Artifact 948751a2e027f74e7c618a07b60eecd6a356846dc347c604ea5ac1311a87a779:
- Executable file
r37/lisp/csl/html/r37_0449.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 863) [annotate] [blame] [check-ins using] [more...]
<A NAME=ZETA> <TITLE>ZETA</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>ZETA</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The <em>Zeta</em> operator returns Riemann's Zeta function, <P> <P> Zeta (z) := sum(1/(k**z),k,1,infinity) <P> <P> <P> <H3> syntax: </H3> <em>Zeta</em>(<expression>) <P> <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> Zeta(2); 2 pi / 6 on rounded; Zeta 1.01; 100.577943338 </TT></PRE><P>Numerical computation for the Zeta function for arguments close to 1 are tedious, because the series is converging very slowly. In this case a formula (e.g. found in Bender/Orzag: Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill) is used. <P> <P> No numerical approximation for complex arguments is done. <P> <P> <P>