/* arith03.c Copyright (C) 1990-2007 Codemist Ltd */
/*
* Arithmetic functions.
* quotient.
*
*/
/*
* This code may be used and modified, and redistributed in binary
* or source form, subject to the "CCL Public License", which should
* accompany it. This license is a variant on the BSD license, and thus
* permits use of code derived from this in either open and commercial
* projects: but it does require that updates to this code be made
* available back to the originators of the package.
* Before merging other code in with this or linking this code
* with other packages or libraries please check that the license terms
* of the other material are compatible with those of this.
*/
/* Signature: 34f39835 18-Jan-2007 */
#include "headers.h"
/*
* Division
*/
#ifndef IDIVIDE
#ifdef HAVE_UINT64_T
uint32_t Idivide(uint32_t *qp, uint32_t a, uint32_t b, uint32_t c)
/*
* *qp = (a,b) / c, return the remainder
*
* The double-length value (a,b) is given as a 62-bit positive number. Its
* low order 31 bits are in b, and the 0x80000000 bit of b is zero. The
* high order part (in a) is also represented with the 0x80000000 bit zero.
* The divisor c is a positive value that is at most 0x7fffffff, and the
* procedure will only be called when the correct quotient is in the
* (inclusive) range 0 to 0x7fffffff. The above constraints can be thought
* of in two ways: (a) Idivide used a 31-bit word and is working on
* unsigned values. The 31-bit quantities happen to be being passed around
* in 32 bit registers, but the top bit of those registers will never be used
* and will contain zero, or (b) the range of values used is such that
* a 64 by 32-bit division can be performed, and by constraining the range
* of values this 64 by 32-bit division only has to handle positive numbers,
* but depending on the hardware of your computer you are entitled to use
* either signed or unsigned arithmetic.
*/
{
uint64_t p = ((uint64_t)a << 31) | (uint64_t)b;
*qp = (uint32_t)(p / (uint64_t)c);
return (uint32_t)(p % (uint64_t)c);
}
#else
uint32_t Idivide(uint32_t *qp, uint32_t a, uint32_t b, uint32_t c)
/*
* *qp = (a,b) / c, return the remainder
*
* The double-length value (a,b) is given as a 62-bit positive number. Its
* low order 31 bits are in b, and the 0x80000000 bit of b is zero. The
* high order part (in a) is also represented with the 0x80000000 bit zero.
* The divisor c is a positive value that is at most 0x7fffffff, and the
* procedure will only be called when the correct quotient is in the
* (inclusive) range 0 to 0x7fffffff. The above constraints can be thought
* of in two ways: (a) Idivide used a 31-bit word and is working on
* unsigned values. The 31-bit quantities happen to be being passed around
* in 32 bit registers, but the top bit of those registers will never be used
* and will contain zero, or (b) the range of values used is such that
* a 64 by 32-bit division can be performed, and by constraining the range
* of values this 64 by 32-bit division only has to handle positive numbers,
* but depending on the hardware of your computer you are entitled to use
* either signed or unsigned arithmetic.
*/
{
int i;
uint32_t q = 0;
/*
* I have a loop that needs to be executed 32 times, with just
* slightly different behaviour the last time around. Since it is
* fairly short, I unwind it three-fold into a loop executed 10 times
* plus a postlude. I also do a test at the start that decides if the
* quotient will be small (less than about 16 bits) an in that case
* loop rather less often - my reasoning is that a plausible distribution
* of quotients is exponential so the short route will be taken about
* half of the time, and will save almost half of the work done here at the
* cost of a not-too-expensive extra test to begin with.
