
•

STANFORD ARTIFICIAL INTELLIGENCE PRQJECT
Memo No. 50
Institute of Theoretical physics
ITP-247

5-1103

February 1967

'-
PROJECT MAC 1

REDUCE USERS v MANUAL

by Anthony Co Hearn
J DOCUlVIE{~T HOOl\1

Ats~ra~t~ REDUCE is a program designed for gen2ral algebraic
compu1:atio~.s of in-t:;eres~ to physi.ci.sts and engineers 0

Its capab~lities include~

1) expansion and ordering of ra~ional functions
of polynomials 7

2) symboli~ differen~iation7

3) substitutions in a wide varie~y of forms,

.4) reduction of quotients of polynomials by
cancellation of commo~ fac:-<::;ors,

5) calculation of symbolic dE"':. erminar:-:s ,

6) calculations of interes~ +~O high energy physicists
incl1J.di::1g spin 1/2 and spi~,- 1 algebra"

The program 1s wri ~~en comple~ely in 1::.he language LISP
10 5 and may -+;;terefore 1:le run wi --=h li -+;;+.,;le modification
on any computer possessi.ng a LISF 1.5 compiler br
interpreter 0

Researcl! sponsored by -:te Air Force Offi.ce of Scientific Research,
Office of Aerospace Resear:h, UoS. Air Force. under AFCSR Contract
Ai' 49(638) -1389., tjompu~er ~i1Ile sl1ppor~ed by' -=.he Adva.'r}ced R.esearch
Proj ec~ Agency of ::.:te Office of the Se':re-+::ary of Defense (SD~183) 0

l -

-.

TABLE OF CONTENTS

SECTION 1

Introduction-- 1

SECTION 2
Structure of Programs--- 3

2.1 Preliminary--- 3
2.2 Numbers---------------------------·----------------------- 3
2.3 Variables--- 5

2.3.1 Reserved Variables------------------------------------ 5

2.4 Operators--- 5

2.4.1 Special Operators------------------------------------- 7
2.4.2* Operators Used in High-Energy Physics----------------- 8

2. 5 Expressions----------------------------------.-- ---------- 11

2.5.1 Scalar Expressions------------------------------------ 11
2.5.2* Vector Expressions------------------------------------ 12
2.5.3* Matrix Expressions------------------------------------ 12
2.5.4 Equivalence Expressions------------------------------- 12

2.6 Kernels--- 13
2.7 Functional Instructions-----~----------------------------- 14

2.7.1 SIMPLIFY (or SM)-------------------------------------- 14
2.7.2 Ordering of Variables--------------------------------- 15
2.7.3 Substitution-- 16
2.7.4 Substitutions of the First Kind----------------------- 16
2.7.5 Substitutions of the Second Kind------------~--------- 18
2.7.6 Asympotic Constraints--------------------------------- 19
2.7.7 Limitations in Use of MAKE and LET-------------------- 19
2.7.8 Cancellation of Common Factors------------------------ 21
2.7.9 Output of Expressions-----------------~--------------- 21
2.7.10 Further Manipulation of SIMPLIFY Output--------------- 23
2.7.11 Adding Results of Process Calculations---------------- 24
2.7.12 Numerical Evaluation of Expressions------------------- 25
2.7.13 Other Processes--------------------------------------- 25
2.7.l4*REDUCE-- 25

2.8 Spacing--- 26

SECTION 3

Examples-- 27

3.1 Differentiation and Determinants-------------------------- 27
3.2 Expansion of Polynomials---------------------------------- 30
3.3* Calculation of Lowest Order Compton Scattering

Cross-Section--- 35
3.4* Calculation of Basic Traces in Radiative Corrections

to Electron Positron Scattering------------------------- 38

..

TABLE OF CONTENTS (cont.)

SECTION 4
Summary of System--- 40

4.1 Instructions Normally Available in REDUCE----------------- 40
4.2 Reserved Variables-- 43
4.3 REDUCE Diagnostic and Error -Messages---------------------- 44

4.3.1 Terminal Error Messages------------------------------- 45
4.3.2 Diagnostic Messages-------------------------'---------- 46
4.3.3 System Error Mess~ges--------------------------------- 47

4.4 REDUCE Job Setup-- 47
4.4.1 REDUCE Job Setup for Stanford 7090-------------------- 48
4.4.2 REDUCE Job Setup for Stanford PDP-6------------------- 50

REFERENCES--- 53

ITP-247

SECTION 1. INTRODUCTION

REDUCE is a program designed for general algebraic computations of

interest to physicists and engineers. Its capabilities include:

1) expansion and ordering of rational functions of polynomials,

2) symbolic differentiation,

3) substitutions in a wide variety of forms,

4) reduction of quotients of polynomials by cance~n of common factors,

5) calculation of symbolic determinants,

6) calculations of interest to high energy physicists including spin 1/2

and spin 1 algebra.

The program is written completely in the langu~LISP 1.5(1) and may

therefore be run with little modification on any computer possessing a LISP

1.5 compiler or inte-rpreter.

Versions of the program have operated at several batch-processing IBM

7090 installations, on the time-shared AN/FSQ-32 of System Development

Corporation, and the time-shared PDP-6 of the Stanford Artificial Intelligence

Project. This report is intended primarily for users of the system on the

latter machine (referred to as REDUCE2) and on the Stanford IBM 7090 (REDUCE1).

There are three levels at which REDUCE may be used and understood.

(1) For calculations using only the functions already in REDUCE. This requires

no knowledge of LISP or the details of the REDUCE program. This operation,

which will be adequate for most users, is described in Section 2.

(2) To develop and use new functions written in terms of the primitives of

the REDUCE system. This requires a knowledge of LISP, but little knowledge

ITP-247

1

. .

of the details of the REDUCE program, and is described in Part 11 of this

manual.

(3) To modify and develop the primitives of REDUCE, which requires a complete

knowledge of LISP and REDUCE. A description of the system for this purpose

will be published elsewhere.

Section 3 contains programs and output of sample calculations which have

been run on the Stanford PDP-6. Finally a summary of instructions available

and a list of possible diagnostic messages and reserved variables is given in

Section 4.

Most sections contain details of a certain amount of material of

interest only to high-energy physicists. Knowledge of this is not necessary

for successful operation of the system. SUb-sections dealing only with this

material will be starred, and may be omitted by those not interested.

REDUCE is part of a larger system designed for semi-automatic calcu

lations involving Feynman diagrams in quantum electrodynamics and particle

physics, and described briefly in Reference (2). Those parts of the full

system dealing with Feynman graph generation and manipulation will also be

described in other pUblications.

The author would appreciate hearing from any users who experience

trouble with the system (please include copies of relevant input and output) 0

Acknowledgement of the use of REDUCE in any published calculations would

also be appreciated.

ITP-247

2

-.

SECTION 2.

2.1 Preliminary

A REDUCE program consists of a set of functional instructions which are

evaluated sequentially by a computer. Examples of such instructions, which

are explained in this Section are:

MAKE X = Y + 2, Z(W) = W**2/7;

LET EPS(P,Q,R,S) = 0 $

PUNCHIT $

SIMPLIFY (X**2 - Y**2)/(X - Y) $

A program is terminated by the instruction

END $

The arguments of these functions are expressions which in turn are

sequences of numbers, variables, operators and standard delimiters (such as

commas and parentheses). The allowed form for these elements is as followso

2.2 Numbers

Numbers in REDUCE statements may be of two types; integer and realo

Integers consist of a Signed or unsigned sequence of 1-11 decimal digits

written without a decimal point.

e.g. -2, 5396 +32

Real numbers may be written in two ways;

i) as a signed or unsigned sequence of 1-9 decimal digits with an embedded

or terminating decimal point, but ~ beginning with a decimal point;

ii) as in i) followed by a decimal exponent which is written as the letter E

followed by a signed or unsigned integer.

ITP-247

3

. .

4

e.g. 32.

+32

O .. 32E2

320.E-l

are all representations of 32.

Not allowed: .5

-.52E3

The system normally uses integer arithmetic which is required by the

greatest common divisor algorithm. Under standard running conditions, a

real number is converted into the ratio of two integers. A message will

also be printed to indicate the conversion,

e • g • 3 04 REPRESENTED AS 17/5.

In REDUCE2 it is possible to operate using real arithmetic, in which

case no check for greatest common divisors will be made" The declaration

FLOATIT should be used if this mode is required, while NOFLOAT returns the

system to integer arithmetic.

A distinct disadvantage of the present system is that single preCision

arithmetic only is available. It is hoped that provision for multiple or

arbitrary precision arithmetic will be included in REDUCE2 in the near

future.

