER(final_block); // wipe work area volatile u64 *p = (u64*)work_area; FOR (i, 0, 128 * nb_blocks) { p[i] = 0; } } void crypto_argon2i(u8 *hash, u32 hash_size, void *work_area, u32 nb_blocks, u32 nb_iterations, const u8 *password, u32 password_size, const u8 *salt, u32 salt_size) { crypto_argon2i_general(hash, hash_size, work_area, nb_blocks, nb_iterations, password, password_size, salt , salt_size, 0, 0, 0, 0); } //////////////////////////////////// /// Arithmetic modulo 2^255 - 19 /// //////////////////////////////////// // Taken from Supercop's ref10 implementation. // A bit bigger than TweetNaCl, over 4 times faster. // field element typedef i32 fe[10]; static void fe_0(fe h) { FOR(i, 0, 10) h[i] = 0; } static void fe_1(fe h) { h[0] = 1; FOR(i, 1, 10) h[i] = 0; } static void fe_copy(fe h,const fe f ){FOR(i,0,10) h[i] = f[i]; } static void fe_neg (fe h,const fe f ){FOR(i,0,10) h[i] = -f[i]; } static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];} static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];} static void fe_cswap(fe f, fe g, int b) { FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & -b; f[i] = f[i] ^ x; g[i] = g[i] ^ x; } } static void fe_ccopy(fe f, const fe g, int b) { FOR (i, 0, 10) { i32 x = (f[i] ^ g[i]) & -b; f[i] = f[i] ^ x; } } #define FE_CARRY \ i64 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; \ c9 = (t9 + (i64) (1<<24)) >> 25; t0 += c9 * 19; t9 -= c9 * (1 << 25); \ c1 = (t1 + (i64) (1<<24)) >> 25; t2 += c1; t1 -= c1 * (1 << 25); \ c3 = (t3 + (i64) (1<<24)) >> 25; t4 += c3; t3 -= c3 * (1 << 25); \ c5 = (t5 + (i64) (1<<24)) >> 25; t6 += c5; t5 -= c5 * (1 << 25); \ c7 = (t7 + (i64) (1<<24)) >> 25; t8 += c7; t7 -= c7 * (1 << 25); \ c0 = (t0 + (i64) (1<<25)) >> 26; t1 += c0; t0 -= c0 * (1 << 26); \ c2 = (t2 + (i64) (1<<25)) >> 26; t3 += c2; t2 -= c2 * (1 << 26); \ c4 = (t4 + (i64) (1<<25)) >> 26; t5 += c4; t4 -= c4 * (1 << 26); \ c6 = (t6 + (i64) (1<<25)) >> 26; t7 += c6; t6 -= c6 * (1 << 26); \ c8 = (t8 + (i64) (1<<25)) >> 26; t9 += c8; t8 -= c8 * (1 << 26); \ h[0]=(i32)t0; h[1]=(i32)t1; h[2]=(i32)t2; h[3]=(i32)t3; h[4]=(i32)t4; \ h[5]=(i32)t5; h[6]=(i32)t6; h[7]=(i32)t7; h[8]=(i32)t8; h[9]=(i32)t9 static void fe_frombytes(fe h, const u8 s[32]) { i64 t0 = load32_le(s); i64 t1 = load24_le(s + 4) << 6; i64 t2 = load24_le(s + 7) << 5; i64 t3 = load24_le(s + 10) << 3; i64 t4 = load24_le(s + 13) << 2; i64 t5 = load32_le(s + 16); i64 t6 = load24_le(s + 20) << 7; i64 t7 = load24_le(s + 23) << 5; i64 t8 = load24_le(s + 26) << 4; i64 t9 = (load24_le(s + 29) & 8388607) << 2; FE_CARRY; } static void fe_mul_small(fe h, const fe f, i32 g) { i64 t0 = f[0] * (i64) g; i64 t1 = f[1] * (i64) g; i64 t2 = f[2] * (i64) g; i64 t3 = f[3] * (i64) g; i64 t4 = f[4] * (i64) g; i64 t5 = f[5] * (i64) g; i64 t6 = f[6] * (i64) g; i64 t7 = f[7] * (i64) g; i64 t8 = f[8] * (i64) g; i64 t9 = f[9] * (i64) g; FE_CARRY; } static void fe_mul121666(fe h, const fe f) { fe_mul_small(h, f, 121666); } static void fe_mul(fe h, const fe f, const fe g) { // Everything is unrolled and put in temporary variables. // We could roll the loop, but that would make curve25519 twice as slow. i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4]; i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9]; i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2; i32 G1 = g1*19; i32 G2 = g2*19; i32 G3 = g3*19; i32 G4 = g4*19; i32 G5 = g5*19; i32 G6 = g6*19; i32 G7 = g7*19; i32 G8 = g8*19; i32 G9 = g9*19; i64 h0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6 + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1; i64 h1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7 + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2; i64 h2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8 + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3; i64 h3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9 + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4; i64 h4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0 + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5; i64 h5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1 + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6; i64 h6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2 + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7; i64 h7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3 + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8; i64 h8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4 + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9; i64 h9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5 + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0; #define CARRY \ i64 c0, c1, c2, c3, c4, c5, c6, c7, c8, c9; \ c0 = (h0 + (i64) (1<<25)) >> 26; h1 += c0; h0 -= c0 * (1 << 26); \ c4 = (h4 + (i64) (1<<25)) >> 26; h5 += c4; h4 -= c4 * (1 << 26); \ c1 = (h1 + (i64) (1<<24)) >> 25; h2 += c1; h1 -= c1 * (1 << 25); \ c5 = (h5 + (i64) (1<<24)) >> 25; h6 += c5; h5 -= c5 * (1 << 25); \ c2 = (h2 + (i64) (1<<25)) >> 26; h3 += c2; h2 -= c2 * (1 << 26); \ c6 = (h6 + (i64) (1<<25)) >> 26; h7 += c6; h6 -= c6 * (1 << 26); \ c3 = (h3 + (i64) (1<<24)) >> 25; h4 += c3; h3 -= c3 * (1 << 25); \ c7 = (h7 + (i64) (1<<24)) >> 25; h8 += c7; h7 -= c7 * (1 << 25); \ c4 = (h4 + (i64) (1<<25)) >> 26; h5 += c4; h4 -= c4 * (1 << 26); \ c8 = (h8 + (i64) (1<<25)) >> 26; h9 += c8; h8 -= c8 * (1 << 26); \ c9 = (h9 + (i64) (1<<24)) >> 25; h0 += c9 * 19; h9 -= c9 * (1 << 25); \ c0 = (h0 + (i64) (1<<25)) >> 26; h1 += c0; h0 -= c0 * (1 << 26); \ h[0]=(i32)h0; h[1]=(i32)h1; h[2]=(i32)h2; h[3]=(i32)h3; h[4]=(i32)h4; \ h[5]=(i32)h5; h[6]=(i32)h6; h[7]=(i32)h7; h[8]=(i32)h8; h[9]=(i32)h9; \ CARRY; } // we could use fe_mul() for this, but this is significantly faster static void fe_sq(fe h, const fe f) { i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4]; i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9]; i32 f0_2 = f0*2; i32 f1_2 = f1*2; i32 f2_2 = f2*2; i32 f3_2 = f3*2; i32 f4_2 = f4*2; i32 f5_2 = f5*2; i32 f6_2 = f6*2; i32 f7_2 = f7*2; i32 f5_38 = f5*38; i32 f6_19 = f6*19; i32 f7_38 = f7*38; i32 f8_19 = f8*19; i32 f9_38 = f9*38; i64 h0 = f0 *(i64)f0 + f1_2*(i64)f9_38 + f2_2*(i64)f8_19 + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5 *(i64)f5_38; i64 h1 = f0_2*(i64)f1 + f2 *(i64)f9_38 + f3_2*(i64)f8_19 + f4 *(i64)f7_38 + f5_2*(i64)f6_19; i64 h2 = f0_2*(i64)f2 + f1_2*(i64)f1 + f3_2*(i64)f9_38 + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6 *(i64)f6_19; i64 h3 = f0_2*(i64)f3 + f1_2*(i64)f2 + f4 *(i64)f9_38 + f5_2*(i64)f8_19 + f6 *(i64)f7_38; i64 h4 = f0_2*(i64)f4 + f1_2*(i64)f3_2 + f2 *(i64)f2 + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7 *(i64)f7_38; i64 h5 = f0_2*(i64)f5 + f1_2*(i64)f4 + f2_2*(i64)f3 + f6 *(i64)f9_38 + f7_2*(i64)f8_19; i64 h6 = f0_2*(i64)f6 + f1_2*(i64)f5_2 + f2_2*(i64)f4 + f3_2*(i64)f3 + f7_2*(i64)f9_38 + f8 *(i64)f8_19; i64 h7 = f0_2*(i64)f7 + f1_2*(i64)f6 + f2_2*(i64)f5 + f3_2*(i64)f4 + f8 *(i64)f9_38; i64 h8 = f0_2*(i64)f8 + f1_2*(i64)f7_2 + f2_2*(i64)f6 + f3_2*(i64)f5_2 + f4 *(i64)f4 + f9 *(i64)f9_38; i64 h9 = f0_2*(i64)f9 + f1_2*(i64)f8 + f2_2*(i64)f7 + f3_2*(i64)f6 + f4 *(i64)f5_2; CARRY; } static void fe_sq2(fe h, const fe f) { fe_sq(h, f); fe_mul_small(h, h, 2); } // This could be simplified, but it would be slower static void fe_invert(fe out, const fe z) { fe t0, t1, t2, t3; fe_sq(t0, z ); fe_sq(t1, t0); fe_sq(t1, t1); fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t2, t0); fe_mul(t1 , t1, t2); fe_sq(t2, t1); FOR (i, 1, 5) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t2, t1); FOR (i, 1, 10) fe_sq(t2, t2); fe_mul(t2 , t2, t1); fe_sq(t3, t2); FOR (i, 1, 20) fe_sq(t3, t3); fe_mul(t2 , t3, t2); fe_sq(t2, t2); FOR (i, 1, 10) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t2, t1); FOR (i, 1, 50) fe_sq(t2, t2); fe_mul(t2 , t2, t1); fe_sq(t3, t2); FOR (i, 1, 100) fe_sq(t3, t3); fe_mul(t2 , t3, t2); fe_sq(t2, t2); FOR (i, 1, 50) fe_sq(t2, t2); fe_mul(t1 , t2, t1); fe_sq(t1, t1); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(out, t1, t0); WIPE_BUFFER(t0); WIPE_BUFFER(t1); WIPE_BUFFER(t2); WIPE_BUFFER(t3); } // This could be simplified, but it would be slower static void fe_pow22523(fe out, const fe z) { fe