Artifact c6e0291dbfaa875b2e87fc78f3f18412166df465fc591cfaac8b40bc3adf6979:
- File
r35/lib/assist.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 8543) [annotate] [blame] [check-ins using] [more...]
% Tests of Assist Package version 2.0 for REDUCE 3.4 and 3.4.1. % DATE : 30 May 1993 % Author: H. Caprasse <caprasse@vm1.ulg.ac.be> showtime; Comment 1. CONTROL OF SWITCHES; ; switches; off exp; on gcd; switches; switchorg; switches; ; if !*mcd then "the switch mcd is on"; if !*gcd then "the switch gcd is on"; ; comment 2. MANIPULATION OF THE LIST STRUCTURE:; ; t1:=mklist(4); Comment MKLIST does NEVER destroy anything ; mklist(t1,3); mklist(t1,10); ; sequences 3; lisp; sequences 3; algebraic; frequency append(t1,t1); elmult(a1,t1); insert(a1,t1,2); li:=list(1,2,5); insert_keep_order(4,li,lessp); merge_list(li,li,lessp); for i:=1:4 do t1:= (t1.i:=mkid(a,i)); % for i:=1:2 do t1:=(t1.i:=mkid(a,i)); t1.1; t1:=(t1.1) . t1; position(a2,t1); pair(t1,t1); depth list t1; depth a1; appendn(li,li,li); ; comment 3. THE BAG STRUCTURE AND ITS ASSOCIATED FUNCTIONS ; aa:=bag(x,1,"A"); putbag bg1,bg2; on errcont; putbag list; off errcont; aa:=bg1(x,y**2); ; if bagp aa then "this is a bag"; ; clearbag bg2; ; depth bg2(x); ; if baglistp aa then "this is a bag or list"; if baglistp list(x) then "this is a bag or list"; ; ab:=bag(x1,x2,x3); al:=list(y1,y2,y3); first ab; third ab; first al; last ab; last al; belast ab; belast al; rest ab; rest al; depth al; depth bg1(ab); ; ab.1; al.3; on errcont; ab.4; off errcont; kernlist(aa); listbag(list x,bg1); size ab; length al; remove(ab,3); delete(y2,al); reverse al; member(x3,ab); al:=list(x**2,x**2,y1,y2,y3); ; elmult(x**2,al); position(y3,al); ; repfirst(xx,al); represt(xx,ab); insert(x,al,3); insert( b,ab,2); insert(ab,ab,1); substitute (new,y1,al); ; appendn(ab,ab,ab); append(ab,al); append(al,ab); ; comment Association list or bag may be constructed and thoroughly used; ; l:=list(a1,a2,a3,a4); b:=bg1(x1,x2,x3); al:=pair(list(1,2,3,4),l); ab:=pair(bg1(1,2,3),b); ; comment : A BOOLEAN function abaglistp to test if it is an association; ; if abaglistp bag(bag(1,2)) then "it is an associated bag"; ; % Values associated to the keys can be extracted % first occurence ONLY. ; asfirst(1,al); asfirst(3,ab); ; assecond(a1,al); assecond(x3,ab); ; aslast(z,list(list(x1,x2,x3),list(y1,y2,z))); asrest(list(x2,x3),list(list(x1,x2,x3),list(y1,y2,z))); ; clear a1; ; % All occurences. asflist(x,bg1(bg1(x,a1,a2),bg1(x,b1,b2))); asslist(a1,list(list(x,a1),list(y,a1),list(x,y))); restaslist(bag(a1,x),bg1(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z))); restaslist(list(a1,x),bag(bag(x,a1,a2),bag(a1,x,b2),bag(x,y,z))); ; comment 4. SETS AND THEIR MANIPULATION FUNCTIONS ; ts:=mkset list(a1,a1,a,2,2); if setp ts then "this is a SET"; ; union(ts,ts); diffset(ts,list(a1,a)); diffset(list(a1,a),ts); symdiff(ts,ts); intersect(listbag(ts,set1),listbag(ts,set2)); COMMENT 