-6
N.B. In REDUCEl, any real number within 10 of an integer is converted

automatically to that integer, and numbers with absolute value less than 10-
6

are converted to zero. These restrictions do not apply to REDUCE2.

ITP-247

2.3 Variables

Variables in REDUCE are specified by name and type. There are two

types; scalar and vector.

Variable names consist of one to twenty-four alphanumeric characters

(i.e. alphabetic letters or numbers) the first of which must be alphabetico

egg. A, AZ, PI, Q23P,

AVERYWNGVARIABLE234

Type specification is implicit for scalar variables, but must be

explicit for vectors. One way to do this is to use the declaration VECTOR.

e.g. VECTOR PI, Q23P $

specifies that PI and Q23P are vector variables. The instructions INDEX

(Section 2.4.2) and MASS (Section 2.7.14) also declare their arguments to be

vectors.

2.3.1 Reserved variables

Several scalar and vector variables in REDUCE have a particular value

which cannot be changed by the user. These reserved variables should there

fore be used only for the purpose intended 0 For example, the scalar variable

I is used to represent ~,and all occurrences of 1**2 will be replaced

by -1. A list of reserved variables is given in Section 4.2.

2.4 Operators

Operators in the REDUCE system are also specified by name and type.

There are two types, infix and prefix.

ITP-247

Infix operators occur between their arguments.

eog. A + B - C, B**2/C, (PoQ)

5

· .

Such operators in the_system are

scalar product of two binary
four vectors (see Section 2.4.2*)

** exponentation binary

/ division binary

* multiplication n-ary

subtraction (or unary minus) binary or unary

+ addition (or unary plus) n-ary

= equivalence binary

Parentheses may be used to specify the order of operation. If parentheses are

omitted, then the order of combination is by the precedence ordering given by

the above list (from innermost operations to outermost operations).

Prefix operators occur at the head of their arguments, which are

written as a list enclosed in parentheses and separated by commas, as in

normal mathematical functions.

e.g. LOG (X)

DET ((X, y), (y, X))

DF (X,X)

G (L,P,Q)

In REDUCE1, it is also possible to use the Stanford Burroughs B5500

ALGOL character set for operators. Thus the following operators are considered

equivalent.

*

=

x (68 punch)

(058 punch)

The character ; (-68 punch) may also be used instead 'of $.

ITP-247

6

•

However, in order that the system can recognize * as the exponentiation

operator when reading ALGOL, the user must use the command BMODE NIL (before

the BEGIN card as explained in the job setup instructions) to affect this.

In REDUCE2, the symbol l' may also be used to represent exponentiationo

Prefix operators in the system are

DET denotes determinant

DF partial differentiation of first a~gument with
respect to remaining arguments

LOG logarithm to base e

G gamma matrix expression

EPS completely antisymmetric tensor of degree four

These operators and the operator are described below.

2.4.1 Special Operators

(a) DET

n-ary

n-ary

unary

n-ary

quaternary

The operator DET is used to represent n X n determinants 0 DET

has n arguments interpreted as rows of the determinant each of which is

a list of n expressions. For example the determinant

A B C

D E F

G H J

would be written

DET ((A,B,C), (D,E,F), (G,H,J))

N.B. If the determinant is larger than 8 X 8, the present routines (which

expand recursively in terms of minors of the first row) become prohibitively

slow.

ITP-247

7

(b) DF

The operator DF is used to represent partial differentiation with

respect to one or more variables. The first argument is the scalar expression

to be differentiated and the remaining are the differentiation variables,

the order of the variables specifying the order of differentiation

dE
e.g. DF (E,X) - dX

() d (dE) DF E,X,Y == dy dx

d2E DF (E,X,X)==
dX2

etc.

where E is any scalar expression.

If substitutions (Section 2.7.3) have been declared for any variables in

E, then these substitutions are checked for dependence on the differentiation

variables.

(c) IDG

LOG is used to represent logarithms to base e, and is a function

of one argument, which is a scalar expressiono Little effort is made by

the system to simplify IDG expressions. They are differentiated correctly,

but no attempt at combination or expansion is made.

* 2.4.2 Operators Used in High-Energy Physics

(a)

The operator is a binary operator used to denote the scalar

product of two Lorentz four-vectors. In the present system, the index

handling routines all assume that Lorentz four-vectors are used, but these

routines could be rewritten to handle other cases.

ITP-247

8

Components of vectors can be represented by including representations

of unit vectors in the system. Thus if EO represents the unit vector

(1,0,0,0), (P-EO) represents th P , the zero component of the four-vector
o

P. Our metric and notation follows Bjorken and Drelle(3) Similarly, an

arbitrary component P~ may be represented by (PoU). If contraction over

components of vectors is required then the instruction INDEX must be used.

Thus

INDEX U $

declares U as an index, and the simplification of

(p·U) * (Q·U)

would result in

(p.Q)

Arguments of INDEX are also flagged as vectors.

The metric tensor g~v may be represented by (UoV). If contraction

over ~ and V is required, then U and V should be declared as indices.

During the index contraction phase, the system checks to see that all

indices declared are both matched and used in every term. If not, a terminal

error message results. If the user wishes to declare more indices than occur

in every term, the instruction IFLAG will turn off the check for redundant

indices, but not the check for unmatched indices.

The instruction REMIND VI ••• VN $ may be used to remove the index

(and vector) flags from the variables VI through VN~

(b) G

G is an n-ary operator used to denote a product of gamma matrices

ITP-247

9

contracted. with Lorentz four-vectors. Gamma matrices are associated with

fermion lines in a Feynman diagram. If more than one such line occurs,

then a different set of gamma matrices (operating in independent spin spaces)

is required to represent each line. To facilitate this, the first argument

of G is a line identification variable (not a number) used to distinguish

different lines.

Thus

G(Ll,P) * G(L2,Q)

denotes the product of r associated with a fermion line identified as Ll,

and ~ associated with another line identified as -L2 and where P and

Q are Lorentz four-vectorso A product of gamma matrices associated with

the same line may be written in a contracted form.

Thus

G(Ll, PI, P2 ••• , P3) = G(Ll, PI) * G(Ll, P2)* ••• *G(Ll, P3)

The vector A is reserved in arguments of G to denote the special gamma

matrix 7
5

•

Thus

G(L,A) = 7 associated with line L
5

G(L,P,A) = r*rs associated with line L.

7~ (associated with line L) may be written as G(L,U), with U flagged

as an index if contraction over ~ is required. The notation of Bjorken

and Drell(3) is assumed in all operations involving gamma matrices.

(c) EPS

The operator EPS has four arguments, and is used only to denote

ITP-247

10

the compl~tely antis~etric tensor of order 4 and its contraction with

Lorentzfour-vectors

Thus

€~Vp~ = +1 if ~,v,p,cr is an even permutation of 0,1,2,3.

-1 if an odd permutation

o otherwise

A contraction of the form €~vP~PqO'"' may be written as EPS(U,V,P,Q),

and so on.

2.5 Expressions

REDUCE expressions may be of four types; scalar, vector, matrix and

equivalence and consist of syntatically allowed sequences of numbers,

variables, operators, left and right parentheses and commas.

2.5.1 A scalar expression follows the normal rules of algebra subject

to the following restrictions:

(1) numerical exponents only are allowed in expressions. Furthe~ore, only

integer exponents are permitted in the standard rep!esentation of expressions 0

Again, this restriction is required by the greatest common divisor routines.

Conversion of expressions with real exponents to the required form is made

by the system and a message is printed to inform the user of thisQ

ITP-247

Examples of scalar expressions are:

x

X**3 -2*Y/ (2*Z**2 - DF(X,Z))

(P**2 + M**2)**(1/2)*LOG(Y/M)

(2.5*X - Y/l.2)**1.2

II

.... ---- -----_.

* 2.502 Vector Expre~sions follow the normal rules of vector combination.

Thus the product of a scalar expression and a vector expression is a vector

expression, as are the sum and difference of vector' expressions 0 If these

,rules are not followed, error messages occur indicating either the absence

of a vector variable, or the presence of too many vector variables in an

expression 0 Assuming P and Q have been declared vectors, the following

are vector expressions

P

P -2*Q

2*X*Y*P - (poQ)*Q/(3*QoQ)

whereas P*Q and p/Q are note

* 2.5.3 Matrix Expressions denote those expressions involving gamma

matrices. A gamma matrix is a 4 X 4 matrix, and so the product, sum and

difference of such expressions is again a matrix expressiono There are no

matrix variables in the system, and wherever a scalar variable appears in

a matrix expression without an associated gamma matrix, an implicit unit

4 X 4 matrix is assumed.

e.g. G(L,P) + M denotes G(L,P) + M*(unit 4 X 4 matrix).

