Artifact 8f307021a1aba5e7214b34469995f1de957ce2ef4ed33b829624f35a5cfdb9a4:
- Executable file
r37/packages/susy2/susy2.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11637) [annotate] [blame] [check-ins using] [more...]
- Executable file
r38/packages/susy2/susy2.tst
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 11637) [annotate] [blame] [check-ins using]
on list; on errcont; % 1.) Example of ordering of objects such as fer,bos,axp; axp(bos(f,0,0))*bos(g,3,1)*fer(k,1,0); %fer(k,1,0)*bos(g,3,1)*axp(bos(f,0,0)); % 2.) Example of ordering of fer and fer objects fer(f,1,2)*fer(f,1,2); % 0 fer(f,1,2)*fer(g,2,3); % -fer(g,2,3)*fer(f,1,2); fer(f,1,2)*fer(f,1,3); % - fer(f,1,3)*fer(f,1,2); fer(f,1,2)*fer(f,2,2); % - fer(f,2,2)*fer(f,1,2); % 3.) Example of ordering of bos and bos objects; bos(f,3,0)*bos(g,0,4); %bos(g,0,4)*bos(f,3,0); bos(f,3,0)*bos(f,0,0); %bos(f,3,0)*bos(f,0,0); bos(f,3,2)*bos(f,3,5); %bos(f,3,5)*bos(f,3,2); % 4.) ordering of inverse superfunctions; % last index in bos objects denotes powers; bos(f,0,3)*bos(k,0,2)*bos(zz,0,3,-1)*bos(k,0,2,-1); %bos(zz,0,3,-1)*bos(f,0,3); bos(c,0,3)*bos(b,0,2)*bos(a,0,3,-1)*bos(b,0,2,-1); %bos(c,0,3)*bos(a,0,3,-1); % 5.) Demostration of inverse rule; let inverse; bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2); %bos(k,3,1,40)*bos(f,0,3,1); clearrules inverse; % 6.) Demonstration of (susy) derivative operators; % Up to now we did not decided on the chirality assumption % so let us check first the tradicional algebra os susy derivative; let trad; %first susy derivative der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0)); fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1); sub(del=der,ws); %second susy derivative der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0)); fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2); sub(del=der,ws); %usual derivative; d(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0)); fer(g,2,1)*bos(f,0,2,-2)*axp(fer(h,1,2)*fer(k,2,1))*d(2); sub(d(2)=d(1),ws); % 7.) the value of action of (susy) derivative; xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3)); yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3)); %first susy derivative pr(1,xxx); pr(1,yyy); %second susy2 derivative; pr(2,xxx); pr(2,yyy); % third susy2 derivative; pr(3,xxx); pr(3,yyy); clearrules trad; let chiral; pr(3,xxx); clearrules chiral; let chiral1; pr(3,xxx); clearrules chiral1; let trad; % usual derivative pg(1,xxx); pg(3,yyy); clear xxx,yyy; % 8.) % And now let us change traditional algebra on the chiral algebra; clearrules trad; let chiral; % And now we compute the same derivative but in the chiral % representation; %first susy derivative der(1)*fer(f,1,2)*bos(g,3,1)*axp(bos(h,0,0)); fer(g,2,1)*bos(f,0,2,-2)*axp(fer(k,1,2)*fer(h,2,1))*del(1); sub(del=der,ws); %second susy derivative