Artifact 5f29407c128f45e72cd738347175ff44d077a4cc5d586aebd5c67c50f7f566d2:
- Executable file
r37/lisp/csl/html/r37_0529.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1524) [annotate] [blame] [check-ins using] [more...]
<A NAME=MeijerG> <TITLE>MeijerG</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>MEIJERG</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The <em>MeijerG</em> operator provides simplifications for Meijer's G function. The simplifications are performed towards polynomials, elementary or special functions or (generalized) <A HREF=r37_0528.html>hypergeometric</A> functions. <P> <P> The <em>MeijerG</em> operator is included in the package specfn2. <P> <P> <P> <H3> syntax: </H3> <em>MeijerG</em>(<list of parameters>,<list of parameters>, <argument>) <P> <P> <P> The first element of the lists has to be the list containing the first group (mostly called ``m'' and ``n'') of parameters. This passes the four parameters of a Meijer's G function implicitly via the length of the lists. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> load specfn2; MeijerG({{},1},{{0}},x); heaviside(-x+1) MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi; 2 sqrt(2)*sin(x)*x ------------------ 4*sqrt(x) </TT></PRE><P>Many well-known functions can be written as G functions, e.g. exponentials, logarithms, trigonometric functions, Bessel functions and hypergeometric functions. The formulae can be found e.g. in <P> <P> A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev: Integrals and Series, Volume 3: More special functions, Gordon and Breach Science Publishers (1990). <P> <P> <P>