Artifact 6e3b0b8e6a856a1c6bc3b6019343e73e3b5af6ed75b8e06c28da81dfd986b9c7:
- Executable file
r37/lisp/csl/html/r37_0155.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1213) [annotate] [blame] [check-ins using] [more...]
<A NAME=INTERPOL> <TITLE>INTERPOL</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>INTERPOL</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> <P> <P> <em>interpol</em>generates an interpolation polynomial. <P> <H3> syntax: </H3> <P> <P> interpol(<values>,<variable>,<points>) <P> <P> <P> <values> and <points> are <A HREF=r37_0053.html>list</A>s of equal length and <variable> is an algebraic expression (preferably a <A HREF=r37_0002.html>kernel</A>). The interpolation polynomial is generated in the given variable of degree length(<values>)-1. The unique polynomial <em>f</em> is defined by the property that for corresponding elements <em>v</em> of <values> and <em>p</em> of <points> the relation <em>f(p)=v</em> holds. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> f := for i:=1:4 collect(i**3-1); F := 0,7,26,63 p := {1,2,3,4}; P := 1,2,3,4 interpol(f,x,p); 3 X - 1 </TT></PRE><P>The Aitken-Neville interpolation algorithm is used which guarantee s a stable result even with rounded numbers and an ill-conditioned problem. <P> <P> <P>