Artifact 8033760e14e88ff430738522c2b79444d5445fcbe15ffbcab4ff9d8f94b801bc:
- Executable file
r37/lisp/csl/html/r37_0086.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1010) [annotate] [blame] [check-ins using] [more...]
<A NAME=GCD> <TITLE>GCD</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>GCD</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> The <em>gcd</em> operator returns the greatest common divisor of two polynomials. <P> <H3> syntax: </H3> <P> <P> <em>gcd</em>(<expression>,<expression>) <P> <P> <P> <expression> must be a polynomial (or integer), otherwise an error occurs. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> gcd(2*x**2 - 2*y**2,4*x + 4*y); 2*(X + Y) gcd(sin(x),x**2 + 1); 1 gcd(765,68); 17 </TT></PRE><P>The operator <em>gcd</em> described here provides an explicit mean s to find the gcd of two expressions. The switch <em>gcd</em> described below simplifies expressions by finding and canceling gcd's at every opportunity. When the switch <A HREF=r37_0286.html>ezgcd</A> is also on, gcd's are figured using the EZ GCD algorithm, which is usually faster. <P> <P> <P>