5. MISCELLANEOUS UTILITY FUNCTIONS :; ; clear a1,a2,a3,a,x,y,z,x1,x2,op$ ; % DETECTION OF A GIVEN VARIABLE IN A GIVEN SET ; mkidnew(); mkidnew(a); dellastdigit 23; detidnum aa; detidnum a10; detidnum a1b2z34; list_to_ids list(a,1,rr,22); ; if oddp 3 then "this is an odd integer"; ; <<prin2 1; followline 7; prin2 8;>>; ; operator foo; foo(x):=x; foo(x)==value; x:=x; ; clear x; ; randomlist(10,20); combnum(8,3); permutations(bag(a1,a2,a3)); permutations {1,2,3}; cyclicpermlist{1,2,3}; combinations({1,2,3},2); labc:={a,b,c}; symmetrize(labc,foo,cyclicpermlist); symmetrize(labc,list,permutations); symmetrize({labc},foo,cyclicpermlist); extremum({1,2,3},lessp); extremum({1,2,3},geq); extremum({a,b,c},ordp); ; funcvar(x+y); funcvar(sin log(x+y)); funcvar(sin pi); funcvar(x+e+i); ; depatom a; depend a,x,y; depatom a; depend op,x,y,z; implicit op; explicit op; depend y,zz; explicit op; aa:=implicit op; clear op; ; korder x,z,y; korderlist; ; if checkproplist({1,2,3},fixp) then "it is a list of integers"; ; if checkproplist({a,b1,c},idp) then "it is a list of identifiers"; ; if checkproplist({1,b1,c},idp) then "it is a list of identifiers"; ; lmix:={1,1/2,a,"st"}; ; extractlist(lmix,fixp); extractlist(lmix,numberp); extractlist(lmix,idp); extractlist(lmix,stringp); ; comment 6. PROPERTIES AND FLAGS:; ; putflag(list(a1,a2),fl1,t); putflag(list(a1,a2),fl2,t); displayflag a1; ; clearflag a1,a2; displayflag a2; putprop(x1,propname,value,t); displayprop(x1,prop); displayprop(x1,propname); ; putprop(x1,propname,value,0); displayprop(x1,propname); ; comment CONTROL FUNCTIONS:; ; alatomp z; z:=s1; alatomp z; ; alkernp z; alkernp log sin r; ; precp(difference,plus); precp(plus,difference); precp(times,.); precp(.,times); ; if stringp x then "this is a string"; if stringp "this is a string" then "this is a string"; ; if nordp(b,a) then "a is ordered before b"; operator op; for all x,y such that nordp(x,y) let op(x,y)=x+y; op(a,a); op(b,a); op(a,b); clear op; ; depvarp(log(sin(x+cos(1/acos rr))),rr); ; operator op; symmetric op; op(x,y)-op(y,x); remsym op; op(x,y)-op(y,x); ; clear y,x,u,v; clear op; ; % DISPLAY and CLEARING of user's objects of various types entered % to the console. Only TOP LEVEL assignments are considered up to now. % The following statements must be made INTERACTIVELY. We put them % as COMMENTS for the user to experiment with them. We do this because % in a fresh environment all outputs are nil. ; % THIS PART OF THE TEST SHOULD BE REALIZED INTERACTIVELY. % SEE THE ** ASSIST LOG ** FILE . %v1:=v2:=1; %show variables; % For REDUCE 3.3 ONLY. %show scalars; %aa:=list(a); %show lists; %array ar(2); %show arrays; %load matr$ %matrix mm; %show matrices; %x**2; %saveas res; %show saveids; %suppress variables; % For REDUCE 3.3 ONLY %show variables; % For REDUCE 3.3 ONLY %suppress scalars; %show scalars; %show lists; %suppress all; %show arrays; %show matrices; ; comment end of the interactive part; ; clear op; operator op; op(x,y,z); clearop op; clearfunctions abs,tan; ; comment THIS FUNCTION MUST BE USED WITH CARE !!"