*/
if (a < (c >> 15))
{ a = (a << 15) | (b >> 16);
b = (b << 15) & 0x7fffffff;
i = 5;
}
else i = 0;
do
{ q = q << 3; /* accumulate quotient 3 bits at a time */
if (a >= c) /* bit 1 of 3... */
{ a = a - c;
q = q + 4;
}
a = a << 1; /* shift (a,b) doubleword left 1 bit */
b = b << 1;
if (((int32_t)b) < 0) a = a + 1;
if (a >= c) /* bit 2 of 3... */
{ a = a - c;
q = q + 2;
}
a = a << 1;
b = b << 1;
if (((int32_t)b) < 0) a = a + 1;
if (a >= c) /* bit 3 of 3... */
{ a = a - c;
q = q + 1;
}
a = a << 1;
b = b << 1;
if (((int32_t)b) < 0) a = a + 1;
i++;
} while (i < 10);
q = q << 2; /* 2 more bits to be included */
if (a >= c)
{ a = a - c;
q = q + 2;
}
a = a << 1;
b = b << 1;
if (((int32_t)b) < 0) a = a + 1;
if (a >= c) /* the final bit of the quotient */
{ a = a - c; /* leave remainder in a, b should be zero */
q = q + 1;
}
*qp = q;
return a;
}
#endif
#endif /* IDIVIDE */
#ifdef COMMON
static Lisp_Object quotis(Lisp_Object a, Lisp_Object b)
{
Float_union bb;
bb.i = b - TAG_SFLOAT;
if (bb.f == 0.0) return aerror2("bad arg for quotient", a, b);
bb.f = (float) ((float)int_of_fixnum(a) / bb.f);
return (bb.i & ~(int32_t)0xf) + TAG_SFLOAT;
}
#endif
static Lisp_Object quotib(Lisp_Object a, Lisp_Object b)
{
/*
* a fixnum divided by a bignum always gives 0, regardless of signs etc.,
* save in the one case of (-#x8000000)/(#x8000000) which must yield -1
*/
if (int_of_fixnum(a) == fix_mask && bignum_length(b) == 8 &&
bignum_digits(b)[0] == 0x08000000) return fixnum_of_int(-1);
else return fixnum_of_int(0);
}
#ifdef COMMON
static Lisp_Object CLquotib(Lisp_Object a, Lisp_Object b)
{
Lisp_Object g, nil = C_nil;
CSLbool w;
push2(a, b);
w = minusp(b);
errexitn(2);
g = gcd(stack[0], stack[-1]);
errexitn(2);
if (w)
{ g = negate(g);
errexitn(2);
}
a = stack[-1];
push(g);
a = quot2(a, g);
errexitn(3);
pop2(g, b);
stack[0] = a;
b = quot2(b, g);
pop(a);
errexit();
return make_ratio(a, b);
}
static Lisp_Object CLquotbi(Lisp_Object a, Lisp_Object b)
{
return CLquotib(a, b);
}
static Lisp_Object CLquotbb(Lisp_Object a, Lisp_Object b)
{
return CLquotib(a, b);
}
static Lisp_Object quotir(Lisp_Object a, Lisp_Object b)
{
Lisp_Object w, nil;
if (a == fixnum_of_int(0)) return a;
push3(b, a, C_nil);
#define g stack[0]
#define a stack[-1]
#define b stack[-2]
g = gcd(a, numerator(b));
/*
* the gcd() function guarantees to hand back a positive result.
*/
nil = C_nil;
if (exception_pending()) goto fail;
a = quot2(a, g);
nil = C_nil;
if (exception_pending()) goto fail;
w = minusp(numerator(b));
nil = C_nil;
if (exception_pending()) goto fail;
if (w)
{ g = negate(g);
nil = C_nil;
if (exception_pending()) goto fail;
}
g = quot2(numerator(b), g); /* denominator of result will be +ve */
nil = C_nil;
if (exception_pending()) goto fail;
a = times2(a, denominator(b));
nil = C_nil;
if (exception_pending()) goto fail;
w = make_ratio(a, g);
popv(3);
return w;
fail:
popv(3);
return nil;
#undef a
#undef b
#undef g
}
static Lisp_Object quotic(Lisp_Object a, Lisp_Object b)
/*
* Used for all cases of xxx/
. This is coded in a fairly naive
* way, multiplying both numerator and denominator of what will end up
* as the result by the complex conjugate of b. If floating point
* arithmetic is used this can lead to grossly premature overflow. For
* the moment I will ignore that miserable fact
*/
{
Lisp_Object u, v, nil;
push2(a, b);
#define b stack[0]
#define a stack[-1]
/*
* a / (p + iq) is computed as follows:
* (a * (p - iq)) / (p^2 + q^2)
*/
u = negate(imag_part(b));
nil = C_nil;
if (exception_pending()) goto fail;
u = make_complex(real_part(b), u);
nil = C_nil;
if (exception_pending()) goto fail;
a = times2(a, u);
u = real_part(b);
u = times2(u, u);
nil = C_nil;
if (exception_pending()) goto fail;
v = imag_part(b);
b = u;
u = times2(v, v);
nil = C_nil;
if (exception_pending()) goto fail;
u = plus2(u, b);
nil = C_nil;
if (exception_pending()) goto fail;
v = a;
popv(2);
return quot2(v, u);
#undef a
#undef b
fail:
popv(2);
return nil;
}
#endif
static Lisp_Object quotif(Lisp_Object a, Lisp_Object b)
{
double d = float_of_number(b);
if (d == 0.0) return aerror2("bad arg for quotient", a, b);
d = (double)int_of_fixnum(a) / d;
return make_boxfloat(d, type_of_header(flthdr(b)));
}
#ifdef COMMON
static Lisp_Object quotsi(Lisp_Object a, Lisp_Object b)
{
Float_union aa;
if (b == fixnum_of_int(0)) return aerror2("bad arg for quotient", a, b);
aa.i = a - TAG_SFLOAT;
aa.f = (float) (aa.f / (float)int_of_fixnum(b));
return (aa.i & ~(int32_t)0xf) + TAG_SFLOAT;
}
static Lisp_Object quotsb(Lisp_Object a, Lisp_Object b)
{
double d = float_of_number(b);
if (d == 0.0) return aerror2("bad arg for quotient", a, b);
d = float_of_number(a) / d;
return make_sfloat(d);
}
#define quotsr(a, b) quotsb(a, b)
#define quotsc(a, b) quotic(a, b)
#endif
static Lisp_Object quotsf(Lisp_Object a, Lisp_Object b)
{
double d = float_of_number(b);
if (d == 0.0) return aerror2("bad arg for quotient", a, b);
d = float_of_number(a) / d;
return make_boxfloat(d, type_of_header(flthdr(b)));
}
Lisp_Object quotbn(Lisp_Object a, int32_t n)
/*
* Divide a bignum by an integer, where the integer is (by now)
* a natural C int32_t but limited to 31 not 32 bits active. I.e.