t0, t1, t2; fe_sq(t0, z); fe_sq(t1,t0); fe_sq(t1, t1); fe_mul(t1, z, t1); fe_mul(t0, t0, t1); fe_sq(t0, t0); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 5) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 20) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 10) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t1, t0); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t1, t1, t0); fe_sq(t2, t1); FOR (i, 1, 100) fe_sq(t2, t2); fe_mul(t1, t2, t1); fe_sq(t1, t1); FOR (i, 1, 50) fe_sq(t1, t1); fe_mul(t0, t1, t0); fe_sq(t0, t0); FOR (i, 1, 2) fe_sq(t0, t0); fe_mul(out, t0, z); WIPE_BUFFER(t0); WIPE_BUFFER(t1); WIPE_BUFFER(t2); } static void fe_tobytes(u8 s[32], const fe h) { i32 t[10]; FOR (i, 0, 10) { t[i] = h[i]; } i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25; FOR (i, 0, 5) { q += t[2*i ]; q >>= 26; q += t[2*i+1]; q >>= 25; } t[0] += 19 * q; i32 c0 = t[0] >> 26; t[1] += c0; t[0] -= c0 * (1 << 26); i32 c1 = t[1] >> 25; t[2] += c1; t[1] -= c1 * (1 << 25); i32 c2 = t[2] >> 26; t[3] += c2; t[2] -= c2 * (1 << 26); i32 c3 = t[3] >> 25; t[4] += c3; t[3] -= c3 * (1 << 25); i32 c4 = t[4] >> 26; t[5] += c4; t[4] -= c4 * (1 << 26); i32 c5 = t[5] >> 25; t[6] += c5; t[5] -= c5 * (1 << 25); i32 c6 = t[6] >> 26; t[7] += c6; t[6] -= c6 * (1 << 26); i32 c7 = t[7] >> 25; t[8] += c7; t[7] -= c7 * (1 << 25); i32 c8 = t[8] >> 26; t[9] += c8; t[8] -= c8 * (1 << 26); i32 c9 = t[9] >> 25; t[9] -= c9 * (1 << 25); store32_le(s + 0, ((u32)t[0] >> 0) | ((u32)t[1] << 26)); store32_le(s + 4, ((u32)t[1] >> 6) | ((u32)t[2] << 19)); store32_le(s + 8, ((u32)t[2] >> 13) | ((u32)t[3] << 13)); store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] << 6)); store32_le(s + 16, ((u32)t[5] >> 0) | ((u32)t[6] << 25)); store32_le(s + 20, ((u32)t[6] >> 7) | ((u32)t[7] << 19)); store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12)); store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] << 6)); WIPE_BUFFER(t); } // Parity check. Returns 0 if even, 1 if odd static int fe_isnegative(const fe f) { u8 s[32]; fe_tobytes(s, f); u8 isneg = s[0] & 1; WIPE_BUFFER(s); return isneg; } static int fe_isnonzero(const fe f) { u8 s[32]; fe_tobytes(s, f); u8 isnonzero = zerocmp32(s); WIPE_BUFFER(s); return isnonzero; } /////////////// /// X-25519 /// Taken from Supercop's ref10 implementation. /////////////// static void trim_scalar(u8 s[32]) { s[ 0] &= 248; s[31] &= 127; s[31] |= 64; } static int scalar_bit(const u8 s[32], int i) { return (s[i>>3] >> (i&7)) & 1; } int crypto_x25519(u8 raw_shared_secret[32], const u8 your_secret_key [32], const u8 their_public_key [32]) { // computes the scalar product fe x1; fe_frombytes(x1, their_public_key); // restrict the possible scalar values u8 e[32]; FOR (i, 0, 32) { e[i] = your_secret_key[i]; } trim_scalar(e); // computes the actual scalar product (the result is in x2 and z2) fe x2, z2, x3, z3, t0, t1; // Montgomery ladder // In projective coordinates, to avoid divisons: x = X / Z // We don't care about the y coordinate, it's only 1 bit of information fe_1(x2); fe_0(z2); // "zero" point fe_copy(x3, x1); fe_1(z3); // "one" point int swap = 0; for (int pos = 254; pos >= 0; --pos) { // constant time conditional swap before ladder step int b = scalar_bit(e, pos); swap ^= b; // xor trick avoids swapping at the end of the loop fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); swap = b; // anticipates one last swap after the loop // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3) // with differential addition fe_sub(t0, x3, z3); fe_sub(t1, x2, z2); fe_add(x2, x2, z2); fe_add(z2, x3, z3); fe_mul(z3, t0, x2); fe_mul(z2, z2, t1); fe_sq (t0, t1 ); fe_sq (t1, x2 ); fe_add(x3, z3, z2); fe_sub(z2, z3, z2); fe_mul(x2, t1, t0); fe_sub(t1, t1, t0); fe_sq (z2, z2 ); fe_mul121666(z3, t1); fe_sq (x3, x3 ); fe_add(t0, t0, z3); fe_mul(z3, x1, z2); fe_mul(z2, t1, t0); } // last swap is necessary to compensate for the xor trick // Note: after this swap, P3 == P2 + P1. fe_cswap(x2, x3, swap); fe_cswap(z2, z3, swap); // normalises the coordinates: x == X / Z fe_invert(z2, z2); fe_mul(x2, x2, z2); fe_tobytes(raw_shared_secret, x2); WIPE_BUFFER(x1); WIPE_BUFFER(e ); WIPE_BUFFER(x2); WIPE_BUFFER(z2); WIPE_BUFFER(x3); WIPE_BUFFER(z3); WIPE_BUFFER(t0); WIPE_BUFFER(t1); // Returns -1 if the output is all zero // (happens with some malicious public keys) return -1 - zerocmp32(raw_shared_secret); } void crypto_x25519_public_key(u8 public_key[32], const u8 secret_key[32]) { static const u8 base_point[32] = {9}; crypto_x25519(public_key, secret_key, base_point); } /////////////// /// Ed25519 /// /////////////// static const u64 L[32] = { 0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10}; static void modL(u8 *r, i64 x[64]) { for (unsigned i = 63; i >= 32; i--) { i64 carry = 0; FOR (j, i-32, i-12) { x[j] += carry - 16 * x[i] * L[j - (i - 32)]; carry = (x[j] + 128) >> 8; x[j] -= carry * (1 << 8); } x[i-12] += carry; x[i] = 0; } i64 carry = 0; FOR (i, 0, 32) { x[i] += carry - (x[31] >> 4) * L[i]; carry = x[i] >> 8; x[i] &= 255; } FOR (i, 0, 32) { x[i] -= carry * L[i]; } FOR (i, 0, 32) { x[i+1] += x[i] >> 8; r[i ] = x[i] & 255; } } static void reduce(u8 r[64]) { i64 x[64]; FOR (i, 0, 64) { x[i] = (u64) r[i]; r[i] = 0; } modL(r, x); WIPE_BUFFER(x); } // r = (a * b) + c static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32]) { i64 s[64]; FOR (i, 0, 32) { s[i] = (u64) c[i]; } FOR (i, 32, 64) { s[i] = 0; } FOR (i, 0, 32) { FOR (j, 0, 32) { s[i+j] += a[i] * (u64) b[j]; } } modL(r, s); WIPE_BUFFER(s); } static int is_above_L(const u8 a[32]) { for (int i = 31; i >= 0; i--) { if (a[i] > L[i]) { return 1; } if (a[i] < L[i]) { return 0; } } return 1; } // Point in a twisted Edwards curve, // in extended projective coordinates. // x = X/Z, y = Y/Z, T = XY/Z typedef struct { fe X; fe Y; fe Z; fe T; } ge; typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached; static void ge_zero(ge *p) { fe_0(p->X); fe_1(p->Y); fe_1(p->Z); fe_0(p->T); } static void ge_tobytes(u8 s[32], const ge *h) { fe recip, x, y; fe_invert(recip, h->Z); fe_mul(x, h->X, recip); fe_mul(y, h->Y, recip); fe_tobytes(s, y); s[31] ^= fe_isnegative(x) << 7; WIPE_BUFFER(recip); WIPE_BUFFER(x); WIPE_BUFFER(y); } // Variable time! s must not be secret! static int ge_frombytes_neg_vartime(ge *h, const u8 s[32]) { static const fe d = { -10913610, 13857413, -15372611, 6949391, 114729, -8787816, -6275908, -3247719, -18696448, -12055116 } ; static const fe sqrtm1 = { -32595792, -7943725, 9377950, 3500415, 12389472, -272473, -25146209, -2005654, 326686, 11406482 } ; fe u, v, v3, vxx, check; // no secret, no wipe fe_frombytes(h->Y, s); fe_1(h->Z); fe_sq(u, h->Y); // y^2 fe_mul(v, u, d); fe_sub(u, u, h->Z); // u = y^2-1 fe_add(v, v, h->Z); // v = dy^2+1 fe_sq(v3, v); fe_mul(v3, v3, v); // v3 = v^3 fe_sq(h->X, v3); fe_mul(h->X, h->X, v); fe_mul(h->X, h->X, u); // x = uv^7 fe_pow22523(h->X, h->X); // x = (uv^7)^((q-5)/8) fe_mul(h->X, h->X, v3); fe_mul(h->X, h->X, u); // x = uv^3(uv^7)^((q-5)/8) fe_sq(vxx, h->X); fe_mul(vxx, vxx, v); fe_sub(check, vxx, u); // vx^2-u if (fe_isnonzero(check)) { fe_add(check, vxx, u); // vx^2+u if (fe_isnonzero(check)) { return -1; } fe_mul(h->X, h->X, sqrtm1); } if (fe_isnegative(h->X) == (s[31] >> 7)) { fe_neg(h->X, h->X); } fe_mul(h->T, h->X, h->Y); return 0; } static void ge_cache(ge_cached *c, const ge *p) { static const fe D2 = { // - 2 * 121665 / 121666 -21827239, -5839606, -30745221, 13898782, 229458, 15978800, -12551817, -6495438, 29715968, 9444199 }; fe_add (c->Yp, p->Y, p->X); fe_sub (c->Ym, p->Y, p->X); fe_copy(c->Z , p->Z ); fe_mul (c->T2, p->T, D2 ); } static void ge_add(ge *s, const ge *p, const ge_cached *q) { fe a, b; // not used to process secrets, no need to wipe fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , q->Yp); fe_mul(b , b , q->Ym); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->Z, s->Z, q->Z ); fe_mul(s->T, p->T, q->T2); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_sub(ge *s, const ge *p, const ge_cached *q) { ge_cached neg; fe_copy(neg.Ym, q->Yp); fe_copy(neg.Yp, q->Ym); fe_copy(neg.Z , q->Z ); fe_neg (neg.T2, q->T2); ge_add(s, p, &neg); } static void ge_madd(ge *s, const ge *p, const fe yp, const fe ym, const fe t2, fe a, fe b) { fe_add(a , p->Y, p->X ); fe_sub(b , p->Y, p->X ); fe_mul(a , a , yp ); fe_mul(b , b , ym ); fe_add(s->Y, a , b ); fe_sub(s->X, a , b ); fe_add(s->Z, p->Z, p->Z ); fe_mul(s->T, p->T, t2 ); fe_add(a , s->Z, s->T ); fe_sub(b , s->Z, s->T ); fe_mul(s->T, s->X, s->Y); fe_mul(s->X, s->X, b ); fe_mul(s->Y, s->Y, a ); fe_mul(s->Z, a , b ); } static void ge_double(ge *s, const ge *p, ge *q) { fe_sq (q->X, p->X); fe_sq (q->Y, p->Y); fe_sq2(q->Z, p->Z); fe_add(q->T, p->X, p->Y); fe_sq (s->T, q->T); fe_add(q->T, q->Y, q->X); fe_sub(q->Y, q->Y, q->X); fe_sub(q->X, s->T, q->T); fe_sub(q->Z, q->Z, q->Y); fe_mul(s->X, q->X , q->Z); fe_mul(s->Y, q->T , q->Y); fe_mul(s->Z, q->Y , q->Z); fe_mul(s->T, q->X , q->T); } // Compute signed sliding windows (either 0, or odd numbers between -15 and 15) static void slide(i8 adds[258], const u8 scalar[32]) { FOR (i, 0, 256) { adds[i] = scalar_bit(scalar, i); } FOR (i, 256, 258) { adds[i] = 0; } FOR (i, 0, 254) { if (adds[i] != 0) { // base value of the 5-bit window FOR (j, 1, 5) { adds[i ] |= adds[i+j] << j; adds[i+j] = 0; } if (adds[i] > 16) { // go back to [-15, 15], propagate carry. adds[i] -= 32; int j = i + 5; while (adds[j] != 0) { adds[j] = 0; j++; } adds[j] = 1; } } } } // Look up table for sliding windows static void ge_precompute(ge_cached lut[8], const ge *P1) { ge P2, tmp; ge_double(&P2, P1, &tmp); ge_cache(&lut[0], P1); FOR (i, 0, 7) { ge_add(&tmp, &P2, &lut[i]); ge_cache(&lut[i+1], &tmp); } } // Could be a function, but the macro avoids some overhead. #define LUT_ADD(sum, lut, adds, i) \ if (adds[i] > 0) { ge_add(sum, sum, &lut[ adds[i] / 2]); } \ if (adds[i] < 0) { ge_sub(sum, sum, &lut[-adds[i] / 2]); } // Variable time! P, sP, and sB must not be secret! static void ge_double_scalarmult_vartime(ge *sum, const ge *P, u8 p[32], u8 b[32]) { static const fe X = { -14297830, -7645148, 16144683, -16471763, 27570974, -2696100, -26142465, 8378389, 20764389, 8758491 }; static const fe Y = { -26843541, -6710886, 13421773, -13421773, 26843546, 6710886, -13421773, 13421773, -26843546, -6710886 }; ge B; fe_copy(B.X, X); fe_copy(B.Y, Y); fe_1 (B.Z); fe_mul (B.T, X, Y); // cached points for addition ge_cached cP[8]; ge_precompute(cP, P); ge_cached cB[8]; ge_precompute(cB, &B); i8 p_adds[258]; slide(p_adds, p); i8 b_adds[258]; slide(b_adds, b); // Avoid the first doublings int i = 253; while (i >= 0 && p_adds[i] == 0 && b_adds[i] == 0) { i--; } // Merged double and add ladder ge_zero(sum); LUT_ADD(sum, cP, p_adds, i); LUT_ADD(sum, cB, b_adds, i); i--; while (i >= 0) { ge_double(sum, sum, &B); // B is no longer used, we can overwrite it LUT_ADD(sum, cP, p_adds, i); LUT_ADD(sum, cB, b_adds, i); i--; } } // 5-bit signed comb in cached format (Niels coordinates, Z=1) static const fe comb_Yp[16] = { {2615675, 9989699, 17617367, -13953520, -8802803, 1447286, -8909978, -270892, -12199203, -11617247}, {-1271192, 4785266, -29856067, -6036322, -10435381, 15493337, 20321440, -6036064, 15902131, 13420909}, {-26170888, -12891603, 9568996, -6197816, 26424622, 16308973, -4518568, -3771275, -15522557, 3991142}, {-25875044, 1958396, 19442242, -9809943, -26099408, -18589, -30794750, -14100910, 4971028, -10535388}, {-13896937, -7357727, -12131124, 617289, -33188817, 10080542, 6402555, 10779157, 1176712, 2472642}, {71503, 12662254, -17008072, -8370006, 23408384, -12897959, 32287612, 11241906, -16724175, 15336924}, {27397666, 4059848, 23573959, 8868915, -10602416, -10456346, -22812831, -9666299, 31810345, -2695469}, {-3418193, -694531, 2320482, -11850408, -1981947, -9606132, 23743894, 3933038, -25004889, -4478918}, {-4448372, 5537982, -4805580, 14016777, 15544316, 16039459, -7143453, -8003716, -21904564, 8443777}, {32495180, 15749868, 2195406, -15542321, -3213890, -4030779, -2915317, 12751449, -1872493, 11926798}, {26779741, 12553580, -24344000, -4071926, -19447556, -13464636, 21989468, 7826656, -17344881, 10055954}, {5848288, -1639207, -10452929, -11760637, 6484174, -5895268, -11561603, 587105, -19220796, 14378222}, {32050187, 12536702, 9206308, -10016828, -13333241, -4276403, -24225594, 14562479, -31803624, -9967812}, {23536033, -6219361, 199701, 4574817, 30045793, 7163081, -2244033, 