der(2)*fer(g,2,3)*bos(kk,0,3)*axp(bos(f,3,0)); fer(r,2,1)*bos(kk,3,4,-4)*axp(fer(f,1,2)*fer(g,2,1))*del(2); sub(del=der,ws); ; % 9.) the value of action of (susy) derivative; xxx:=fer(f,1,2)*bos(k,0,2,-2)*axp(fer(h,2,0)*fer(aa,1,3)); yyy:=fer(g,2,3)*bos(kk,3,1,-3)*axp(bos(f,0,2,-3)); %first susy derivative pr(1,xxx); pr(1,yyy); %second susy2 derivative; pr(2,xxx); pr(2,yyy); clear xxx,yyy; % We return back to the traditional algebra; clearrules chiral; let trad; % 10.) The components of super-objects; xxx:=fer(f,2,3)*bos(g,3,2,2); % all components; fpart(xxx); %bosonic sector; bpart(xxx); %the given component bf_part(xxx,0); %the given component in the bosonic sector; b_part(xxx,0); b_part(xxx,1); clear zzz; clearrules trad; let chiral; zzz:=bos(f,3,1,-1)*bos(g,0,1,2); b_part(zzz,0); b_part(zzz,3); clearrules chiral; let chiral1; b_part(zzz,0); b_part(zzz,3); clearrules chiral1; let trad; %11 matrix represenattion of operators; lax:=der(1)*der(2)+bos(u,0,0); macierz(lax,b,b); macierz(lax,f,b); macierz(lax,b,f); macierz(lax,f,f); % 12.) Demonstration of chirality properties; clearrules trad; let chiral; b_chiral:={f0}; b_antychiral:={f1}; f_chiral:={f2}; f_antychiral:={f3}; for k:=0:3 do write fer(f0,k,0); for k:=0:3 do write fer(f1,k,0); for k:=0:3 do write fer(f2,k,0); for k:=0:3 do write fer(f3,k,0); for k:=0:3 do write bos(f1,k,0); for k:=0:3 do write bos(f2,k,0); for k:=0:3 do write bos(f2,k,0); for k:=0:3 do write bos(f3,k,0); % 13.) Integrations; d(-1)*xxx; %we have to declare ww; ww:=2; d(-1)*xxx; xxx*d(-2); d(-3)*xxx; ww:=4; d(-1)**5:=0;d(-2)**5:=0; d(-1)*yyy; yyy*d(-2); clear d(-1)**5,d(-2)**5; on list; % 14.) The accelerations of integrations; clear ww; ww:=3; let drr; let cutoff; cut:=4; d(-1)*xxx; d(-1)**2*yyy; clear ww,cut; ww:=4; cut:=5; d(-1)**3*yyy; d(-1)*xxx; clearrules cutoff;clearrules drr; clear cut,ww; % it is possible to use directly accelerated integrations oprators dr; ww:=4; dr(-2)*fer(f,1,2)*bos(kk,0,2); on time; showtime; dr(-3)*bos(g,3,1)*bos(ff,3,2); showtime; %if you try usual integration d(-1)**3*bos(g,3,1)*bos(ff,3,2); showtime; % then the time - diffrences is evident. In this example d(-1) % integration is 10 times slower then dr integrations. off time; let cutoff; cut:=5; dr(-2)*fer(f,1,2)*bos(aa,0,1); dr(-3)*bos(g,3,1)*bos(bb,0,3); clear ww,cut; ww:=6; cut:=7; dr(-3)*fer(k,2,3)*bos(h,0,2); dr(-4)*bos(h,0,3)*bos(k,0,2); clear ww,cut; clearrules cutoff; % 15.) The combinations %the combinations of dim 7 constructed from fields of % the 2 ,3 dimensions, free parameters are numerated by "a"; w_comb({{f,2,b},{g,3,b}},7,a,b); w_comb({{f,2,f},{g,3,f}},4,s,f); % and now compute the last example but withouth the (susy)divergence %terms; fcomb({{f,2,b},{g,3,b}},5,c,b); fcomb({{f,1,f}},4,r,f); % 16.) The element of pseudo - susy -differential