Artifact b5b66b94e7261b289e53da759b50095c386d8692c60161e2bc08a962d2c0bd5c:
- Executable file
r37/lisp/csl/html/r37_0323.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 966) [annotate] [blame] [check-ins using] [more...]
<A NAME=RATIONAL> <TITLE>RATIONAL</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>RATIONAL</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>switch</B><P> <P> <P> <P> When <em>rational</em> is on, polynomial expressions with rational coefficients are produced. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> x/2 + 3*y/4; 2*X + 3*Y --------- 4 (x**2 + 5*x + 17)/2; 2 X + 5*X + 17 ------------- 2 on rational; x/2 + 3y/4; 1 3 -*(X + -*Y) 2 2 (x**2 + 5*x + 17)/2; 1 2 -*(X + 5*X + 17) 2 </TT></PRE><P>By using <em>rational</em>, polynomial expressions with rational coefficients can be used in some commands that expect polynomials. With <em>rational</em> off, such a polynomial becomes a rational expression, with denominator the least common multiple of the denominators of the rational number coefficients. <P> <P> <P> <P>