N.B. multiplication of matrix expressions is of course non-commutative~

2.504 Equivalence expressions contain the equivalence operator,

Their general form is

(scalar vector or matrix expression) = (scalar vector or matrix expression)

ITP-247

12

for example.

X = 4 - Z/2

P = M

A*B = 4

The equivalence operator is binary, and so an expression of the form

A = B = C

is not allowed.

2.6 Kernels

A particular type of expression of great importance in the REDUCE

system is a kernel. It may be defined as one of the structures

(variable) (operator) (variable) for infix operators

or (operator)(variable), •••• (variable»)for prefix operators

where (operator) is one of the operators ** . G or EPS •

In cases where the arguments of these operators may be reordered,

the system puts the kernel arguments in a canonical order, based on the

intrinsic order of the variables (Section 2.7.2) and stores the kernels

uniquely~ We therefore define a kernel form as an expression of the form

given above, whose arguments are not necessarily in the canonical order.

ITP-247

Examples of kernel forms are:

A **2

p.Q

G(L,P,Q)

13

~ .

..

whereas

A*B

(A+B)**2

EPS(P,Q+R,S,T)

are not.

207 Functional Instructions

Functional instructions are instructions to the computer to perform

some operation. They consist of an instruction name, a list of arguments

(which may be empty), separated by commas, and an instruction terminator,

$ or . , Nearly all functional instructions -are described. in this

Section, but the user should consult Section 4.1 for a complete list~

Functional instructions may be divided roughly into two classes;

process instructions (or processes) which perform symbolic operations on

their arguments and output results to the user, and declaration instructions

which perform a variety of service operations prior to the call of a process

instruction, such as declaring variable types, setting flags controlling

output and setting up replacement tables. Process instructions may also

add to replacement tables as a by-product of their calculation 0

We shall illustrate the use of these instructions by considering first

the process SIMPLIFY.

2.7.1 SIMPLIFY (or SM)

The argument of SIMPLIFY is a scalar or matrix expression. The main

purpose of SIMPLIFY is to reduce this argument by expansion and collection

ITP-247

14

of terms to a quotient of two standard polynomial forms. The standard form

used by the system is similar in structure to toot of Go E. Collins~4) In

addition, a standard ordering of variables is used in expressions, and this

may be specified by the user. During this reduction, various types of

substitutions may be made for variables and kernels in the expression. In

addition, derivatives, determinants, contractions of indices and traces of

gamma matrices are calculated if required. The result of these operations

is then printed and stored for later use if needed.

Roughly, the operations of SIMPLIFY or its argument follow the follow

ing sequence:

(1) Substitutions of the first kind(described in Section 2.704)0

(2) Conversion to quotient of two standard polynomial forms,

including calculation of derivatives and determinants 0

(3) Index contraction and traces of y-matrix expressions if required.

(4) Substitutions of second kind (Section 2.7.5)0

15

(5) Cancellation of greatest common diviso~ if required (Section 2.7.8).

(6) output of results (Section 20709)0

A large number of declarations may be used in connection with SIMPLIFY

and most other processes. For example the instruction TITLE takes a single

argument which appears as a title on process output. Another simple example

is the instruction for ordering variables in expressions.

207.2 Ordering of variables is defined at read-in time, the variable with

the highest order being toot read first. This order is retained throughout

the calculation. All variables in expressions are ordered in terms of their

ITP-247

--

intrinsic order, and tqe speed of a calculation and the size of expressions

can depend on this order. For this reason it is wise to give variables which

occur most frequently the highest ordero

The instruction ORDER may be used to order variables, although the

position of variables as they are read in also determines their order~

Thus

ORDER X, Y, Z $

orders X ahead of Y, Y ahead of Z and all ahead of other variables in

expressions which follow~ ORDER should be the first instruction in a calcu

la tion (unless FACTOR is also used [Section 2.7.9 J), otherwise variables

introduced in earlier instructions will be ordered ahead of those in the

ORDER declaration.

Reserved variables (Section 502) already have an intrinsic order in

the system, and this cannot be changed by the user. In general, their order

is lower than any variable introduced by the user.

2.7.3 Substitutions

An important class of instructions are those which define substitutions

on variables and expressions in the argument of SIMPLIFY. These fall naturally

into two classes; substitutions on general expressions (substitutions of the

first kind) defined by the instruction MAKE and substitutions on standard

forms and quotients (substitutions of the second kind) defined by the instruction

LET.

2.7.4 Substitutions of First Kind

These substitutions are declared by the instruction MAKE. The argument

ITP-247

16

of MAKE is a list of equivalence expressions of the form

or

(1) (variable) = (expression)

e.g. X = Y**2 + 2

C = G(L,Q) + M

(2) (variable}(variable},(variable) •••) = (expression)

e.g. F(U) = U + 3

H(U,V) = G(L,U,V) -G(L,V,U)

In case (1), all occurrences of the variable on the left of the equivalence

sign are replaced by the expression on the right. Case (2) defines a

functional substitution. All occurrences of the functional name are considered

as a function with the declared number of arguments and the appropriate sub-

stitutions. If the number of arguments do not match an error occurs. For

example, with the above substitutions the expression

X**2 + 2*X*F(Y+Z)

becomes

(Y**2+2)**2+2*(Y**2+2)*((Y+Z)+3)

If the left hand side of an equivalence expression is redefined by a

later call of the instruction, the previous expression is replaced by the

new one, and a diagnostic message printed to inform the user.

The instruction

CLEAR Vloe. VN $

may be used to remove the variables VI through VN from the replacement

tables. In the case of functional definitions only the functional name

should appear in the arguments of C~R. If any of the variables VI through

VN are not found, a diagnostic message is printed.

ITP-247

17

-

2.7.5 Substitutions of the Second Kind

These substitutions, which define replacements in standard forms, are

declared by the instruction LET. The argument of LET is a list of equivalence

expressions of the form:

(1) (variable) = (expression)

(2) (kernel form) = (expression)

Examples are

x = y + Z

PI = Q - 2*M*R/(Ml+M2)

(P.R) = (S - M**2)/2

Y**3 = 2*Z - 3

The implementation of these substitutions is very efficient, as they

are defined in terms of kernels which are stored uniquelye

In most cases, the instruction MAKE is sufficient for defining replace

ments for scalar variables. However, if the instruction RSM is following,

LET must then be used, as explained in Section (2.7.10). In addition, LET

should be used in cases where it is obviously more efficient to make the

substitution after reduction to standard forms rather than before ~

Substitutions of the form (2) allow additions of real exponents to the

system in a convenient mannero For example, suppose the expression

(P**2 + M**2)**O.5 (a)

is required in a calculation. By setting

X**2 = P**2 + M**2 (b)

ITP-247

18

..

then X can be used ta represent the root, and the system will replace all

even powers of X by the appropriate number of powers of P**2 + M**2. Any

derivatives with respect to variables in such statements are made correctly.

If an expression of the form (a) is encountered during simplification, it is

automatically replaced by a new variable and a substitution of the form (b)

generated. A message is also printed to inform the user of this

e.g. (P**2 + M**2)**(1/4) REPRESENTED BY G0123

The remarks on redefining equivalence expressions and the instruction

CLEAR in Section 2.7.4 also apply to LET.

2.7.6 Asympotic Constraints

In expansions of polynomials involving variables which are known to

be small, it is often desirable to throwaway all powers of these variables

beyond a certain point to avoid excessive unnecessary computation. The

instruction LET may be used conveniently to do this. For example, if only

powers of x up to x7 are needed, the instruction

LET x**8 = 0 $

will inform the system to keep the required terms and delete all otherso

2.7.7 Limitations in use of MAKE and LET

There are several features of these instructions of which the user

should be aware.

First, no variable on the left of a replacement expression may appear

in the right of the same expression.

Thus

x = X + Z, Y = Y

ITP-247

19

would be incorrect ar~ents of MAKE or LET.

Secondly, a check is made at the end of every instruction call for

variables or functions in the righthand side of each expression which are

themselves replaced in another substitution of the same kind. Thus a call

of

MAKE X = Y + Z, Z = L + M $

would result in the X replacement being stored as

X=Y+L+M

If Z were redefined by a further call of MAKE, the replacement for X

would change accordingly. However a call of the- instruction CLEAR Z $

would not change the definition X, and a subsequent definition of Z would

have no effect on X.

As a consequence however of the checking facility of - MAKE and LET,

any implicit substitution of a variable in terms of itself is not allowed.