algebra; pse_ele(2,{{f,2,b}},c); pse_ele(3,{{f,2,b}},c); pse_ele(4,{{f,2,b}},c); pse_ele(3,{{f,1,b},{g,2,b}},r); % The components of the elements of pseudo - susy - differential algebra; xxx:=pse_ele(2,{{f,1,b},{g,2,b}},r); for k:=0:3 do write s_part(xxx,k); for k:=0:2 do write d_part(xxx,k); for k:=0:2 do for l:=0:3 do write sd_part(xxx,l,k); clear xxx; % 17.) Projection onto invariant subspace; xxx:= w_comb({{f,1,b}},2,a,b)*d(1)+ w_comb({{f,1,b}},3,b,b)*der(1)*der(2)+ w_comb({{f,1,b}},5/2,c,b)*der(1)+ w_comb({{f,1,b}},3,ee,b)*d(1)^2+ w_comb({{f,1,b}},7/2,fe,b)*d(1)*der(2)+ w_comb({{f,1,b}},3,g,b)*der(1)*der(2)*d(1); for k:=0:2 do write rzut(xxx,k); clear xxx; % 18.) Test for the adjoint operators; cp(der(1)); cp(der(1)*der(2)); clearrules trad; let chiral1; cp(der(3)); cp(der(1)*d(1)); clearrules chiral1; let trad; cp(d(1)); cp(d(2)); as:=fer(f,1,0)*d(-3)*fer(g,2,0)+fer(h,1,2)*d(-3)*fer(kk,2,1); cp(as); cp(as*as); as:=fer(f,1,0); cp(as); cp(ws); clear as; as:=bos(f,0,0); as1:=as*der(1); cp(as1); cp(ws); cp(as1)+der(1)*as; as2:=as*der(1)*der(2); cp(as2); cp(ws); cp(as2) - der(1)*der(2)*as; clear as; as:=mat((fer(f,1,0)*der(1),bos(g,0,0)*d(-3)*bos(h,0,0)), (fer(h,2,1),fer(h,1,2)*d(-3)*fer(k,2,3))); cp(as); clear as; % 19.) Analog of coeff xxx:=pse_ele(2,{{f,1,b}},a); yyy:=lyst(xxx); zzz:=lyst1(xxx); yyy:=lyst2(xxx); clear xxx,yyy,zzz; % 20.) Simplifications; % we would like to compute third generalizations of the SUSY KdV % equation % example from Z.Popowicz Phys.Lett.A.174 (1993) p.87 lax:=d(1)+d(-3)*der(1)*der(2)*bos(u,0,0); lb2:=lax^2; la2:=chan(lb2); lb3:=lax*la2; la3:=chan(lb3); lax3:=rzut(la3,1); comm:=lax*lax3 - lax3*lax; com:=chan(comm); result:=sub(der=del,com); %the equation is equ:=sub(del(1)=1,del(2)=1,d(-3)=1,result); clear lax,lb2,la2,lb3,la3,lax3,comm,com,result; % we now compute the same but starting from % different realizations of susy algebra % clearrules trad; let chiral1; lax:=d(1)+d(-3)*del(3)*bos(u,0,0); la2:=chan(lax^2); la3:=rzut(chan(lax*la2),0); com:=chan(lax*la3-la3*lax); equ_chiral1:=sub(d(-3)=1,del(3)=1,com); clear lax,lb2,la2,lb3,la3,lax3,lax,comm,com,result; clearrules chiral1; let trad; % 21.) Conservation laws; % we would like to check the conservations laws for our third %generalization of susy kdv equation; % ham:=fcomb({{u,1,b}},3,a,b); conserv:=dot_ham({{u,equ}},ham); % we check now on susy-divergence behaviour; % az:=war(conserv,u); solve(az); clear equ,ha,conserv,az; % 22.) The residue of Lax operator % we would like to find conservation laws for Lax susy KdV % equation considered in the previous example % lax:=d(1)-d(-3)*del(1)*der(2)*bos(u,0,0); lb2:=lax^2; la2:=chan(lb2); lb4:=la2^2; kxk^3:=0; la4:=chan(lb4); lc4:=sub(kxk=1,qq=-3,sub(d(-3)=kxk*d(qq),la4)); lb5:=lax*lc4; lc5:=s_part(lb5,3); la5:=lc5-sub(d(-3)=0,lc5); ld5:=chan(la5); konserv:=sub(d(-3)=1,d_part(ld5,-1)); clear