Artifact ed4f7313a1054f8d4eee85eb9cb290e6a1ee0cf1bc5aad443e1ac26bf8fab862:
- Executable file
r37/packages/ncpoly/ncpoly.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1611) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/ncpoly/ncpoly.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 1611) [annotate] [blame] [check-ins using]
nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},left); p1 := (n-k+1)*NN - (n+1); p2 := (k+1)*KK -(n-k); l_g:=nc_groebner ({p1,p2}); nc_preduce(p1+p2,l_g); nc_divide (k*p1+p2,p1); nc_divide (k*p1+p2,2*p1); nc_divide (2*k*k*p1 + k*p1 + p2,2*p1); nc_factorize (p1*p2); nc_setup({k,n,NN,KK},{NN*n-n*NN=NN,KK*k-k*KK=KK},right); nc_factorize (p1*p2); % applications to shift operators nc_setup({n,NN},{NN*n-n*NN=1},left); n*NN; nc_factorize(ws); nc_setup({n,NN},{NN*n-n*NN=1},right); n*NN; nc_factorize(ws); nc_setup({NN,n},{NN*n-n*NN=1},right); n*NN; nc_factorize(ws); nc_setup({NN,n},{NN*n-n*NN=1},left); n*NN; nc_factorize(ws); % Applications to partial differential equations nc_setup({x,Dx},{Dx*x-x*Dx=1}); p:= 2*Dx^2 + x* Dx^3 + 3*x*Dx + x^2*Dx^2 + 14 + 7*x*Dx; nc_factorize p; right_factor(p,1); % no factor of degr 1 right_factor(p,2); left_factor(p,2); nc_setup({x,Dx},{Dx*x-x*Dx=1}); q := x**2*dx**2 + 2*x**2*dx + x*dx**3 + 2*x*dx**2 + 8*x*dx + 16*x + 2*dx**2 + 4*dx$ nc_factorize q; right_factor(q,1); right_factor(q,1,{x}); % no such right factor right_factor(q,1,{dx}); % looking for factor with degree bound for an individual variable q := x**6*dx + x**5*dx**2 + 12*x**5 + 10*x**4*dx + 20*x**3 + x**2*dx**3 - x**2*dx**2 + x*dx**4 - x*dx**3 + 8*x*dx**2 - 8*x*dx + 2*dx**3 - 2*dx**2$ right_factor(q,dx); right_factor(q,dx^2); % some coefficient sports nc_setup({NN,n},{NN*n-n*NN=1},left); q:=(n*nn)^2; nc_factorize q; nc_preduce(q,{c1+c2*n + c3*nn + c4*n*nn}); nc_divide(q,n); nc_cleanup; end;