Thus

MAKE L = M + N, N = L + R $

is illegal 0

It should be noted that MAKE and LET replacements are kept entirely

separate in the system and no checking for common substitutions is made between

them.

Lastly, there are several key variables which cannot appear in the

left half of substitutions. If one of these is used, a diagnostic message will

be printed stating that the replacement was not allowed. For example, system

prefix operators cannot appear in the left half of equivalence expressions.

ITP-247

------- ------------ -- --- -- - - --- ------- --- - - ----------------------------------

20

-

2.7.8 Cancellation of Common Factors

Facilities are available in REDUCE for cancelling common factor~v~p

the numerators and denominators of expressions, at the option of the user.

If required the system computes the greatest common divisor of the numerator

and denominator using an algorithm due to G. Eo Collins(5) and cancels this

divisor from the relevant terms. Unfortunately, large integers outside the

single-precision range of the present system are often generated and will

result in a terminai error condition if encountered. It is hoped to remedy

this by introducing multiple or arbitrary precision arithmetic in the near

future. The instruction FACIT causes the system to check for common factors,

while NOFAC returns the system to its normal state.

A check is automatically made, however, for common kernels in the

denominators of expressions. These are divided into the numerator, which

may result in negative exponents appearing in printouts of results, even

though only positive powers are kept in standard forms.

2.7.9 Output of Expressions

A considerable amount of effort has been devoted in REDUCE to the

printing of expressions in the most convenient and readable form. For

example, infix operators are set off by spaces, the number of spaces being

(inversely) dependent on the precedence of the operator; thus ** has no

spaces each side whereas has four. The standard form of output of an

expression is as a list of terms, single spaced and filling the whole print

line. However, the user has at his disposal a wide range of declarations

which modify the printing, none of which need be used if not required.

ITP-247

21

" . 22

These are:

(a) FACTOR. This instruction takes a list of scalar variables as argument.

FACTOR is not really a factoring command, but rather a separation command.

All terms involving fixed powers of the declared variables are printed. as a

product of the fixed powers and a sum of the rest of the terms. An example

of such factorization is shown in Section 302. In order for the relevant

algorithm to operate efficiently variables being factored should have

highest order .. Thus the FACTOR command should be the first command in the -
program (preceeding even an ORDER command) for efficient operation. The

instruction REMFAC VI,o.VN $ removes the factoring flag from the variables

VI through VN 0

(b) LISTIT. Often the output is easier to handle if each term is printed

on a separate line. The declaration LISTIT achieves this, and may be

turned off by using NOLIST.

(c) SPACEIT. This instruction with no arguments may be used to double

space output in REDUCEl only. NOSPACE, similarly, returns printing to the

normal form.

(d) PlmCHIT and PFORT are punching instructions (with no arguments)

available in REDUCEl onlyo Punched output is designed for use as source

program in numerical calculationso The former instruction punches expressions

close-packed in ALGOL notation (compatible with Burroughs B5500 input),

whereas the latter punches FORTRAN IV-compatible output. Cards punched by

PUNCHIT may also be used as input in REDUCE calculations provided ALGOL

input has been declared (Section 2.4). Punching may be discontinued by using

NOPUNCH.

ITP-247

23

2.7.10 Further Manipulation of SIMPLIFY Output may be achieved in a variety

of ways.

First, the results of all process calculations are saved as a quotient

of two standard polynomial forms which may be further reduced by the instruction

RSM. The user can make further substitutions (using LET), and change factor-

ization and output conditions before "resimplifying" the result. New sub-

stitutions of the first kind (using MAKE) will have no effect as all reductions

are made on standard forms.

After the expression has been "resimplified" its new value is stored in

the system and so the "resimplification" process may be continued indefinitely 0

Secondly, the argument of SIMPLIFY only (not other processes) may be

an equivalence expression of the form
--

(1) (variable) = (expression)

or

(2) (variable) (variable),o •• (variable») = (expression)

as in arguments of MAKE. In this case the expression on the right of the

equivalence is simplified as before and stored as a substitution of the firs"t

kind with the left of the equivalence. It may then be used in further process

calculations ..

Thus it is possible to have the ~ argument for MAKE, LET and SIMPLIFY,

but the effect is entirely different. Consider, for example

MAKE X = DF (Y**2, Y) $

LET X DF (Y**2, Y) $

SM X = DF (Y**2, Y) $

ITP-247

•

In the first and second cases, the replacement would be stored as it

is on different tables to use as a substitution on general expressions or

standard forms respectively. In the third case, the right hand side would be

simplified to give

2~

and so the system would store the replacement

X = 2~

as a substitution of the first kind.

Lastly in REDUCE2 the user can save the result of a simplification by

calling the function SAVEAS after the relevant call of SIMPLIFY. The argument

of SAVEAS is a variable or functional form as in the left half of MAKE

arguments. The result is then saved as a substitution of the first kind. This

command-is useful mainly in time-shared operation.

2.7.11 Adding Results of Process Calculations

If the user requires the sum of a series of process calculations the

declaration SUMIT will cause the cumulative results of all processes after

that call of SUMIT to be saved rather than each resulto The results of each

process will be printed as usual. A call of RSM will then cause that sum to

be reduced and printed. Furthermore, the instruction TOTAL will print the

cumulative result without checking for new substitutions. Both RSM and TOTAL

turn off SUMIT, so it must be set again if required later. A call of SAVEAS

will save the cumulative results of all processes rather than that immediately

preceding if SUMIT is active.

ITP-247

24

2.7.12 Numerical Evaluation of Expressions is also possible in REDUCE by

replacing variables and kernel forms with numbers using MAKE and LET. It

should be pointed out however that the arithmetic routines in LISP are not

very efficient and it is wiser to use results as FORTRAN or ALGOL source

decks if extensive arithmetic is required.

2.7.13 Other Processes

There is one other process instruction presently available in REDUCE,

but more will be added as the need arises. This instruction is only of interest

to high-energy physicists and is described below.

* 2.7014 REDUCE

The argument of REDUCE is a matrix expression corresponding to one

fermion line. REDUCE converts the expression to a quotient of two standard

polynomials, expressing in the process all gamma matrix products in terms of

the 16 fundamental gamma matrices.

Furthermore it is possible to left or right anticommute a vector in a

gamma expression to the end of the expression, where it will be replaced by

its mass (if defined) by assuming an implicit spinor and applying the Dirac

equation. Three declarations are available for thiS, namely

MASS PI = Ml, P2 = M2 etc $

which assigns a mass Ml to variable PI etc, and

LCOM P, Q. 0 0 R $

and

RCOM P,Q, ••• R $

ITP-247

25

which declare left and ~ight anticommutation for the relevant variables in

products of gamma matrix expressions respectively and which must come after

the mass declaration. If any of these fermions are antiparticles, the

declaration

ANTIPTL P,Q.~.R $

will ensure that the relevant vector is replaced by the negative of its mass.

The instruction REDUCE is not normally part of the system but is

available on request.

2.8 Spacing

In general, spaces in input programs are ignored by REDUCE except where

they are required to avoid confusion. The user may therefore use spaces to

set out his program as he wishes subject to the following simple restrictions:

(i) spaces may NOT occur between the individual letters of variable names;

(ii) a space MUST occur after the instruction name in a functional instruction;

(iii) a space MUST occur after the $ or ; at the end of the instruction.

In REDUCEl, columns 1 through 72 may be used. for program 0 In addi tien,

all card boundaries and, in REDUCE2, file boundaries, carriage returns, line

and form feeds and tabs are ignored and CANNOT be used in lieu of necessary

spaces as defined above.

ITP-247

26

SECTION 3. EXAMPLES

In this Section we give simple examples of REDUCE programs of increas-

ing complexity. These programs have all been run on the Stanford PDP-6 and

results in most cases are given. The user can easily check his knowledge of

the system by writing his own versions of each problem and running them.

The job instructions for the relevant machine (Section 4.4) should be

consulted for details of system loading and program input.

All these examples were first set-up as files in the PDP-6 system

(roughly the equivalent of a card-deck for the 7090), and the whole file

run as explained in the job-instructions (Section 404.2). Alternatively,

each instruction could be typed and the user wait for results before proceed-

ing to the next instruction. An example of this form of operation is given

in Section 4.4.2.

Times taken for running these examples are not quoted, but were all of

the order of a few· seconds or less.

