Artifact c2b4423cec026483a1bed9ba12f30bb6a1b8251daf56175d93e42d16689d8cc5:
- Executable file
r37/packages/matrix/det.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 4228) [annotate] [blame] [check-ins using] [more...]
module det; % Determinant and trace routines. % Author: Anthony C. Hearn. fluid '(!*cramer !*rounded asymplis!* bareiss!-step!-size!* kord!* wtl!*); bareiss!-step!-size!* := 2; % seems fastest on average. symbolic procedure simpdet u; begin scalar x,!*protfg; !*protfg := t; return if !*cramer or !*rounded or errorp(x := errorset({'bareiss!-det,mkquote u},nil,nil)) then detq matsm carx(u,'det) else car x end; % The hashing and determinant routines below are due to M. L. Griss. Comment Some general purpose hashing functions; flag('(array),'eval); % Declared again for bootstrapping purposes. array !$hash 64; % General array for hashing. symbolic procedure gethash key; % Access previously saved element. assoc(key,!$hash(remainder(key,64))); symbolic procedure puthash(key,valu); begin integer k; scalar buk; k := remainder(key,64); buk := (key . valu) . !$hash k; !$hash k := buk; return car buk end; symbolic procedure clrhash; for i := 0:64 do !$hash i := nil; Comment Determinant Routines; symbolic procedure detq u; % Top level determinant function. begin integer len; len := length u; % Number of rows. for each x in u do if length x neq len then rederr "Non square matrix"; if len=1 then return caar u; clrhash(); u := detq1(u,len,0); clrhash(); return u end; symbolic procedure detq1(u,len,ignnum); % U is a square matrix of order LEN. Value is the determinant of U. % Algorithm is expansion by minors of first row. % IGNNUM is packed set of column indices to avoid. begin integer n2; scalar row,sign,z; row := car u; % Current row. n2 := 1; if len=1 then return <<while twomem(n2,ignnum) do <<n2 := 2*n2; row := cdr row>>; car row>>; % Last row, single element. if z := gethash ignnum then return cdr z; len := len-1; u := cdr u; z := nil ./ 1; for each x in row do <<if not twomem(n2,ignnum) then <<if numr x then <<if sign then x := negsq x; z:= addsq(multsq(x,detq1(u,len,n2+ignnum)), z)>>; sign := not sign>>; n2 := 2*n2>>; puthash(ignnum,z); return z end; symbolic procedure twomem(n1,n2); % For efficiency reasons, this procedure should be coded in assembly % language. not evenp(n2/n1); put('det,'simpfn,'simpdet); flag('(det),'immediate); % A version of det using the Bareiss code. symbolic procedure bareiss!-det u; % Compute a determinant using the Bareiss code. begin scalar nu,bu,n,ok,temp,v,!*exp; !*exp := t; nu := matsm car u; n := length nu; for each x in nu do if length x neq n then rederr "Non square matrix"; if n=1 then return caar nu; % Note in an earlier version, these were commented out. if asymplis!* or wtl!* then <<temp := asymplis!* . wtl!*; asymplis!* := wtl!* := nil>>; nu := normmat nu; v := for i:=1:n collect intern gensym(); % Cannot rely on the ordering of the gensyms. ok := setkorder append(v,kord!*); car nu := foreach r in car nu collect prsum(v,r); begin scalar powlis,powlis1; powlis := powlis!*; powlis!* := nil; powlis1 := powlis1!*; powlis1!* := nil; bu := cdr sparse_bareiss(car nu,v,bareiss!-step!-size!*); powlis!* := powlis; powlis1!* := powlis1; end; bu := if length bu = n then (lc car bu ./ cdr nu) else (nil ./ 1); setkorder ok; if temp then <<asymplis!* := car temp; wtl!* := cdr temp>>; return resimp bu end; symbolic procedure simptrace u; begin integer n; scalar z; u := matsm carx(u,'trace); if length u neq length car u then rederr "Non square matrix"; n := 1; z := nil ./ 1; for each x in u do <<z := addsq(nth(x,n),z); n := n+1>>; return z end; put('trace,'simpfn,'simptrace); endmodule; end;