Artifact cf15c3f6325c2a2ee761ce1dc21d33119ded997c91ab8a64cfdf331669c64b0a:
- Executable file
r37/doc/manual2/ideals.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2681) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/doc/manual2/ideals.tex
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 2681) [annotate] [blame] [check-ins using]
\chapter{IDEALS: Arithmetic for polynomial ideals} \label{IDEALS} \typeout{{IDEALS: Arithmetic for polynomial ideals}} {\footnotesize \begin{center} Herbert Melenk \\ Konrad--Zuse--Zentrum f\"ur Informationstechnik Berlin \\ Takustra\"se 7 \\ D--14195 Berlin--Dahlem, Germany \\[0.05in] e--mail: melenk@zib.de \end{center} } \ttindex{IDEALS} This package implements the basic arithmetic for polynomial ideals by exploiting the Gr\"obner bases package of \REDUCE. In order to save computing time all intermediate Gr\"obner bases are stored internally such that time consuming repetitions are inhibited. A uniform setting facilitates the access. \section{Initialization} Prior to any computation the set of variables has to be declared by calling the operator $I\_setting$ . For example in order to initiate computations in the polynomial ring $Q[x,y,z]$ call \begin{verbatim} I_setting(x,y,z); \end{verbatim} A subsequent call to $I\_setting$ allows one to select another set of variables; at the same time the internal data structures are cleared in order to free memory resources. \section{Bases} An ideal is represented by a basis (set of polynomials) tagged with the symbol $I$, {\em e.g.\ } \begin{verbatim} u := I(x*z-y**2, x**3-y*z); \end{verbatim} Alternatively a list of polynomials can be used as input basis; however, all arithmetic results will be presented in the above form. The operator $ideal2list$ allows one to convert an ideal basis into a conventional \REDUCE\ list. \subsection{Operators} Because of syntactical restrictions in \REDUCE, special operators have to be used for ideal arithmetic: \begin{verbatim} .+ ideal sum (infix) .* ideal product (infix) .: ideal quotient (infix) ./ ideal quotient (infix) .= ideal equality test (infix) subset ideal inclusion test (infix) intersection ideal intersection (prefix,binary) member test for membership in an ideal (infix: polynomial and ideal) gb Groebner basis of an ideal (prefix, unary) ideal2list convert ideal basis to polynomial list (prefix,unary) \end{verbatim} Example: \begin{verbatim} I(x+y,x^2) .* I(x-z); 2 2 2 I(X + X*Y - X*Z - Y*Z,X*Y - Y *Z) \end{verbatim} Note that ideal equality cannot be tested with the \REDUCE\ equal sign: \begin{verbatim} I(x,y) = I(y,x) is false I(x,y) .= I(y,x) is true \end{verbatim}