* this can be used when dividing by a fixnum or by dividing by
* a one-word bignum. I will not call this with n=-1, which would
* be the one case where it could cause the quotient to be bigger
* than the dividend. Leaves nwork set to the remainder.
*/
{
Lisp_Object nil;
int sign;
int32_t lena = (bignum_length(a)-CELL)/4-1, i, lenc, lenx;
uint32_t carry;
if (lena == 0) /* one-word bignum as numerator */
{ int32_t p = (int32_t)bignum_digits(a)[0], w;
nil = C_nil; /* So I can access nwork */
nwork = p % n;
/*
* C does not define what happens on non-exact division involving
* negative quantities, so I adjust things here so that the remainder
* has the sign that I want and the division I do is exact.
*/
if (p < 0)
{ if (nwork > 0) nwork -= n;
}
else if (nwork < 0) nwork += n;
/* Remainder should be correct (with correct sign) by now, regardless */
p = (p - nwork) / n;
w = p & fix_mask;
if (w == 0 || w == fix_mask) return fixnum_of_int(p);
else return make_one_word_bignum(p);
}
else if (lena == 1)
/*
* I treat division of a 2-word bignum by a fixnum or 1-word bignum as
* a special case since it can lead to a fixnum result - if the divisor is
* just one word long and the dividend is 3 or more words I would
* certainly have a bignum result. Thus by separating off the code here
* I (a) remove the need for test relating to big- to fixnum conversion
* later on and (b) avoid allocating heap in this tolerably common case
* when sometimes I will not need to.
*/
{ uint32_t a0 = bignum_digits(a)[0];
int32_t a1 = (int32_t)bignum_digits(a)[1];
if (a1 < 0)
{ sign = 3;
if (a0 == 0) a1 = -a1;
else
{ a0 = clear_top_bit(-(int32_t)a0);
a1 = ~a1;
}
}
else sign = 0;
if (n < 0) sign ^= 1, n = -n;
if (a1 < n) /* result can be calculated in one word - good! */
{ uint32_t q, r;
Ddivide(r, q, (uint32_t)a1, a0, n);
if ((sign & 2) != 0) r = -(int32_t)r;
nil = C_nil;
nwork = r;
a0 = q;
if (a0 == 0) return fixnum_of_int(0);
if ((sign & 1) == 0)
{ if ((a0 & fix_mask) == 0) return fixnum_of_int(a0);
else if ((a0 & 0x40000000) == 0)
return make_one_word_bignum(a0);
else return make_two_word_bignum(0, a0);
}
a0 = -(int32_t)a0;
if ((a0 & fix_mask) == fix_mask) return fixnum_of_int(a0);
else if ((a0 & 0xc0000000U) == 0xc0000000U)
return make_one_word_bignum(a0);
else return make_two_word_bignum(-1, clear_top_bit(a0));
}
/*
* here the quotient will involve exactly two digits.
*/
else
{ uint32_t q1, q0, r;
Ddivide(r, q1, 0, (uint32_t)a1, n);
Ddivide(r, q0, r, a0, n);
if ((sign & 2) != 0) r = -(int32_t)r;
nil = C_nil;
nwork = r;
if ((sign & 1) != 0)
{ if (q0 == 0) q1 = -(int32_t)q1;
else
{ q1 = ~q1;
q0 = clear_top_bit(-(int32_t)q0);
}
}
if (q1 == 0 && (q0 & 0x40000000) == 0)
return make_one_word_bignum(q0);
return make_two_word_bignum(q1, q0);
}
}
/*
* That has dealt with the special cases - now the input is a bignum
* with at least 3 digits and the quotient will certainly be a bignum.
