Artifact f9a011ee4e4514fefaf47e035e2571aea2660d8e530600515e857eef135ac602:
- Executable file
r37/lisp/csl/html/r37_0626.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2444) [annotate] [blame] [check-ins using] [more...]
<A NAME=Frobenius> <TITLE>Frobenius</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>FROBENIUS</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The operator <em>frobenius</em> computes the <em>frobenius</em> normal form F of a <A HREF=r37_0345.html>matrix</A> (A say). It returns {F,P,P^-1} where P*F*P^-1 = A. <P> <P> <P> <H3> syntax: </H3> <em>frobenius</em>(<matrix>) <P> <P> <matrix> :- a square <A HREF=r37_0345.html>matrix</A>. <P> <P> <P> Field Extensions: <P> <P> By default, calculations are performed in the rational numbers. To extend this field the <A HREF=r37_0634.html>arnum</A> package can be used. The package must first be loaded by load_package arnum;. The field can now be extended by using the defpoly command. For example, defpoly sqrt2**2-2; will extend the field to include the square root of 2 (now defined by sqrt2). <P> <P> Modular Arithmetic: <P> <P> <em>Frobenius</em>can also be calculated in a modular base. To do this first type on modular;. Then setmod p; (where p is a prime) will set the modular base of calculation to p. By further typing on balanced_mod the answer will appear using a symmetric modular representation. See <A HREF=r37_0627.html>ratjordan</A> for an example. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> a := mat((x,x^2),(3,5*x)); [ 2 ] [x x ] a := [ ] [3 5*x] frobenius(a); [ 2] [1 x] [ - x ] { [0 - 2*x ], [ ], [1 -----] } [ ] [0 3] [ 3 ] [1 6*x ] [ ] [ 1 ] [0 --- ] [ 3 ] load_package arnum; defpoly sqrt2**2-2; a := mat((sqrt2,5),(7*sqrt2,sqrt2)); [ sqrt2 5 ] a := [ ] [7*sqrt2 sqrt2] frobenius(a); [0 35*sqrt2 - 2] [1 sqrt2 ] [ 1 ] { [ ], [ ], [1 - --- ] } [1 2*sqrt2 ] [1 7*sqrt2] [ 7 ] [ ] [ 1 ] [0 ----*sqrt2] [ 14 ] </TT></PRE><P>