Artifact f4305a2030014b7a6c61199289f727b91ea0bf8109413df6a66308fac467acce:
- Executable file
r37/log/applysym.rlg
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 8471) [annotate] [blame] [check-ins using] [more...]
Sun Aug 18 17:25:40 2002 run on Windows off echo, dfprint$ ------------------------------------------------------- This file is supposed to provide an automatic test of the program APPLYSYM. On the other hand the application of APPLYSYM is an interactive process, therefore the interested user should inspect the example described in APPLYSYM.TEX which demonstrates the application of symmetries to integrate a 2nd order ODE. Here the program QUASILINPDE for integrating first order quasilinear PDE is demonstrated. The following equation comes up in the elimination of resonant terms in normal forms of singularities of vector fields (C.Herssens, P.Bonckaert, Limburgs Universitair Centrum/Belgium, private communication). ------------------------------------------------------- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*y + 2*df(w,z)*z - 2*w - x*y. The general solution of the PDE is given through x*y - log(z)*x*y + 2*w y 0 = ff(-----,---------------------,---------) z z sqrt(z) with arbitrary function ff(..). ------------------------------------------------------- Comment: The result means that w is defined implicitly through x*y - log(z)*x*y + 2*w y 0 = ff(-----,---------------------,---------) z z sqrt(z) with an arbitrary function ff of 3 arguments. As the PDE was linear, the arguments of ff are such that we can solve for w: x*y y w = log(z)*x*y/2 + z*f(-----,---------) z sqrt(z) with an arbitrary function f of 2 arguments. ------------------------------------------------------- The following PDEs are taken from E. Kamke, Loesungsmethoden und Loesungen von Differential- gleichungen, Partielle Differentialgleichungen erster Ordnung, B.G. Teubner, Stuttgart (1979). ------------------- equation 1.4 ---------------------- The quasilinear PDE: 0 = df(z,x)*x - y. The general solution of the PDE is given through 0 = ff(log(x)*y - z,y) with arbitrary function ff(..). ------------------- equation 2.5 ---------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y . The general solution of the PDE is given through - x + y 0 = ff(----------,z) x*y with arbitrary function ff(..). ------------------- equation 2.6 ---------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x - df(z,x)*y + 2*df(z,y)*x*y. The general solution of the PDE is given through 2 2 - x - y 0 = ff(------------,z) y with arbitrary function ff(..). ------------------- equation 2.7 ---------------------- The quasilinear PDE: 0 = df(z,x)*a0*x - df(z,x)*a1 + df(z,y)*a0*y - df(z,y)*a2. The general solution of the PDE is given through a1*y - a2*x 0 = ff(---------------,z) 2 a0*a1*x - a1 with arbitrary function ff(..). ------------------- equation 2.14 --------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*b - x + y . The general solution of the PDE is given through 2 3 2 3 2 2 2 3 a*y - b*x 0 = ff(a *y - 3*a*b*x*y - 3*b *z + 3*b *x *y - b *y ,-----------) b with arbitrary function ff(..). ------------------- equation 2.16 --------------------- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - a*x. The general solution of the PDE is given through - a*x 0 = ff(--------,a*x - z) y with arbitrary function ff(..). ------------------- equation 2.20 --------------------- The quasilinear PDE: 0 = df(z,x) + df(z,y) - a*z. The general solution of the PDE is given through z 0 = ff(------,x - y) a*x e with arbitrary function ff(..). ------------------- equation 2.21 --------------------- The quasilinear PDE: 0 = df(z,x) - df(z,y)*y + z. The general solution of the PDE is given through x x 0 = ff(e *z,e *y) with arbitrary function ff(..). ------------------- equation 2.22 --------------------- The quasilinear PDE: 0 = 2*df(z,x) - df(z,y)*y + z. The general solution of the PDE is given through x/2 x/2 0 = ff(e *z,e *y) with arbitrary function ff(..). ------------------- equation 2.23 --------------------- The quasilinear PDE: 0 = df(z,x)*a + df(z,y)*y - b*z. The general solution of the PDE is given through z y 0 = ff(----------,------) (b*x)/a x/a e e with arbitrary function ff(..). ------------------- equation 2.24 --------------------- The quasilinear PDE: 0 = df(z,x)*x - df(z,y)*x - df(z,y)*y. The general solution of the PDE is given through 2 0 = ff(x + 2*x*y,z) with arbitrary function ff(..). ------------------- equation 2.25 --------------------- The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y - az. The general solution of the PDE is given through y x 0 = ff(-------,-------) z/az z/az e e with arbitrary function ff(..). ------------------- equation 2.26 --------------------- 2 2 The quasilinear PDE: 0 = df(z,x)*x + df(z,y)*y + x + y - z - 1. The general solution of the PDE is given through 2 2 x + y + z + 1 x 0 = ff(-----------------,---) y y with arbitrary function ff(..). ------------------- equation 2.39 --------------------- 2 2 2 The quasilinear PDE: 0 = df(z,x)*a*x + df(z,y)*b*y - c*z . The general solution of the PDE is given through b*y - c*z - a*x + b*y 0 = ff(-----------,--------------) b*y*z b*x*y with arbitrary function ff(..). ------------------- equation 2.40 --------------------- 2 3 4 2 The quasilinear PDE: 0 = df(z,x)*x*y + 2*df(z,y)*y - 2*x + 4*x *y*z 2 2 - 2*y *z . ------------------- equation 3.12 --------------------- The quasilinear PDE: 0 = df(w,x)*x + df(w,y)*a*x + df(w,y)*b*y + df(w,z)*c*x + df(w,z)*d*y + df(w,z)*f*z. The general solution of the PDE is given through f 1 (f + 1)/b 2 f 1 (f + 1)/b 0 = ff(( - x *(----) *b*c*x - x *(----) *b*d*x*y b b x x f 1 (f + 1)/b 2 f 1 (f + 1)/b + x *(----) *c*x + x *(----) *d*x*y - a*d*x + b*c*x b b x x b b f 1 (f + 1)/b - c*x)/(x *b - x ),( - x *(----) *b*f*x*z b x f 1 (f + 1)/b f 1 (f + 1)/b 2 + x *(----) *b*x*z + x *(----) *c*f*x b b x x f 1 (f + 1)/b 2 f 1 (f + 1)/b - x *(----) *c*x + x *(----) *d*f*x*y b b x x f 1 (f + 1)/b f 1 (f + 1)/b 2 - x *(----) *d*x*y + x *(----) *f *x*z b b x x f 1 (f + 1)/b f f - x *(----) *f*x*z + a*d*x - b*c*x + c*x)/(x *b*f - x *b b x f 2 f - x *f + x *f),w) with arbitrary function ff(..). ------------------------ end -------------------------- Time for test: 204105 ms, plus GC time: 30875 ms