* Start by allocating a workspace copy of the dividend. negateb will
* leave a a bignum, although it may change its length.
*/
if ((int32_t)bignum_digits(a)[lena] < 0) a = negateb(a), sign = 3;
else a = copyb(a), sign = 0;
errexit();
if (n < 0)
{ sign ^= 1;
n = -n;
}
/*
* Now both a and n have been made positive, and their original signs
* have been recorded so that I can tidy up at the end. The 1 bit in sign
* tells me what sign the quotient will have, the 2 bit gives the sign
* for the remainder.
*/
lena = (bignum_length(a)-CELL)/4;
carry = 0;
for (i=lena-1; i>=0; i--)
Ddivide(carry, bignum_digits(a)[i], carry, bignum_digits(a)[i], n);
if ((sign & 2) != 0) carry = -(int32_t)carry;
nil = C_nil;
nwork = carry; /* leave remainder available to caller */
lena--;
while (bignum_digits(a)[lena] == 0) lena--;
if ((bignum_digits(a)[lena] & 0x40000000) != 0) lena++;
if ((sign & 1) != 0) /* quotient will be negative */
{ carry = 0xffffffffU;
for (i=0; i 0) nwork -= n;
}
else if (nwork < 0) nwork += n;
/* Remainder should be correct (with correct sign) by now, regardless */
else return nil;
}
else if (lena == 1)
/*
* I treat division of a 2-word bignum by a fixnum or 1-word bignum as
* a special case since it can lead to a fixnum result - if the divisor is
* just one word long and the dividend is 3 or more words I would
* certainly have a bignum result. Thus by separating off the code here
* I (a) remove the need for test relating to big- to fixnum conversion
* later on and (b) avoid allocating heap in this tolerably common case
* when sometimes I will not need to.
*/
{ uint32_t a0 = bignum_digits(a)[0];
int32_t a1 = (int32_t)bignum_digits(a)[1];
if (a1 < 0)
{ sign = 3;
if (a0 == 0) a1 = -a1;
else
{ a0 = clear_top_bit(-(int32_t)a0);
a1 = ~a1;
}
}
else sign = 0;
if (n < 0) sign ^= 1, n = -n;
if (a1 < n) /* result can be calculated in one word - good! */
{ uint32_t q, r;
Ddivide(r, q, (uint32_t)a1, a0, n);
if ((sign & 2) != 0) r = -(int32_t)r;
nil = C_nil;
nwork = r;
return nil;
}
/*
* here the quotient will involve two digits.
*/
else
{ uint32_t q1, q0, r;
Ddivide(r, q1, 0, (uint32_t)a1, n);
Ddivide(r, q0, r, a0, n);
if ((sign & 2) != 0) r = -(int32_t)r;
nil = C_nil;
nwork = r;
return nil;
}
}
/*
* That has dealt with the special cases - now the input is a bignum
* with at least 3 digits and the quotient will certainly be a bignum.
* Start by allocating a workspace copy of the dividend. negateb will
* leave a a bignum, although it may change its length.
*/
/*
* Also note that I could fold the negateb() in with the division, and
* thereby save allocating a big hunk of extra memory.
*/
if ((int32_t)bignum_digits(a)[lena] < 0) a = negateb(a), sign = 3;
else a = copyb(a), sign = 0;
errexit();
if (n < 0)
{ sign ^= 1;
n = -n;
}
/*
* Now both a and n have been made positive, and their original signs
* have been recorded so that I can tidy up at the end. The 1 bit in sign
* tells me what sign the quotient will have, the 2 bit gives the sign
* for the remainder.
*/
lena = (bignum_length(a)-CELL)/4;
carry = 0;
for (i=lena-1; i>=0; i--)
Ddivide(carry, bignum_digits(a)[i], carry, bignum_digits(a)[i], n);
if ((sign & 2) != 0) carry = -(int32_t)carry;
nil = C_nil;
nwork = carry; /* leave remainder available to caller */
return nil;
}
static Lisp_Object quotbi(Lisp_Object a, Lisp_Object b)
{
/*
* dividing by 1 or -1 seems worth optimising.
*/
if (b == fixnum_of_int(1)) return a;
else if (b == fixnum_of_int(-1)) return negateb(a);
else if (b == fixnum_of_int(0))
return aerror2("bad arg for quotient", a, b);
else return quotbn(a, int_of_fixnum(b));
}
#ifdef COMMON
#define quotbs(a, b) quotsb(a, b)
#endif
Lisp_Object quotbb(Lisp_Object a, Lisp_Object b)
/*
* Divide one bignum by another. This can compute the
* remainder at the same time as the quotient, and leaves same around
* in mv_2. If it is not needed then setting up the remainder is
* a cost - but usually a modest one (in context), so I think that
* the simplification is worth-while.