3.1 Differentiation and Determinants

The first program is designed to calculate the following partial

derivatives:

1)

2)

3)

4)

ITP-247

d dX (x2 + y2)

d2 (x2+ y2)
~ x2_ y2

+

d2 log(x2+y2)
dXdY x2

d2 [x2+y2 x2_y2
dXdY (x+2y) x+y y

}

27

A possible program would be:

SM OF(X**2+Y**2,X) $

SM DF«X.*2+Y**2)/eX**2-Y**2),X,Y) $

, SM OF (L.OG (X**2+Y**2) 1X**2,X,Y)$

SM DF«X+2*Y)*DETe(X**2+Y**2, X**2-Y**2) , (X+Y, Y»,X,Y)'

+ DF(DET«X**2,Y),(Y**2,X»,X,Y) $

END $

,where we have split the fourth derivative into two parts for variety.

(Remember that SM is an alternative f~r.m for SIMPLIFY)

'Alternatively, we could make use of the fact that x2+y2 and

x2 _y2 . occur often to write instead

MAKE p: X**2+Y**2, Q= X**2-Y**2S

SM OrCP,X) $ SM DFCP/Q,X,Y) $

SM DF(LOGCP)IX**2,X,Y)$

SM OF (eX+2*Y) *DET «P,Q) , (X+Y, Y» ,X, Y)+OF (DETe (X**2, '() ,

CY**2 ,X)) ,X ,Y) $

END $

The results of running this 'program are:

ITP-247 I ,

28

29

,
, MAKE

Q -+ p --
*

SM DF (P ,X);

2. * X

*
SM OF (P I Q ,X , Y) ;

e- 6. * X**5. * V + 6. * X * V**5~) I eX**6. 4. * X**~
• * V**2. + 6. * X**4. * y**4 •. -4. * X**2. * V**6. + V**8
.)

*
SM DF(LOG(P) I X~*2 •• X,y);

(6. * X * Y
y**5.) / (X**G. +

12. * X**C-l.) * Y**~. - 4. * X**C-3.) *
3. * X**4. * Y**2~ + 3. * X**2 •. * y**4. +

y**6.>

*
SM DF«X + 2. * Y) * DET«P,Q),(X
DE! C ex**2., Y) • (Y**2. ,X)) ,X ,Y) ;

y , y)) ,X ,Y) DF(+ +

+. 4. * X * Y +
~ .

*

•

L

In calculating the second derivative the system did not cancel a

common factor in numerator and denominator. We illustrate in the next

program how this could be done

Results of running this program are:

FACIT

*

• ,

DF «X**2.
Y**2.),X,Y)·;

(_ 8. * X**3. * Y - 8. * .x * y**3.> I (X**6 •
• * Y**2. + 3. * X**2. * Y**4. - Y**6.>·

*

Alternatively, we could print results before and after cancellation as in

_ the following program

SM -OF «X**2+Y**2) /(X**2-Y**2) .X ,Y) $

FACIT $ RSM $ END $

3.2 Expansion of Polynomials

This example is part of a larger calculation which arose in a

design engineering problem. Our aim is to expand the following expression

and examine the coefficients of x and y

ITP-247

30

----------~--- ..•.. -

•

f • r2 X rp2(x2+y2+s2_l2)«x~m)2+y2+sp2~LP2)

+ 2m x r2 X rp X sp«x-m) cos(ap)-y x sin (ap»

(x2 +y2+s2_L2) _ 2m x r X rp2 X s(x X cos(a)-y X

- ~in (a» «x_m)2+y2+sp2_lP2)

As no expansion or differentiation of the sines or cosines is required, they

can easily be incorporated by expressing each as a variuble. Thus we write

COSAP for cos(ap) and so on.

The most straightforward way to input the problem is to type in the

whole expression, asking also for "factorization"-of x and y in order

to examine the coefficients more easily, as in the following program

FACTOR X,Y $
. --

SIMPLIFY R**2*RP**2*CX**2+V**2+S**2-L**2>.«X-M)**2+Y**2

+sp**2-L?**2) +2* MtcR**2*RP*SP* «X -MJ*COSAP-Y*SI NAP)*

(X**2+Y**2+S**2-L**2) _2*M*R*RP**2*S*<X*COSA -Y*SI NA >*

«X-M)**2+Y**2+SP**2-LP**2) $

END $.

However, much less typing in involved if we observe that several

terms have the same functional structure as in the next program. In addition,

after calculating the required result we have defined substitutions for y, rp,

sand sp (using LET, since the substitutions are made on standard forms)

and "resimplified" the result. We have aiso used 1'. instead of ** to denote

exponentiation. Note however that the system prints results in the latter

form.

ITP-247

. .
_~ _____ ~._.,_. __ -. ~_ •• ," • __ • _ ,, ___ • ,· _. __ •• ~a __ _

FACTOR X ,VS

MAKE Fl (X,W ,Z) = Xt2+Yt2+Wt2-Z t2 ,

Xl: FI(X,S,L), X2= FI(X-M,SP,tP) $

SM Rf2.RPt2*Xl*X2 + 2*M*Rt2*RP*SP*«X-M>*COSAP-Y*SINAP>*

Xl - 2*~R*RPt2*S*(X*COSA-Y*SINA>*X2 $

LET RP =, X+M, 5= 0, SP= 0, y= 4 $.RSM $ END $

Results of this calculation are:

FACTOR X, Y; ,

(y X).

MAKE FI(X,W,Z) : X**2.
Xl : Fl(X,S,L),

+ Y**2. + W**2. Z**2.,
X2 : F 1 (X M ,5 P ,LP) ;

*

32

SM . R**2. * RP**2. * Xl * X2 + 2., * PI * R**2. '" RP * SP * «X
M) * COSAP Y * SINAP) * Xl - 2. * M * R * RP**2. * S

.* ex * COSA Y * SINA) * X2J

X**4. *
(R**2. * RP**2.)

+ X**3. *
(2. * S * M * R * RP**2. * COSA +
* COSAP 2. * M * R**2. * RP**2.)

+ X**2. * Y**2. *
(2. * R**2. * RP**2.)

ITP-247

2. * M * SP * R**2. * RP

..

33

+ X**2. * Y * -
(2. * 5 * M * R * RP**2. * SINA - 2. * M * 5P * R**2. * RP * SINA
P)

4. * s· ~ M**2. * R • RP**2. * COSA
2. * M**2. * SP * R**2. * RP • COSAP

-+ X**2. '*
(5**2. * R**2. * RP**2. +

L**2. * R**2. * RP**2.
+ M**2. * R**2. * RP**2.
* R**2. * R?**2.>

-
+ SP**2. * R**2. * RP**2. LP**2.

+ X * Y**2. *
(2. * S * M * R * RP**2. * COSA + 2. * M * SP * R**2. * RP
* COSAP 2. * M * R**2. * RP**2.>

+ X * Y *
4. * S * M**2. * R * RP**2. * SINA) .(

+ X * (2. * 5**2. * M * SP * R**2. * RP * COSA? - 2. *' 5**2. * M * R**2
• * RP**2. 2. * S * M**3. * R * RP**2. * COSA 2. * S * M *
S?**2. * R * RP**2. * COSA + 2. *·5 ~ M * LP**2. * R * RP**2. * C

OSA '2. * L**2. * M * SP * R**2. * RP *COSAP + 2. * L**2. *
M * R**2. * RP**2.)

+ Y**4. *
CR**2. * RP**2. >

+ Y**3. *
(2. * S * M * R * R ?**2. * S I HA
P)

2. * M * SP * .R**2 •. * RP * SINA

+ Y**2. *
(S**2. * R**2. * RP**2. L**2. * R**2. * RP**2.
* S? * R**2. * RP * COSA? + M**2. * R**2 •. * RP**2.

.R**2. * RP**2. - LP**2. * R**2. * RP**2.)

2. * M**2.
+ SP**2 •. *

+ Y * (2. * S**2. * M * SP * R**2. * RP * SINAP + 2. * S * M**3.
* R * RP**2. * SINA + 2. * 5 * M * S?**2. * R * RP**2. * SINA

2. * S * M * L?**2. * R * RP**2. * SINA + 2. * L**2. * M * SP *
R**2. * RP * SINAP)

2. * S**2. * M**2. * SP * R**2. * RP * COSAP +
2. * R**2. * H?**2. + 5**2. * 5P**2. * R**2. * RP**2.
. * L?**2. * R**2. * RP**2. + 2. * L**2. * M**2. * S? *

COSA? L**2. * M**2. * R**2. * RP**2. L**2 •. *
2. * RP**2. + L**2. * LP**2 •. * R**2. * RP**2.

*

ITP-247

5**2. * M**
5**2 •

R**2. * RP *
SP**2 •.• R**

LET RP : . X s , SP y
: -- :

4. ;

*

RSM ;

+ . X**4. *
(L**2. * R**2.
+ 32. * R**2.>

-
+ X**3. *

2. * M * LP**2. * R**2. (
+ 32. * M * R**2.)

