Artifact d99427afd1c9932a7c179d881ab8e249bff7d08094c5dc46ba2aca96a0308bfe:
- Executable file
r37/lisp/csl/html/r37_0499.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 762) [annotate] [blame] [check-ins using] [more...]
<A NAME=ChebyshevT> <TITLE>ChebyshevT</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>CHEBYSHEVT</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The <em>ChebyshevT</em> operator computes the nth Chebyshev T Polynomial (of the first kind). <P> <P> <P> <H3> syntax: </H3> <em>ChebyshevT</em>(<integer>,<expression>) <P> <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> ChebyshevT(3,xx); 2 xx*(4*xx - 3) ChebyshevT(3,4); 244 </TT></PRE><P>Chebyshev's T polynomials are computed using the recurrence relati on: <P> <P> ChebyshevT(n,x) := 2x*ChebyshevT(n-1,x) - ChebyshevT(n-2,x) with <P> <P> ChebyshevT(0,x) := 0 and ChebyshevT(1,x) := x <P> <P> <P>