*/
{
Lisp_Object nil, olda;
int sign;
int32_t lena, lenb, lenc, lenx, i;
uint32_t carry, scale, v1;
Lisp_Object q, r;
/*
* If I am dividing by a one-word bignum I can go a bit faster...
*/
lenb = (bignum_length(b)-CELL-4)/4;
if (lenb == 0)
{ q = quotbn(a, bignum_digits(b)[0]);
errexit();
/*
* Now lots of frivolity packing up the remainder...
*/
r = (Lisp_Object)(nwork & fix_mask);
if ((int32_t)r == 0 || (int32_t)r == fix_mask)
mv_2 = fixnum_of_int(nwork);
else
{ push(q);
a = make_one_word_bignum(nwork);
pop(q);
errexit();
mv_2 = a;
}
return q;
}
/*
* Convert to sign and magnitude representation
*/
push2(a, b);
lena = (bignum_length(a)-CELL-4)/4;
if ((int32_t)bignum_digits(a)[lena] < 0)
{ a = negateb(a);
sign = 3;
}
else
{ a = copyb(a);
sign = 0;
}
pop(b);
errexit();
lena = (bignum_length(a)-CELL-4)/4;
push(a);
if ((int32_t)bignum_digits(b)[lenb] < 0)
{ b = negateb(b);
/*
* I MUST NOT do lenb = (bignum_length(b)-CELL-4)/4; here because the
* negateb may have failed and therefore handed back junk rather than
* a bignum. E.g. an interrupt provoked by the user or a store-jam might
* lead to a failure report here. So I must defer re-finding the length until
* I have checked for exceptions.
*/
sign ^= 1;
}
else b = copyb(b);
pop2(a, olda); /* original a, with original sign */
errexit();
lenb = (bignum_length(b)-CELL-4)/4;
/*
* Now that the numbers are unsigned it could be that I can drop
* a leading zero that had previously been necessary. That could reveal
* that I have a one-word divisor after all...
*/
if (bignum_digits(b)[lenb] == 0) lenb--;
if (lenb == 0)
{ a = quotbn(a, bignum_digits(b)[0]);
errexit();
if ((sign & 2) != 0) nwork = -nwork;
if ((sign & 1) != 0) a = negate(a);
errexit();
r = (Lisp_Object)(nwork & fix_mask);
if (r == 0 || (int32_t)r == fix_mask) mv_2 = fixnum_of_int(nwork);
else
{ push(a);
if (signed_overflow(nwork))
{ if ((int32_t)nwork < 0)
b = make_two_word_bignum(-1, clear_top_bit(nwork));
else b = make_two_word_bignum(0, nwork);
}
else b = make_one_word_bignum(nwork);
pop(a);
errexit();
mv_2 = b;
}
return a;
}
/*
* Now the divisor is at least two digits long.
*/
if (bignum_digits(a)[lena] == 0) lena--;
/*
* I will take a special case when the lengths of the two numbers
* match since in that case the quotient will be only one digit long.
* Also after I have filtered the lena<=lenb cases out, and have treated
* one-word cases of b specially I will know that the numerator a has
* at least two digits.
*/
if (lena < lenb)
{ mv_2 = olda;
return fixnum_of_int(0);
}
else if (lenb == lena)
{ uint32_t p0 = bignum_digits(a)[lena-1], p1 = bignum_digits(a)[lena],
q0 = bignum_digits(b)[lenb-1], q1 = bignum_digits(b)[lena],
r0, r1, q, w, carry1;
/*
* If the dividend is smaller than the divisor I can return zero right now.
*/
if (p1 < q1 || (p1 == q1 && p0 < q0))
{ mv_2 = olda;
return fixnum_of_int(0);
}
/*
* I scale the divisor so that it will have its top bit set (top wrt the
* 31 bit field that is in use, that is), and scale the top two digits
* of the dividend to match. The resulting values can then be divided to get
* a pretty good estimate for the true quotient. Note that the division on
* the next line is UNSIGNED arithmetic.
*/
scale = 0x80000000U / ((uint32_t)1 + q1);
Dmultiply(carry, w, q0, scale, 0);
Dmultiply(q, w, q1, scale, carry);
q = w;
Dmultiply(carry, w, p0, scale, 0);
Dmultiply(carry, w, p1, scale, carry);
if (carry == q) q = 0x7fffffff;
else
{ Ddivide(q, w, carry, w, q);
q = w;
}
/*
* q is now my estimated quotient, based on a quick look at high digits.