+ X**2. * (2. * L**2. * M**2. * R**2. + L**2. * LP**2. * R**2. 16. *
L**2. * R**2. + M**~. * R**2. M**2. * LP**2. * R**2. - 1
6. * M**2. * R**2.· 16. * LP**2. * R**2. + 256. * R**2.>

+ X * (2. * L**2. * M * LP**2. * R**2. - 32. * L**2. * M * R**2.
32. * M * LP**2. * R**2. + 512. * M * R**2.> "

L**2. * M**4. * R**2. + L**2. * M**2. * LP**2. * R**2. -
16. * L**2. * M**2 •. * R**2. + 16. * M**4. * R**2. 16. * M

2. * LP2. * R**2. + 256. * M**2. * R**2.

*
Alternatively, we could have saved the answer to the first part as

the variable F, say, and ,called SM again after defining the substitutions
\'.

(us ing MAKE or LEr this time) as follows

ITP-247

FACTOR X,Y $

Ml\KE F1 (X ,W ,Z) : Xt2+Y,,2+W,,2-Z ,,2,

Xl: Fl(X,S,L), X2= Fl(X-M,SP,LP) $.

SM F : R,,2*RP,,2*Xl*X2 + 2*M*Rt2*RP*SP*«X-M)*COSAP-Y*SINAP>.

Xl - 2*M*R*RPt2*S*(X*COSA-Y*SINA)*X2 $

MAKE RP : X+M, S= 0, SP= 0, y= 4~ $ SM F$ END $

This calculation would have been a litt~~ slower than the previous example,

because the system has to convert F to standard forms again.,

* ,., Calculation of Lowest Order Compton Scattering Cross-Section

We reproduce here as an example of a simple calculation in high

energy physics the computation of the Compton scattering cross-section as

given in Bjorken and Drell,(3) Eqs. (7.72) through (7.74).

We wish to compute

where k
i

, k
f

are the four-momenta of incoming and outgoing photons (with

polarization vectors € and E' and laboratory energies k and k'

respectively) and ~i' Pf are incident and ~ electron four-momenta.
a,2 4"

Omitting the factor' --a (~k)2 we need to find
8m

ITP-247

35

..

~he most straightforward REDUCE program for this, with appropriate sub-

'stitutions wo~ld be:

LET PI.E,: 0, PI .EP,:' ra, PI.PF: M**2+KI .KF" PI .KI: M*K ,PI .KF:

~KP,PF.E= -KF.E, PF.EP: KI.EP, PF.KI= M*KP, PF.KF=

M*K,' KI-.E: 0, KI'.KF: M*(K-KP), KF.EP: 0, E.E= -1, EP.EP:

-1, PI.PI: M**2. PF.PF: M**2, KI.KI: 0, Kr.KF;: 0,
:' Tl TLE CQMPTONCXN ;
SIMPLIFY (G(L,PF)+M).(G(L,EP,E,Kl)/(2*KI.PI) + G(L,E,EP,KF)/

(2*KF.PI» * (GCL,PI)+M)*(G(L,KI t EP,E)/(2*KI.PI) +

G(L,KF,~P.E)/~2.KF.PI» ;

END $

. However, we can use the replacement facilities to decrease the amount of

input, as in the following program. This calculation will also' run faster,

too, because the system makes ~se of the MSHELL information while calcu

lating the necessary traces. (MSHELL is described in Section 4.1~
;.

ITP-247

(-
0'

~SS KI: 0, KF: 0, PI = M, PF: M;

MSHELL KI,KF,PI,Pr;

,

LET PI.E: 0, ?I.EP: 0, PI.PF: M**2+KI.KF, PI.Xl: M*K,Pl.KF:

M*KP, ?F.E: -KF.E, PF.EP: KI.EP, PF.KI= M*KP, ~F.KF:

. M*K, KI.E: 0, KI .KF= .M*(K-KP)·, KF .EP: 0, E.E: -1, EP.EP:

~1 ;

MAKE GP,?): G(L,P)+ M;

TITLE COMPTONCXN;

SM GP(PF)*(G(L,EP,E,KI)/(2*KI.PI) + G(L,E,EP,XFl/(2*KF.PI»

* GP(PI)~(G(L,KI.E,EP)/(2*KI.Pl) + ~(L,KF,EP,E)/(2*KF.PI» ;

END ;

ResuJ.ts are:

MASS KI 0., KF PI M, PF --0., --: --
*

MS HELl. KI, PI,o Pr;

*
LET PI.E - 0., PI.EP - o 0., PI .• pr : M**2. + - -, PI .X I : M * .K, PI.KF : M * KP, PF.E

- KF.E, ?F.E? - KI .EP, PF.KI = f'1 * KP t -
: M * K, KI.E - "., KI.KF - M * (K ~ KP), - -- 0., E.E - •.

o 1 • , EP.EP - : • 1 • ; - - -
*

ITP-247

37

. KI .KF --
Pr .XF
KF.E?

.' 38
,/ '

GPCP) :' G (l. ,P) + M; .

*

. TI Tl.E COMPTONCXN;

*
SM GP(PF) * (G(l.,EP.E,KI) I (2. * .KI.PI) +
• * KF.PI» * GP(PI) * (G(l.,KI,E,EP) I (2. * KI.PI)

G(L,E,EP,KF) / (2
+ G(l..,KF,EP,E)

I(2. * K F .P I)) ;

COMPTONCXN --
2. * K * KP**(-l.)
4. '

*

+ 2. * ,K**(-l.> * .KP +

* 3.4 Calculation of Basic Traces in Radiative Corrections to Electron

Positron Scattering

The program below, which was designed to study the basic traces in

radiative corrections to ~lectron positron scattering is presented without

comment as an example of a fairly complicated calculation. Results, which

cover many page~are not given.

IT~-247

US1·I T ;

VECTOR P,Q,H ,5, T ,U , V ,W ,P 1 ,P2,P 3,P 4 ,K ;

~.A~{E GP(P): GCl.,P)+C'l, Hep): GCl.,P),

~SS ?: M, Q: M, R: 0, 5,: M, T: M;

MSHELl. P ,Q ,R ,5, T; LET R.W: 0;

It;OEX 'vi;

~KE X1CP,Q): 2*CU.V)+4*~CP.U)*(Q.V)+CP.V)*(Q.U»/PHOP ;

SM X2(P,Q,R): _GP(P)*H(U)*GPCQ+R)*H(W)*GPCQ)*HCW)*GPCR+Q)
*HCV)/(4*CQ.R),2*PROP) ;

SM X4(P,Q,R): GPCQ+R)*H(U)*GPCP)*H(W>*GPCP-R)*H(V)*GPCQ)
*HCW)/C4*CQ.R>*<P.R>*PROP) ;

PAUSE; REMIND W;

S~ X3(P,Q,R)=G?CP)*H(U)*GP(Q>*H(V)*G~(P+R)*H(W)/(2*CP.R»;

SM X31'P,Q,R)=~PCP+R)*HCU)*GPCQ)*H(V)*GP(P)*HCW)/(2*CP.R»;

INDEX U,V,W;

SM X5(P,Q,S,T,R): _GP(P)*H{U)*GPCQ)*H(V)*GP(S)*H(W)*GP(S+R)*
H(U)*GP(T>*H(W>*GPC1-R>*H(V) *(2*S.R>*(-2*T.R) ;

SM X6(P,Q,S,T,R): _GP(P>*H(U>*GP(Q)*HCV>*GP(S)*H(W)*
GP(S+R)*HCU>*GP(T>*HCW)*GP(T-R>*HCV) *(-4*S.R*T.R);

SM X7CP,Q,S,T,R): - GP(P>*H(U)*GP(Q>*HCV>*GP(S)*H(U>*
GP(T+R)*H(W>*GP(T)*HCW)*GP(T+R>*H(V) *C-4*S.R*T.R);

PAUSE; REMIND u,v,W;

SM YA (P,Q,R,S, T): 'XI (P ,Q)* (X2 (5, T ,H)+2*X4(S, T ,H)+X2 (T ,s, -R »;
SM YB (P , Q ,R , S , T): -2* (X 3 (P , Q ,R) +X 3 (Q , P , -R)) * (X:5 1 (S , T , -R) +

X31(T,S,R» ;.

SM' ye (P,Q ,H ,S,T): 2*(X5(P,Q ,5 ,T ,H)+X6(P ,Q ,S ,T ,R)+X6(T ,P ,Q ,5,R)
, + X7 (1 ,P ,Q ,5 ,R » ; . '.