883497, 10960746, -14779481}, {-8143354, -11558749, 15772067, 14293390, 5914956, -16702904, -7410985, 7536196, 6155087, 16571424}, {6211591, -11166015, 24568352, 2768318, -10822221, 11922793, 33211827, 3852290, -13160369, -8855385}, }; static const fe comb_Ym[16] = { {8873912, 14981221, 13714139, 6923085, 25481101, 4243739, 4646647, -203847, 9015725, -16205935}, {-1827892, 15407265, 2351140, -11810728, 28403158, -1487103, -15057287, -4656433, -3780118, -1145998}, {-30623162, -11845055, -11327147, -16008347, 17564978, -1449578, -20580262, 14113978, 29643661, 15580734}, {-15109423, 13348938, -14756006, 14132355, 30481360, 1830723, -240510, 9371801, -13907882, 8024264}, {25119567, 5628696, 10185251, -9279452, 683770, -14523112, -7982879, -16450545, 1431333, -13253541}, {-8390493, 1276691, 19008763, -12736675, -9249429, -12526388, 17434195, -13761261, 18962694, -1227728}, {26361856, -12366343, 8941415, 15163068, 7069802, -7240693, -18656349, 8167008, 31106064, -1670658}, {-5677136, -11012483, -1246680, -6422709, 14772010, 1829629, -11724154, -15914279, -18177362, 1301444}, {937094, 12383516, -22597284, 7580462, -18767748, 13813292, -2323566, 13503298, 11510849, -10561992}, {28028043, 14715827, -6558532, -1773240, 27563607, -9374554, 3201863, 8865591, -16953001, 7659464}, {13628467, 5701368, 4674031, 11935670, 11461401, 10699118, 31846435, -114971, -8269924, -14777505}, {-22124018, -12859127, 11966893, 1617732, 30972446, -14350095, -21822286, 8369862, -29443219, -15378798}, {290131, -471434, 8840522, -2654851, 25963762, -11578288, -7227978, 13847103, 30641797, 6003514}, {-23547482, -11475166, -11913550, 9374455, 22813401, -5707910, 26635288, 9199956, 20574690, 2061147}, {9715324, 7036821, -17981446, -11505533, 26555178, -3571571, 5697062, -14128022, 2795223, 9694380}, {14864569, -6319076, -3080, -8151104, 4994948, -1572144, -41927, 9269803, 13881712, -13439497}, }; static const fe comb_T2[16] = { {-18494317, 2686822, 18449263, -13905325, 5966562, -3368714, 2738304, -8583315, 15987143, 12180258}, {-33336513, -13705917, -18473364, -5039204, -4268481, -4136039, -8192211, -2935105, -19354402, 5995895}, {-19753139, -1729018, 21880604, 13471713, 28315373, -8530159, -17492688, 11730577, -8790216, 3942124}, {17278020, 3905045, 29577748, 11151940, 18451761, -6801382, 31480073, -13819665, 26308905, 10868496}, {26937294, 3313561, 28601532, -3497112, -22814130, 11073654, 8956359, -16757370, 13465868, 16623983}, {-5468054, 6059101, -31275300, 2469124, 26532937, 8152142, 6423741, -11427054, -15537747, -10938247}, {-11303505, -9659620, -12354748, -9331434, 19501116, -9146390, -841918, -5315657, 8903828, 8839982}, {16603354, -215859, 1591180, 3775832, -705596, -13913449, 26574704, 14963118, 19649719, 6562441}, {33188866, -12232360, -24929148, -6133828, 21818432, 11040754, -3041582, -3524558, -29364727, -10264096}, {-20704194, -12560423, -1235774, -785473, 13240395, 4831780, -472624, -3796899, 25480903, -15422283}, {-2204347, -16313180, -21388048, 7520851, -8697745, -14460961, 20894017, 12210317, -475249, -2319102}, {-16407882, 4940236, -21194947, 10781753, 22248400, 14425368, 14866511, -7552907, 12148703, -7885797}, {16376744, 15908865, -30663553, 4663134, -30882819, -10105163, 19294784, -10800440, -33259252, 2563437}, {30208741, 11594088, -15145888, 15073872, 5279309, -9651774, 8273234, 4796404, -31270809, -13316433}, {-17802574, 14455251, 27149077, -7832700, -29163160, -7246767, 17498491, -4216079, 31788733, -14027536}, {-25233439, -9389070, -6618212, -3268087, -521386, -7350198, 21035059, -14970947, 25910190, 11122681}, }; static void ge_scalarmult_base(ge *p, const u8 scalar[32]) { // 5-bits signed comb, from Mike Hamburg's // Fast and compact elliptic-curve cryptography (2012) static const u8 half_mod_L[32] = { // 1 / 2 modulo L 0xf7, 0xe9, 0x7a, 0x2e, 0x8d, 0x31, 0x09, 0x2c, 0x6b, 0xce, 0x7b, 0x51, 0xef, 0x7c, 0x6f, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, }; static const u8 half_ones[32] = { // (2^255 - 1) / 2 modulo L 0x42, 0x9a, 0xa3, 0xba, 0x23, 0xa5, 0xbf, 0xcb, 0x11, 0x5b, 0x9d, 0xc5, 0x74, 0x95, 0xf3, 0xb6, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, }; // All