*/
Dmultiply(carry, w, q0, q, 0);
r0 = w;
Dmultiply(carry, w, q1, q, carry);
r1 = w;
r0 = r0 - p0;
if ((int32_t)r0 < 0)
{ r0 = clear_top_bit(r0);
r1 = r1 - p1 - 1;
}
else r1 = r1 - p1;
/* /*
* the next line is a cop-out for now - if my estimated quotient
* was close enough to the true value than the residual I get here
* ought to be fairly small - if it is not I have bungled. Over several years
* of testa and use I have not seen the disaster message triggered, but the
* code should stay in until I can write the paragraph of comment that
* should go here explaing why all is well...
*/
if (carry != 0 && (int32_t)r1 < 0 &&
carry != 1 && r1 != ~0x7fffffff)
{
err_printf("\n+++!!!+++ carry needed (line %d of \"%s\")\n",
__LINE__, __FILE__);
my_exit(EXIT_FAILURE);
}
/*
* That obtained the remainder from (p1,p0)/(q1,q0) - now adjust q until
* the remainder has the sign I want it to have.
*/
/* /* I do not look at carry here - I have a nasty suspicion that I should.. */
while ((int32_t)r1 > 0 ||
(r1 == 0 && r0 != 0))
{ q--;
r0 = r0 - q0;
if ((int32_t)r0 < 0)
{ r0 = clear_top_bit(r0);
r1 = r1 - q1 - 1;
}
else r1 = r1 - q1;
}
/*
* Now q is (p1,p0)/(q1,q0), which is an over-estimate for the true
* quotient, but by at worst 1. Compute a proper full-length remainder
* now, using the original unscaled input numbers.
*/
carry = 0;
carry1 = 0xffffffffU;
for (i=0; i<=lena; i++)
{ Dmultiply(carry, w, bignum_digits(b)[i], q, carry);
carry1 = bignum_digits(a)[i] + clear_top_bit(~w) + top_bit(carry1);
bignum_digits(a)[i] = clear_top_bit(carry1);
}
if ((int32_t)carry1 >= 0) /* need to correct it! */
{ q--;
for (i=0; i<=lena; i++)
{ carry1 = bignum_digits(a)[i] + bignum_digits(b)[i] +
top_bit(carry1);
bignum_digits(a)[i] = clear_top_bit(carry1);
}
}
/*
* Now the quotient is correct - but since I want to hand back a neat
* remainder I have more to do - I must convert the value stored in a
* into a legitimate result, and store it in mv_2.
*/
while (lena > 0 && bignum_digits(a)[lena] == 0) lena--;
if ((bignum_digits(a)[lena] & 0x40000000) != 0) lena++;
if (lena == 0) /* Maybe fixnum remainder? */
{ int32_t rr = bignum_digits(a)[0];
if (rr != 0 && (sign & 2) != 0)
{ rr = -rr;
if ((rr & fix_mask) == fix_mask)
{ mv_2 = fixnum_of_int(rr);
goto return_q;
}
}
else if ((rr & fix_mask) == 0)
{ mv_2 = fixnum_of_int(rr);
goto return_q;
}
}
if ((sign & 2) != 0)
{ carry = 0xffffffffU;
for (i=0; i= lenb)
{ uint32_t w, h0, h1, v2, u2, carry1, carry2, qq, rr;
if (carry == v1)
{ qq = 0x7fffffff;
rr = carry + bignum_digits(a)[lena];
}
else
{ Ddivide(rr, w, carry, bignum_digits(a)[lena], v1);
qq = w;
}
v2 = bignum_digits(b)[lenb-1];
Dmultiply(h1, h0, v2, qq, 0);
u2 = bignum_digits(a)[lena-1];
if (h1 > rr ||
(h1 == rr && h0 > u2))
{ qq--;
h0 -= v2;
if ((int32_t)h0 < 0)
{ h0 = clear_top_bit(h0);
h1--;
}
rr += v1;
if (h1 > rr ||
(h1 == rr && h0 > u2)) qq--;
}
/*
* Now subtract off q*b from a, up as far as lena.
