Artifact 2fa566d138458de41212c2c49e5f138d91045a7c91e06a8b8f81c1ffb6ccfe3a:
- Executable file
r37/lisp/csl/html/r37_0627.html
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2253) [annotate] [blame] [check-ins using] [more...]
<A NAME=Ratjordan> <TITLE>Ratjordan</TITLE></A> <b><a href=r37_idx.html>INDEX</a></b><p><p> <B>RATJORDAN</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P> <P> The operator <em>ratjordan</em> computes the rational Jordan normal form R of a <A HREF=r37_0345.html>matrix</A> (A say). It returns {R,P,P^-1} where P*R*P^-1 = A. <P> <P> <P> <H3> syntax: </H3> <em>ratjordan</em>(<matrix>) <P> <P> <matrix> :- a square <A HREF=r37_0345.html>matrix</A>. <P> <P> <P> Field Extensions: <P> <P> By default, calculations are performed in the rational numbers. To extend this field the <em>arnum</em> package can be used. The package must first be loaded by load_package arnum;. The field can now be extended by using the defpoly command. For example, defpoly sqrt2**2-2; will extend the field to include the square root of 2 (now defined by sqrt2). See <A HREF=r37_0626.html>frobenius</A> for an example. <P> <P> Modular Arithmetic: <P> <P> <em>ratjordan</em>can also be calculated in a modular base. To do this first type on modular;. Then setmod p; (where p is a prime) will set the modular base of calculation to p. By further typing on balanced_mod the answer will appear using a symmetric modular representation. <P> <P> <P> <H3> examples: </H3> <P><PRE><TT> a := mat((5,4*x),(2,x^2)); [5 4*x] [ ] a := [ 2 ] [2 x ] ratjordan(a); [0 x*( - 5*x + 8)] [1 5] [ -5 ] { [ ], [ ], [1 -----] } [ 2 ] [0 2] [ 2 ] [1 x + 5 ] [ ] [ 1 ] [0 -----] [ 2 ] on modular; setmod 23; a := mat((12,34),(56,78)); [12 11] a := [ ] [10 9 ] ratjordan(a); [15 0] [16 8] [1 21] { [ ], [ ], [ ] } [0 6] [19 4] [1 4 ] on balanced_mod; ratjordan(a); [- 8 0] [ - 7 8] [1 - 2] { [ ], [ ], [ ] } [ 0 6] [ - 4 4] [1 4 ] </TT></PRE><P>