!!!; ; comment 6. HANDLING OF POLYNOMIALS clear x,y,z; COMMENT To see the internal representation :; ; off pri; ; pol:=(x-2*y+3*z**2-1)**3; ; pold:=distribute pol; ; on distribute; leadterm (pold); pold:=redexpr pold; leadterm pold; ; off distribute; polp:=pol$ leadterm polp; polp:=redexpr polp; leadterm polp; ; monom polp; ; on pri; ; splitterms polp; ; splitplusminus polp; ; divpol(pol,x+2*y+3*z**2); ; lowestdeg(pol,y); ; comment 7. HANDLING OF SOME TRANSCENDENTAL FUNCTIONS:; ; trig:=((sin x)**2+(cos x)**2)**4; trigreduce trig; trig:=sin (5x); trigexpand trig; trigreduce ws; trigexpand sin(x+y+z); ; ; hypreduce (sinh x **2 -cosh x **2); ; ; clear a,b; pluslog log(a*log(x**b)); concsumlog((2*log x + a*b*log(x*y)+1)/(3*x**2*log(y))); ; comment 8. HANDLING OF N6DIMENSIONAL VECTORS:; ; clear u1,u2,v1,v2,v3,v4,w3,w4; u1:=list(v1,v2,v3,v4); u2:=bag(w1,w2,w3,w4); % sumvect(u1,u2); minvect(u2,u1); scalvect(u1,u2); crossvect(rest u1,rest u2); mpvect(rest u1,rest u2, minvect(rest u1,rest u2)); scalvect(crossvect(rest u1,rest u2),minvect(rest u1,rest u2)); ; comment 9. HANDLING OF GRASSMANN OPERATORS:; ; putgrass eta,eta1; grasskernel:= {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y), (~x)*(~x) => 0 when grassp x}; ; eta(y)*eta(x); eta(y)*eta(x) where grasskernel; let grasskernel; eta(x)^2; eta(y)*eta(x); operator zz; grassparity (eta(x)*zz(y)); grassparity (eta(x)*eta(y)); grassparity(eta(x)+zz(y)); clearrules grasskernel; grasskernel:= {eta(~x)*eta(~y) => -eta y * eta x when nordp(x,y), eta1(~x)*eta(~y) => -eta x * eta1 y, eta1(~x)*eta1(~y) => -eta1 y * eta1 x when nordp(x,y), (~x)*(~x) => 0 when grassp x}; ; let grasskernel; eta1(x)*eta(x)*eta1(z)*eta1(w); clearrules grasskernel; remgrass eta,eta1; clearop zz; ; COMMENT 10. HANDLING OF MATRICES:; ; clear m,mm,b,b1,bb,cc,a,b,c,d; matrix mm(2,2); baglmat(bag(bag(a1,a2)),m); m; on errcont; ; baglmat(bag(bag(a1),bag(a2)),m); off errcont; % **** i.e. it cannot redefine the matrix! in order % to avoid accidental redefinition of an already given matrix; clear m; baglmat(bag(bag(a1),bag(a2)),m); m; on errcont; baglmat(bag(bag(a1),bag(a2)),bag); off errcont; comment Right since a bag-like object cannot become a matrix.; ; coercemat(m,op); coercemat(m,list); ; on nero; unitmat b1(2); matrix b(2,2); b:=mat((r1,r2),(s1,s2)); b1;b; mkidm(b,1); ; seteltmat(b,newelt,2,2); geteltmat(b,2,1); % b:=matsubr(b,bag(1,2),2); ; submat(b,1,2); ; bb:=mat((1+i,-i),(-1+i,-i)); cc:=matsubc(bb,bag(1,2),2); ; cc:=tp matsubc(bb,bag(1,2),2); matextr(bb, bag,1); ; matextc(bb,list,2); ; hconcmat(bb,cc); vconcmat(bb,cc); ; tpmat(bb,bb); bb tpmat bb; ; clear hbb; hermat(bb,hbb); % id hbb changed to a matrix id and assigned to the hermitian matrix % of bb. ; showtime; end;