*/
carry1 = 0;
carry2 = 0xffffffffU;
for (i=0; i<=lenb; i++)
{ Dmultiply(carry1, w, bignum_digits(b)[i], qq, carry1);
carry2 = bignum_digits(a)[lena-lenb+i] +
clear_top_bit(~w) + top_bit(carry2);
bignum_digits(a)[lena-lenb+i] = clear_top_bit(carry2);
}
carry2 = carry + clear_top_bit(~carry1) + top_bit(carry2);
if ((int32_t)carry2 >= 0) /* overshot.. */
{ qq--;
carry2 = 0;
for (i=0; i<=lenb; i++)
{ carry2 = bignum_digits(a)[lena-lenb+i] +
bignum_digits(b)[i] + top_bit(carry2);
bignum_digits(a)[lena-lenb+i] = clear_top_bit(carry2);
}
}
carry = bignum_digits(a)[lena];
bignum_digits(a)[lena] = qq; /* good place to store the quotient */
lena--;
}
lena = (bignum_length(a)-CELL-4)/4;
/*
* Now the quotient is in the top digits of a, and the remainder is left
* (scaled up) in the low bit (plus carry)
*/
bignum_digits(b)[lenb] = carry/scale;
carry = carry%scale;
for (i=lenb-1; i>=0; i--)
Ddivide(carry, bignum_digits(b)[i],
carry, bignum_digits(a)[i], scale);
if (carry != 0)
{ err_printf("+++!!!+++ Incorrect unscaling line %d file \"%s\" (%ld)\n",
__LINE__, __FILE__, (long)carry);
my_exit(EXIT_FAILURE);
}
for (i=0; i<=lena-lenb; i++)
bignum_digits(a)[i] = bignum_digits(a)[i+lenb];
for (;i < lena; i++) bignum_digits(a)[i] = 0;
lena = lena - lenb;
while (bignum_digits(a)[lena] == 0) lena--;
/*
* the above loop terminates properly since the quotient will be non-zero,
* which in turn is because I was dividing p by q where p had strictly
* more digits than q, and was hence strictly greater than q.
*/
if ((bignum_digits(a)[lena] & 0x40000000) != 0) lena++;
if ((sign & 1) != 0) /* quotient will be negative */
{ carry = 0xffffffffU;
for (i=0; i= 0 && bignum_digits(b)[lenb] == 0) lenb--;
if (lenb < 0) mv_2 = fixnum_of_int(0); /* hah - zero remainder! */
else
{
if ((bignum_digits(b)[lenb] & 0x40000000) != 0) lenb++;
if ((sign & 2) != 0) /* need to negate the remainder */
{ carry = 0xffffffffU;
for (i=0; i 0) r -= bb;
}
else if (r < 0) r += bb;
/* then the division can be an exact one, as here */
r = (aa - r)/bb;
/*
* the only case where dividing one fixnum by another can lead to
* a bignum result is (-0x08000000/(-1)) which JUST overflows.
*/
if (r != 0x08000000) return fixnum_of_int(r);
else return make_one_word_bignum(r);
}
#ifdef COMMON
case TAG_SFLOAT:
return quotis(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotib(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotir(a, b);
case TYPE_COMPLEX_NUM:
return quotic(a, b);
#endif
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotif(a, b);
default:
return aerror1("bad arg for quotient", b);
}
#ifdef COMMON
case TAG_SFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotsi(a, b);
case TAG_SFLOAT:
{ Float_union aa, bb;
aa.i = a - TAG_SFLOAT;
bb.i = b - TAG_SFLOAT;
aa.f = (float) (aa.f / bb.f);
return (aa.i & ~(int32_t)0xf) + TAG_SFLOAT;
}
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotsb(a, b);
case TYPE_RATNUM:
return quotsr(a, b);
case TYPE_COMPLEX_NUM:
return quotsc(a, b);
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotsf(a, b);
default:
return aerror1("bad arg for quotient", b);
}
#endif
case TAG_NUMBERS:
{ int32_t ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotbi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return quotbs(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotbb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotbr(a, b);
case TYPE_COMPLEX_NUM:
return quotbc(a, b);
#endif
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotbf(a, b);
default:
return aerror1("bad arg for quotient", b);
}
#ifdef COMMON
case TYPE_RATNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotri(a, b);
case TAG_SFLOAT:
return quotrs(a, b);
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotrb(a, b);
case TYPE_RATNUM:
return quotrr(a, b);
case TYPE_COMPLEX_NUM:
return quotrc(a, b);
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotrf(a, b);
default:
return aerror1("bad arg for quotient", b);
}
case TYPE_COMPLEX_NUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotci(a, b);
case TAG_SFLOAT:
return quotcs(a, b);
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotcb(a, b);
case TYPE_RATNUM:
return quotcr(a, b);
case TYPE_COMPLEX_NUM:
return quotcc(a, b);
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotcf(a, b);
default:
return aerror1("bad arg for quotient", b);
}
#endif
default: return aerror1("bad arg for quotient", a);
}
}
case TAG_BOXFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotfi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return quotfs(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotfb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotfr(a, b);
case TYPE_COMPLEX_NUM:
return quotfc(a, b);
#endif
default:
return aerror1("bad arg for quotient", b);
}
}
case TAG_BOXFLOAT:
return quotff(a, b);
default:
return aerror1("bad arg for quotient", b);
}
default:
return aerror1("bad arg for quotient", a);
}
}
#ifdef COMMON
/*
* The above version of quot2 is as required for the Standard Lisp QUOTIENT
* function, and it is called from various internal places in CSL/CCL, eg
* from within the code for TRUNCATE. Next I have something that will be very
* similar in behaviour, but which turns quotients of integers into
* rational numbers when that is necessary.