END ;

ITP-247

39

SECTION 4. SUMMARY OF SYSTEM

4.1 Instructions Normally Available in REDUCE

Notation: E, El ••• EN denote expressions

Ul, ••• UN denote lists

VI, .o.VN denote variables

The number after the description refers to the section in which the instruction

is described.

BMODE NIL
(REDUCEl only)

CLEAR VI. ~VN $

CONT $
(REDUCE2 only)

EJ:iID $

declares ALGOL character set for input. (MUST occur before
BEGIN card) 0 (2.4)

removes variables VI through VN from replacement tables.
(2.7.4)

instruction to continue evaluating REDUCE file (see PAUSE).

terminates calculation. (2.1)

FACIT $ instruction to cancel common factors in numerator and
denominator of results. (207.8)

NOFAC $ turns off cancel instruction. (207.8)

FACTOR VI, •• VN $ declares a list of variables as factors in the ans""f'Ter"
Returns list of current factor variables. (2.7.9)

HEMFAC VI ... VN $

FLOATIT $
(REDUCE2 only)

NOFIDAT $
(REDCJCE2 only)

IFLAG $

INDEX VI, •• VN $

ITP-247

Removes arguments from list of factoring variables~ (2.7.9)

instruction to use real rather than integer arithmetic. (202)

instruction to return to integer arithmetic. (2.2)

turns off error check for unused indices as defined by
INDEX. (2 a 4 .2)

declares arguments as indices and flags them as vectors.
Returns list of current indices. (2.4.2)

40

REMIND VI •• VN $

LET El, •• EN $

LISTIT $

NOLIST $

MAKE El, •• EN $

MASS El, •• EN $

MSHELL VI •• VN $

ORDER VI •• VN $

PAUSE $
(REDUCE2 only)

ITP-247

removes index (and vector) flags on arguments. (2.4.2)

declares substitutions of second type. Arguments are
equivalence expression of the form:

(scalar variable) = (scalar expression),

or

(vector variable) = (vector expression),

or

(kernel form) = (expression). (2.7.5)

declaration to list output one term to a line. (2.7.9)

turns off above. (2.7.9)

declares substitutions of first type. Arguments are
equivalence expressions of the form

(variable) = (expression)

or (function name) (argl), •• (argn») = (expression).
(2.7.4)

Arguments are equivalence expressions of the form

(vector variable) = (scalar variable).

Where applicable, the scalar variables are now interpreted
as masses belonging to the corresponding vector variables.
The vector variables are also flagged as vectors in the
system. (2.7.14)

Arguments are vector variables. For each variable, is a
mass has previously been assigned (by MASS), a llmass
shell" substitution of the second kind of the form, for
example

(p .p) = M**2

is set up.

specifies canonical order for variables 0 (2.7.2)

this instruction causes the system to stop during the
running of a REDUCE file and a message CONT? to appear
on the user's teletype. If Y is now typed, the
calculation continues. If any other character is typed
the user may then input further program from the teletype.

41

PFORT $
(REDUCEl only)

PUNCHIT $
(REDUCEl only)

NOPUNCH $
(REDUCEl only)

PRINREP $
(REDUCE2 only)

RSM $

SAVEAS E $
(REDUCE2 only)

SUMIT $

SPACEIT $
(REDUCEl only)

NOSPACE $
(REDUCEl only)

SIMPLIFY E $
or SM E $

TITLE V $

TOTAL $

If the user desires later to return to the point in the
file where the PAUSE occurred, the instruction CaNT $
achieves this.

instruction to punch relevant output in FORTRAN 4-compatible
form. (2" 7 .9)

instruction to punch relevant output in ALGOL - compatible
form. (2 • 7 .9)

turns off punching modes. (2.7e9)

prints current replacement table (of all types of sub
sti tutions) •

re-simplifies output from previous calculation 0 (2.7.10)

saves the result of the last call of a process instruction
as a substitution of the first kind. E has the same form
as the left half of an argument of MAKE. (2.7.10)

tells system to add results of each process calculation
so that RSM or TOTAL prints cumulative results. (2.7.11)

declares double-spaced output, unless punching is called
for, when it has no effect. (2.7.9)

turns off double-spacing. (2.7.9)

E is an expression which is reduced as explained in
Section (2.7.1).

V is printed at top of output. (2.7.1)

prints results of previous calculation, or cumulative
results if SUMIT declared. (2.7.11)

VECTOR Vl,.oVN $ declares list of vector variables as vectorso (2.3)

ITP-247

42

4.2 Reserved Variables

We list here all variables, operators, and instruction names which

remain in REDUCE once the BEGIN command has been callal. Not all of these

are reserved in the strictest sense, as .an instruction name for example

could be used as a scalar variable without calamity, or a reserved scalar

variable could be used as a vector variable and so on. All these names

have an intrinsic order in the system which cannot be changed 0

Reserved scalar variables: E (reserved in numbers only), I

Reserved vector variables: A

operator names: DET, ~F, EPS, G, LOG

Instruction names: BEGIN, CLEAR, CONT, END, FACIT, FACTOR, FLOATIT,

IFLAG, INDEX, LET, LISTIT, MAKE, MASS, MSHELL,

NOFAC, NOFLOAT, NOLIST, NO PUNCH , NOSPACE, OFnER,

PAUSE, PFORr,PUNCHIT, PRINREP, REMFAC, REMIND,

RSM, SA~S, SIMPLIFY, SM, SPA CEIT , SUMIT, TITLE}

TOTAL, VECTOR.

ITP-247

4.3 REDUCE Diagnostic and Error Messages

Diagnostic messages in the REDUCE system are of two basic types,

terminal error messages and warning messages. The former result in the

termination of the calculation whereas the latter warn the user of some action

by the system which may also indicate possible errors on his part but do not

cause the calculation to terminate. A terminal error may also indicate a

system error, and for this reason the messages are listed under three headings,

(1) messages indicating terminal errors on the part of the user,

(2) diagnostic warning messages,

(3) messages indicating terminal errors due to system failure.

The messages listed are usually accompanied by a printout of diagnostic

information which may be useful to a consultant or a person who understands

the working of the system. In particular_REDUCEl error printouts are headed

by a message ERROR NUMBER *Al*, indicating an error called by the REDUCE

program rather than a LISP system error message.

ITP-247

44

4.3.1 Terminal Error Messages

DET MISMATCH

NUMERICAL EXPONENTS REQUIRED

LOG 0 UNDEFINED

MISMATCH OF ARGUMENTS
(REDUCE2 only)
(In REDUCEI, this error causes
system errors F2 or F3)

MISSING VECTOR

REDUNDANT VECTOR

READ ERROR }
SYNTAX ERROR:

UNMATCHED OR UNUSED INDICES
(list of relevant indices)
DECLARED

0/0 FORMED

(variable) HAS NO MASS

length of rows and columns of a
determinant are not equal 0

exponents must be numbers.

zero argument for log operator
detected.

a functional substitution declared
by MAKE occurs with wrong number of
arguments in an expression.

a vector expression lacks a vector.

a vector expression involves erroneous
product of vectors.

indicate errors in program input.

a check is made to ensure all indices
declared by- INDEX are usedand matched.
Provided those indices which are used
are matched, it is possible to turn
off check for unused indices by using
IFLAG. (2.402)

system has detected 0/00

a mass is required for this variable.
(May also appear as a diagnostic
message.)

The following message indicates that the problem, in its present form,

is too large for the system. Often a rearrangement of substitutions will

allow the problem to run, and, in any case, a consultant's advice should be

sought.

In REDUCE1: ERROR NUMBER *GC2*

In REDUCE2: NO STORAGE LEFT

ITP-2 47

• 46

4.3.2 Diagnostic Messages

ITP-247

NEW REPLACEMENT DEFINED FOR
(expression)

READ ERROR MISSING OPERATOR

READ ERROR REDUNDANT OPERATOR

REPLACEMENT (expression)
NOT ALLOWED

UNKNOWN CHARACTER

(expression) NOT FACTORABLE

(expression) REPRESENTED BY
(expression)

(expression) NOT DEFINED

(variable) NOT FOUND

LET or MAKE has been asked to replace
the same expression twice) the new
replacement is then usedc

two expressions occur without an
operator in between.

two operators occur together.

LET or MAKE has been given illegal
replacement.

illegal character occurs in program.

only variables may be factored.

real numbers and rational powers
of expressions are converted by
the system to other formso

indicates call of a functional
instruction not known to system.

indicates that an argument of
CLEAR is not on any replacement
table.

~-- ... --

• 47

4.3.3 System Error Messages

The following error messages should not occur during normal running

of REDUCE programs. If they do, the program should be discussed with

consultant.