lax,lb2,la2,lb4,kxk,la4,lc4,lb5,lc5,la5,konserv; %22.) The N=2 SuSy Boussinesq equation % example from Z.Popowicz Phys.LettB.319 (1993) 478-484 clearrules trad; let chiral; lax:=del(1)*(d(1)^2+bos(j,0,0)*d(1)+bos(tt,0,0))*der(2); la2:=del(1)*(d(1)+2*bos(j,0,0)/3)*der(2); com:=sub(del(1)=1,der(2)=1,lax*la2-la2*lax); operator boss; boss(j,t):=d_part(com,1); boss(tt,t):=d_part(com,0); % let us shift bos(tt,0,0) to bos(tt,0,0):=bos(tx,0,0)/2+bos(j,0,0)**2/6 + bos(j,0,1)/2; bos(tt,0,1):=pg(1,bos(tt,0,0)); bos(tt,0,2):=pg(1,bos(tt,0,1)); fer(tt,1,0):=pr(1,bos(tt,0,0)); fer(tt,2,0):=pr(2,bos(tt,0,0)); % then the equations of motion are; bos(j,t):=boss(j,t); bos(tx,t):=2*(boss(tt,t) - boss(j,t)*bos(j,0,0)/3- pg(1,boss(j,t))/2); clear lax,la2; clearrules chiral; let trad; %23.) the Jacobi identity; % we will find the N=2 susy extension of the Virasoro algebra. % First we found the most general form of the susy-pseudo-differential % element of the dimension two. vira:=pse_ele(2,{{f,1,b}},a); % This vira should be antisymmetrical so we found ewa:=vira+cp(vira); %we first solve ewa in order to found free coefficients; load_package groebner; adam:=groesolve(sub(der(1)=1,der(2)=1,d(1)=1,lyst1(ewa))); % we define now the most general antisymmetrical susy-pseudo-symmetrical % element of conformal dimension two. vira:=sub(adam,vira); % we make additional assumption that our Poisson tensor vira should be O(2) % invariant under the change of susy derivatives; dad:=odwa(vira)-vira; factor der; wyr1:=sub(der(1)=1,der(2)=1,lyst1(dad)); remfac der; dad:=groesolve(wyr1); vira:=sub(dad,vira); % we check wheather it is really O(2) invariant; vira-odwa(vira); % O.K %so %now we check the Jacobi identity jjacob:=fjacob(vira,f); % we now check jjacob on the susy-divergence behaviour w.r. to the test % superfunction !#a; az:=war(jjacob,!#a); as:=groesolve(az); array ew(3); for k:=1:2 do ew(k):=part(as,k); % as we see we have two different solutions % first give us classical realizations of the Virasoro algebra % (without the center term) which is sub(ew(1),vira); % the second solution give us desired susy generalizations of % Virasoro algebra sub(ew(2),vira); % the coefficient "a" could be absorbed by redefinations of % bos(f,0,0) % we check that previous result satisfies the antisymmetric requirements ws + cp(ws); clearrules trad; let chiral1 ; % We check that for chiral1 realization the following operator vira:=der(3)*d(1)+bos(j,0,1)+bos(j,0,0)*d(1)+ fer(j,1,0)*der(2)+fer(j,2,0)*der(1); % satisfy the Jacobi identity; jjacob:=fjacob(vira,j); az:=war(jjacob,!#a); %24 superintegration clearrules chiral1; let trad; as:=s_int(0,bos(f,3,0)^2-bos(f,0,1)^2,{f}); as1:=sub(d(-3)=0,ws); as2:=sub(d(-3)=1,as-as1); as3:=s_int(1,as2,{f}); as4:=sub(del(-1)=0,ws); as4:=sub(del(-1)=1,as3-as4); as5:=s_int(2,as4,{f}); end;