bits set form: 1 means 1, 0 means -1 u8 s_scalar[32]; mul_add(s_scalar, scalar, half_mod_L, half_ones); // Double and add ladder fe yp, ym, t2, n2, a, b; // temporaries for addition ge dbl; // temporary for doublings ge_zero(p); for (int i = 50; i >= 0; i--) { if (i < 50) { ge_double(p, p, &dbl); } fe_1(yp); fe_1(ym); fe_0(t2); u8 teeth = scalar_bit(s_scalar, i) + (scalar_bit(s_scalar, i + 51) << 1) + (scalar_bit(s_scalar, i + 102) << 2) + (scalar_bit(s_scalar, i + 153) << 3) + (scalar_bit(s_scalar, i + 204) << 4); u8 high = teeth >> 4; u8 index = (teeth ^ (high - 1)) & 15; FOR (j, 0, 16) { i32 select = 1 & (((j ^ index) - 1) >> 8); fe_ccopy(yp, comb_Yp[j], select); fe_ccopy(ym, comb_Ym[j], select); fe_ccopy(t2, comb_T2[j], select); } fe_neg(n2, t2); fe_cswap(t2, n2, high); fe_cswap(yp, ym, high); ge_madd(p, p, ym, yp, n2, a, b); } WIPE_CTX(&dbl); WIPE_BUFFER(a); WIPE_BUFFER(yp); WIPE_BUFFER(t2); WIPE_BUFFER(b); WIPE_BUFFER(ym); WIPE_BUFFER(n2); WIPE_BUFFER(s_scalar); } void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32]) { u8 a[64]; HASH(a, secret_key, 32); trim_scalar(a); ge A; ge_scalarmult_base(&A, a); ge_tobytes(public_key, &A); WIPE_BUFFER(a); WIPE_CTX(&A); } void crypto_sign_init_first_pass(crypto_sign_ctx *ctx, const u8 secret_key[32], const u8 public_key[32]) { u8 *a = ctx->buf; u8 *prefix = ctx->buf + 32; HASH(a, secret_key, 32); trim_scalar(a); if (public_key == 0) { crypto_sign_public_key(ctx->pk, secret_key); } else { FOR (i, 0, 32) { ctx->pk[i] = public_key[i]; } } // Constructs the "random" nonce from the secret key and message. // An actual random number would work just fine, and would save us // the trouble of hashing the message twice. If we did that // however, the user could fuck it up and reuse the nonce. HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, prefix , 32); } void crypto_sign_update(crypto_sign_ctx *ctx, const u8 *msg, size_t msg_size) { HASH_UPDATE(&ctx->hash, msg, msg_size); } void crypto_sign_init_second_pass(crypto_sign_ctx *ctx) { u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; HASH_FINAL(&ctx->hash, r); reduce(r); // first half of the signature = "random" nonce times basepoint ge R; ge_scalarmult_base(&R, r); ge_tobytes(half_sig, &R); WIPE_CTX(&R); // Hash R, the public key, and the message together. // It cannot be done in parallel with the first hash. HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, half_sig, 32); HASH_UPDATE(&ctx->hash, ctx->pk , 32); } void crypto_sign_final(crypto_sign_ctx *ctx, u8 signature[64]) { u8 *a = ctx->buf; u8 *r = ctx->buf + 32; u8 *half_sig = ctx->buf + 64; u8 h_ram[64]; HASH_FINAL(&ctx->hash, h_ram); reduce(h_ram); // reduce the hash modulo L FOR (i, 0, 32) { signature[i] = half_sig[i]; } mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r WIPE_CTX(ctx); WIPE_BUFFER(h_ram); } void crypto_sign(u8 signature[64], const u8 secret_key[32], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_sign_ctx ctx; crypto_sign_init_first_pass (&ctx, secret_key, public_key); crypto_sign_update (&ctx, message, message_size); crypto_sign_init_second_pass(&ctx); crypto_sign_update (&ctx, message, message_size); crypto_sign_final (&ctx, signature); } void crypto_check_init(crypto_check_ctx *ctx, const u8 signature[64], const u8 public_key[32]) { FOR (i, 0, 64) { ctx->sig[i] = signature [i]; } FOR (i, 0, 32) { ctx->pk [i] = public_key[i]; } HASH_INIT (&ctx->hash); HASH_UPDATE(&ctx->hash, signature , 32); HASH_UPDATE(&ctx->hash, public_key, 32); } void crypto_check_update(crypto_check_ctx *ctx, const u8 *msg, size_t msg_size) { HASH_UPDATE(&ctx->hash, msg , msg_size); } int crypto_check_final(crypto_check_ctx *ctx) { ge diff, A; u8 h_ram[64], R_check[32]; u8 *s = ctx->sig + 32; // s u8 *R = ctx->sig; // R if (ge_frombytes_neg_vartime(&A, ctx->pk) || is_above_L(s)) { // prevent s malleability return -1; } HASH_FINAL(&ctx->hash, h_ram); reduce(h_ram); ge_double_scalarmult_vartime(&diff, &A, h_ram, s); ge_tobytes(R_check, &diff); // R_check = s*B - h_ram*A return crypto_verify32(R, R_check); // R == R_check ? OK : fail // No secret, no