*/
/***** Not reconstructed yet!! */
Lisp_Object CLquot2(Lisp_Object a, Lisp_Object b)
{
switch ((int)a & TAG_BITS)
{
case TAG_FIXNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
/*
* This is where fixnum / fixnum arithmetic happens - the case I most want to
* make efficient.
*/
if (b == fixnum_of_int(0))
return aerror2("bad arg for /", a, b);
else
{ int32_t r, aa, bb, w;
aa = int_of_fixnum(a);
bb = int_of_fixnum(b);
if (bb < 0) aa = -aa, bb = -bb;
r = aa % bb;
if (r == 0) /* Exact division case */
{ r = aa/bb;
/*
* the only case where dividing one fixnum by another can lead to
* a bignum result is (-0x08000000/(-1)) which JUST overflows.
*/
if (r != 0x08000000) return fixnum_of_int(r);
else return make_one_word_bignum(r);
}
w = bb;
if (r < 0) r = -r;
while (r != 0)
{ int32_t w1 = w % r;
w = r;
r = w1;
}
aa = aa / w;
bb = bb / w;
return make_ratio(fixnum_of_int(aa), fixnum_of_int(bb));
}
#ifdef COMMON
case TAG_SFLOAT:
return quotis(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return CLquotib(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotir(a, b);
case TYPE_COMPLEX_NUM:
return quotic(a, b);
#endif
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotif(a, b);
default:
return aerror1("bad arg for /", b);
}
#ifdef COMMON
case TAG_SFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotsi(a, b);
case TAG_SFLOAT:
{ Float_union aa, bb;
aa.i = a - TAG_SFLOAT;
bb.i = b - TAG_SFLOAT;
aa.f = (float) (aa.f / bb.f);
return (aa.i & ~(int32_t)0xf) + TAG_SFLOAT;
}
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotsb(a, b);
case TYPE_RATNUM:
return quotsr(a, b);
case TYPE_COMPLEX_NUM:
return quotsc(a, b);
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotsf(a, b);
default:
return aerror1("bad arg for /", b);
}
#endif
case TAG_NUMBERS:
{ int32_t ha = type_of_header(numhdr(a));
switch (ha)
{
case TYPE_BIGNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return CLquotbi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return quotbs(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return CLquotbb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotbr(a, b);
case TYPE_COMPLEX_NUM:
return quotbc(a, b);
#endif
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotbf(a, b);
default:
return aerror1("bad arg for /", b);
}
#ifdef COMMON
case TYPE_RATNUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotri(a, b);
case TAG_SFLOAT:
return quotrs(a, b);
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotrb(a, b);
case TYPE_RATNUM:
return quotrr(a, b);
case TYPE_COMPLEX_NUM:
return quotrc(a, b);
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotrf(a, b);
default:
return aerror1("bad arg for /", b);
}
case TYPE_COMPLEX_NUM:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotci(a, b);
case TAG_SFLOAT:
return quotcs(a, b);
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotcb(a, b);
case TYPE_RATNUM:
return quotcr(a, b);
case TYPE_COMPLEX_NUM:
return quotcc(a, b);
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotcf(a, b);
default:
return aerror1("bad arg for /", b);
}
#endif
default: return aerror1("bad arg for /", a);
}
}
case TAG_BOXFLOAT:
switch ((int)b & TAG_BITS)
{
case TAG_FIXNUM:
return quotfi(a, b);
#ifdef COMMON
case TAG_SFLOAT:
return quotfs(a, b);
#endif
case TAG_NUMBERS:
{ int32_t hb = type_of_header(numhdr(b));
switch (hb)
{
case TYPE_BIGNUM:
return quotfb(a, b);
#ifdef COMMON
case TYPE_RATNUM:
return quotfr(a, b);
case TYPE_COMPLEX_NUM:
return quotfc(a, b);
#endif
default:
return aerror1("bad arg for /", b);
}
}
case TAG_BOXFLOAT:
return quotff(a, b);
default:
return aerror1("bad arg for /", b);
}
default:
return aerror1("bad arg for /", a);
}
}
#endif
/* end of arith03.c */