.A SIGN ISIMP2 REMOVE

C.ARX LISIND SIMP.ATOM

EMULT MULTN* STI{PDOT

EPS NLIST SIMPG.AMMA

GCD PERMP SIMPTIMES

GCDK PERMl VSIMPTIMES ..

GCDl PLACEl (expression) HAS NO·SUBR

There are also several error messages called by the 7090 LISP system.

these have the form

ERROR NUMBER *(error reference)*

e.g. ERROR NUMBER *13*

If such errors occur, the output should be shown to a consultant. Error

messages called by the PDP-6 LISP system are a little more informative, but

should also be shown to a consultant if they occur.

4.4 REDUCE Job Setup

.Although the form of a REDUCE program remains the same from machine

to machine, the action necessary to run the job naturally varieso This

section describes the particular features associated with running jobs at

the installations where REDUCE is available.

ITP-247

4.4.1 REDUCE Job Setup for Stanford 7090

REDUCE for the Stanford 7090 is stored in various versions as a core

dump on the 1301 Disk. A REDUCE job consists of the following sequence of

cards

No. 1 card

No. 2 card

(REDUCE packet)
(REDUCE packet)
(REDUCE packet)
(REDUCE packet)

} one or more

A REDUCE packet consists of the following sequence:

first card: .TEST (beginning in column 8)

second card: BEGIN NIL STOP

subsequent cards: (REDUCE instruction) (REDUCE instruction) etc END $

(as in examples in Section 3)

The dollar sign (or semicolon) following the END is most important as without

it, the system could possibly read the next job on the input tape. Please

ensure that this character is always the last in your job, or, for safetyts

sake, add a card with an extra $ or ; on it.

The calculations in each packet are independent, as a fresh copy of

the system is read from the disk every time TEST is encountered. If an error

occurs during a calculation, or during read-in, then computation of the

current packet ceases, and the system proceeds to the next packet.

ITP-247

The system~ on the No. 1 and No. 2 cards should be as follows:

For full gamma and index algebra (but no differentiatio~determinants
or greatest common divisor calculations): LISP8

For system without gamma and index algebra: LIsp6

•

N.B. The user should read carefully the instructions on spacing (Section 2.8).

Also, if the BurroughsALGOL character set is used, a card BMODE NIL should

be inserted between the relevant TEST and BEGIN cards.

The following example shows the complete card deck necessary to. run

one of the examples in Section ,.1 on the Stanford 7090.

'1 3 0 (No. 1 card)

SJOB QOOO LISP6 1

TEST

BEGIN NIL STOP

400 HEARN (No. 2 card)

OROER XS MAKE P= X*.2+Y~*2~ Q. X**2-Y**2 $

SM OFCP~X) $ SM OFCP/Q,X~Y)· $

SM OFCLOGCP)/X*.2,X,Y)S

SM DFC(X+2*Y)*DET(CP,Q),(X+Y,Y»,X,Y) + DfCOET«X*·2,Y),

CY**2~X»,X,Y) S

E ~O S$.S

•

4.4.2 REDUCE Job Setup for Stanford PDP-6

REDUCE is stored as a 32K system for the Stanford PDP-6 with file

name REDUCE on a DECtape available on request. To input the program, the

user types

RUN (DECtape drive number) REDUCE (carriage return)

which loads the system in LISP mode. The system will return two line feeds

when loading is complete.

Input to a REDUCE job may come from a teletype or from a file previously

setup on a DECtape. If the command

(BEGIN)

is typed on the teletype in LISP mode the system expects further input from

that teletype in the form of REDUCE instructions (which w'ill be referred to

as REDUCE mode). The user should wait for the system to evaluate each

instruction before typing in the nexto Nearly all instructions print a

single asterisk when the calculation is complete.: END(space) returns control

to LISP.

If the cormnand

(BEGIN (DECtape number) (filename»)

is typed, the system evaluates REDUCE instructions on the file (filename),

until the end of the file is reached or an END is encountered. In the former

case, the system prints one asterisk on the userfs teletype and expects

further REDUCE input from the teletype, whereas in the latter case control

returns to LISP and the teletype, and three asterisks are printed. ,The

examples in Section 3 were run in this manner.

;ITP-247

50

• •

If an error occurs during a calculation, control returns to LISP or

the time-sharing monitor, depending on the error. To return to REDUCE mode

the user must type (BEGIN) in the former case, preceded by S (to return to

LISP) in the latter. Replacement tables are not destroyed by errors.

A sequence of output control characters may be typed in any order

after BEGIN (and before the DECtape drive number, if used). They are

L output on line-printer

N suppress printing of instruction name and
its arguments (but not its value)

Erasing Errors on Input

a) The (rubout) key may be used to delete typed input -as follows:

(i) If (rubout) is typed before the space after an instruction
name, the whole instruction name (complete or incomplete)
is deleted.

(ii) (rubout) has no effect on the instruction name once the space
following it is typed. It then deletes one character from the
argument input buffer each time it is typed, until the buffer
is empty, after which it has no effect.

b) The character % if typed after the space following the instruction

name, will delete the whole instruction, including the instruction name.

N.B. The user should read carefully the instructions on spacing (Section 208).

The following is a copy of the complete teletype output produced in

loading REDUCE and running one of the examples in Section 3Gl on the Stanford

PDP-6. In this case, the user has communicated directly with the system

rather than setting up a file beforehand. The tape with the REDUCE system

was on unit DTA4. Characters typed by the user are underlined.

ITP-247

51

..

.RUN DTA 4 REDUCE (carriage return)

(8 EGI N N)

F'ACI r i

*
SM D F ((X t 2+Y l' 2) I ex l' 2··Y t 2) ,X , Y > ;

(8. * X**3. * Y s. * x * Y**3.> / (X**6 •
• * Y**2. /+ 3. * X**2. "* Y**4. - V**6.>

* EN 0 (space)

I •

. "

ITP-247

.52

L •.

53

REFERENCES

1. J. McCarthy, et alo LISP 1.5 Programmer's Manual. Computation Cent er

and Res. Lab. of Electronics, MIT, Cambridge, Mass., 1960.

2. A. C. Hearn, Communications of the A.C.M. 2, 573 (1966).

3. J. D. Bjorken and S. D. Dre11, "Relativistic Quantum Mechanics lf

(McGraw-Hill, New York, 1965).

4. G. E. Collins, Communications of the AoC.M. 2, 578 (1966).

50 G. ~ Collins, Journal of the A.C.M. ~, 128 (1967).

ITP-247

	STANFORD-AIM-500001_a
	STANFORD-AIM-500002_a
	STANFORD-AIM-500003_a
	STANFORD-AIM-500004_a
	STANFORD-AIM-500005_a
	STANFORD-AIM-500006_a
	STANFORD-AIM-500007_a
	STANFORD-AIM-500008_a
	STANFORD-AIM-500009_a
	STANFORD-AIM-500010_a
	STANFORD-AIM-500011_a
	STANFORD-AIM-500012_a
	STANFORD-AIM-500013_a
	STANFORD-AIM-500014_a
	STANFORD-AIM-500015_a
	STANFORD-AIM-500016_a
	STANFORD-AIM-500017_a
	STANFORD-AIM-500018_a
	STANFORD-AIM-500019_a
	STANFORD-AIM-500020_a
	STANFORD-AIM-500021_a
	STANFORD-AIM-500022_a
	STANFORD-AIM-500023_a
	STANFORD-AIM-500024_a
	STANFORD-AIM-500025_a
	STANFORD-AIM-500026_a
	STANFORD-AIM-500027_a
	STANFORD-AIM-500028_a
	STANFORD-AIM-500029_a
	STANFORD-AIM-500030_a
	STANFORD-AIM-500031_a
	STANFORD-AIM-500032_a
	STANFORD-AIM-500033_a
	STANFORD-AIM-500034_a
	STANFORD-AIM-500035_a
	STANFORD-AIM-500036_a
	STANFORD-AIM-500037_a
	STANFORD-AIM-500038_a
	STANFORD-AIM-500039_a
	STANFORD-AIM-500040_a
	STANFORD-AIM-500041_a
	STANFORD-AIM-500042_a
	STANFORD-AIM-500043_a
	STANFORD-AIM-500044_a
	STANFORD-AIM-500045_a
	STANFORD-AIM-500046_a
	STANFORD-AIM-500047_a
	STANFORD-AIM-500048_a
	STANFORD-AIM-500049_a
	STANFORD-AIM-500050_a
	STANFORD-AIM-500051_a
	STANFORD-AIM-500052_a
	STANFORD-AIM-500053_a
	STANFORD-AIM-500054_a
	STANFORD-AIM-500055_a
	STANFORD-AIM-500056_a