wipe } int crypto_check(const u8 signature[64], const u8 public_key[32], const u8 *message, size_t message_size) { crypto_check_ctx ctx; crypto_check_init(&ctx, signature, public_key); crypto_check_update(&ctx, message, message_size); return crypto_check_final(&ctx); } //////////////////// /// Key exchange /// //////////////////// int crypto_key_exchange(u8 shared_key[32], const u8 your_secret_key [32], const u8 their_public_key[32]) { u8 raw_shared_secret[32]; int status = crypto_x25519(raw_shared_secret, your_secret_key, their_public_key); crypto_chacha20_H(shared_key, raw_shared_secret, zero); WIPE_BUFFER(raw_shared_secret); return status; } //////////////////////////////// /// Authenticated encryption /// //////////////////////////////// static void lock_ad_padding(crypto_lock_ctx *ctx) { if (ctx->ad_phase) { ctx->ad_phase = 0; crypto_poly1305_update(&ctx->poly, zero, ALIGN(ctx->ad_size, 16)); } } void crypto_lock_init(crypto_lock_ctx *ctx, const u8 key[32], const u8 nonce[24]) { u8 auth_key[64]; // "Wasting" the whole Chacha block is faster ctx->ad_phase = 1; ctx->ad_size = 0; ctx->message_size = 0; crypto_chacha20_x_init(&ctx->chacha, key, nonce); crypto_chacha20_stream(&ctx->chacha, auth_key, 64); crypto_poly1305_init (&ctx->poly , auth_key); WIPE_BUFFER(auth_key); } void crypto_lock_auth_ad(crypto_lock_ctx *ctx, const u8 *msg, size_t msg_size) { crypto_poly1305_update(&ctx->poly, msg, msg_size); ctx->ad_size += msg_size; } void crypto_lock_auth_message(crypto_lock_ctx *ctx, const u8 *cipher_text, size_t text_size) { lock_ad_padding(ctx); ctx->message_size += text_size; crypto_poly1305_update(&ctx->poly, cipher_text, text_size); } void crypto_lock_update(crypto_lock_ctx *ctx, u8 *cipher_text, const u8 *plain_text, size_t text_size) { crypto_chacha20_encrypt(&ctx->chacha, cipher_text, plain_text, text_size); crypto_lock_auth_message(ctx, cipher_text, text_size); } void crypto_lock_final(crypto_lock_ctx *ctx, u8 mac[16]) { lock_ad_padding(ctx); u8 sizes[16]; // Not secret, not wiped store64_le(sizes + 0, ctx->ad_size); store64_le(sizes + 8, ctx->message_size); crypto_poly1305_update(&ctx->poly, zero, ALIGN(ctx->message_size, 16)); crypto_poly1305_update(&ctx->poly, sizes, 16); crypto_poly1305_final (&ctx->poly, mac); WIPE_CTX(ctx); } void crypto_unlock_update(crypto_lock_ctx *ctx, u8 *plain_text, const u8 *cipher_text, size_t text_size) { crypto_unlock_auth_message(ctx, cipher_text, text_size); crypto_chacha20_encrypt(&ctx->chacha, plain_text, cipher_text, text_size); } int crypto_unlock_final(crypto_lock_ctx *ctx, const u8 mac[16]) { u8 real_mac[16]; crypto_lock_final(ctx, real_mac); int mismatch = crypto_verify16(real_mac, mac); WIPE_BUFFER(real_mac); return mismatch; } void crypto_lock_aead(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *ad , size_t ad_size, const u8 *plain_text, size_t text_size) { crypto_lock_ctx ctx; crypto_lock_init (&ctx, key, nonce); crypto_lock_auth_ad(&ctx, ad, ad_size); crypto_lock_update (&ctx, cipher_text, plain_text, text_size); crypto_lock_final (&ctx, mac); } int crypto_unlock_aead(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *ad , size_t ad_size, const u8 *cipher_text, size_t text_size) { crypto_unlock_ctx ctx; crypto_unlock_init (&ctx, key, nonce); crypto_unlock_auth_ad (&ctx, ad, ad_size); crypto_unlock_auth_message(&ctx, cipher_text, text_size); crypto_chacha_ctx chacha_ctx = ctx.chacha; // avoid the wiping... if (crypto_unlock_final(&ctx, mac)) { // ...that occurs here WIPE_CTX(&chacha_ctx); return -1; // reject forgeries before wasting our time decrypting } crypto_chacha20_encrypt(&chacha_ctx, plain_text, cipher_text, text_size); WIPE_CTX(&chacha_ctx); return 0; } void crypto_lock(u8 mac[16], u8 *cipher_text, const u8 key[32], const u8 nonce[24], const u8 *plain_text, size_t text_size) { crypto_lock_aead(mac, cipher_text, key, nonce, 0, 0, plain_text, text_size); } int crypto_unlock(u8 *plain_text, const u8 key[32], const u8 nonce[24], const u8 mac[16], const u8 *cipher_text, size_t text_size) { return crypto_unlock_aead(plain_text, key, nonce, mac, 0, 0, cipher_text, text_size); }