Artifact 8d4f3be1478c360ed5539c8f9f2aa37c0d326495bf8a3294c3b208f670d9b7be:
- Executable file
r38/packages/alg/simp.red
— part of check-in
[f2fda60abd]
at
2011-09-02 18:13:33
on branch master
— Some historical releases purely for archival purposes
git-svn-id: https://svn.code.sf.net/p/reduce-algebra/code/trunk/historical@1375 2bfe0521-f11c-4a00-b80e-6202646ff360 (user: arthurcnorman@users.sourceforge.net, size: 51034) [annotate] [blame] [check-ins using] [more...]
module simp; % Functions to convert prefix forms into canonical forms. % Author: Anthony C. Hearn. % Modifications by: J.H. Davenport, F. Kako, S. Kameny, E. Schruefer and % Francis J. Wright. % Copyright (c) 1998, Anthony C. Hearn. All rights reserved. fluid '(!*allfac !*div); fluid '(!*asymp!* !*complex !*exp !*gcd !*ifactor !*keepsqrts !*mcd !*mode !*modular !*notseparate !*numval !*precise !*rationalize !*reduced !*resimp !*sub2 !*uncached alglist!* dmd!* dmode!* varstack!* !*combinelogs !*expandexpt !*msg frlis!* subfg!* !*norationalgi factorbound!* ncmp!* powlis1!* !*nospurp !*ncmp); global '(!*match den!* % exptl!* No-one else refers to this variable - just slows us initl!* mul!* simpcount!* simplimit!* tstack!* ws); switch expandexpt; % notseparate; !*expandexpt := t; % The NOTSEPARATE switch inhibits an expression such as x^(4/3) to % become x*x^(1/3). At the present time, no one is using this. factorbound!* := 10000; % Limit for factoring with IFACTOR off. % !*KEEPSQRTS uses SQRT rather than EXPT for square roots. % Normally set TRUE in the integrator, false elsewhere. put('ifactor,'simpfg,'((t (rmsubs)))); put('alglist!*,'initl,'(cons nil nil)); put('simpcount!*,'initl,0); initl!* := union('(alglist!* simpcount!*),initl!*); simplimit!* := 1000; symbolic procedure noncom u; % Declare vars u to be noncom. <<rmsubs(); for each j in u do noncom1 j>>; symbolic procedure noncom1 u; <<!*ncmp := t; flag(list u,'noncom)>>; put('noncom,'stat,'rlis); symbolic procedure simp!* u; begin scalar !*asymp!*,x; if eqcar(u,'!*sq) and caddr u and null !*resimp then return cadr u; x := mul!* . !*sub2; % Save current environment. mul!* := nil; u:= simp u; if !*nospurp then mul!* := union(mul!*,'(isimpq)); for each j in mul!* do u:= apply1(j,u); mul!* := car x; u := subs2 u; if !*combinelogs then u := clogsq!* u; % Must be here, since clogsq!* can upset girationalizesq!:. % For defint, it is necessary to turn off girationalizesq - SLK. if dmode!* eq '!:gi!: and not !*norationalgi then u := girationalize!: u else if !*rationalize then u := rationalizesq u else u := rationalizei u; !*sub2 := cdr x; % If any leading terms have cancelled, a gcd check is required. if !*asymp!* and !*rationalize then u := gcdchk u; return u end; symbolic procedure rationalizei u; % Remove overall factor of i in denominator. begin scalar v,w; if domainp (v := denr u) or not smemq('i,v) then return u; v := reordsq u where kord!* = 'i . kord!*; return if lpow (w := denr v) = '(i . 1) and null red w then negf multf(!*k2f 'i,reorder numr v) ./ reorder lc w else u end; symbolic procedure subs2 u; begin scalar xexp,v,w,x; if null subfg!* then return u else if !*sub2 or powlis1!* then u := subs2q u; u := exptchksq u; x := get('slash,'opmtch); if null (!*match or x) or null numr u then return u else if null !*exp then <<xexp:= t; !*exp := t; v := u; w := u := resimp u>>; u := subs3q u; if xexp then <<!*exp := nil; if u=w then u := v>>; if x then u := subs4q u; return u end; symbolic procedure simp u; (begin scalar x,y; % This case is sufficiently common it is done first. if fixp u then if u=0 then return nil ./ 1 else if not dmode!* then return u ./ 1 else nil else if u member varstack!* then recursiveerror u; varstack!* := u . varstack!*; if simpcount!*>simplimit!* then <<simpcount!* := 0; rerror(alg,12,"Simplification recursion too deep")>> else if eqcar(u,'!*sq) and caddr u and null !*resimp then return cadr u else if null !*uncached and (x := assoc(u,car alglist!*)) then return <<if cadr x then !*sub2 := t; cddr x>>; simpcount!* := simpcount!*+1; % undone by returning through !*SSAVE. if atom u then return !*ssave(simpatom u,u) else if not idp car u or null car u then if atom car u then typerr(car u,"operator") else if idp caar u and (x := get(caar u,'name)) then return !*ssave(u,u) %%% not yet correct else if eqcar(car u,'mat) and numlis(x := revlis cdr u) and length x=2 then return !*ssave(simp nth(nth(cdar u,car x),cadr x),u) else errpri2(u,t) else if flagp(car u,'opfn) then if null(y := getrtype(x := opfneval u)) then return !*ssave(simp_without_resimp x,u) else if y eq 'yetunknowntype and null getrtype(x := reval x) then return simp x else typerr(u,"scalar") else if x := get(car u,'psopfn) then if getrtype(x := apply1(x,cdr argnochk u)) then typerr(u,"scalar") else if x=u then return !*ssave(!*k2q x,u) else return !*ssave(simp_without_resimp x,u) % Note in above that the psopfn MUST return a *sq form, % otherwise an infinite recursion occurs. else if x := get(car u,'polyfn) then return <<argnochk u; !*ssave(!*f2q lispapply(x, for each j in cdr u collect !*q2f simp!* j), u)>> else if get(car u,'opmtch) and not(get(car u,'simpfn) eq 'simpiden) and (x := opmtchrevop u) then return !*ssave(simp x,u) else if x := get(car u,'simpfn) then return !*ssave(apply1(x, if x eq 'simpiden or flagp(car u,'full) then argnochk u else cdr argnochk u), u) else if (x := get(car u,'rtype)) and (x := get(x,'getelemfn)) then return !*ssave(simp apply1(x,u),u) else if flagp(car u,'boolean) or get(car u,'infix) then typerr(if x := get(car u,'prtch) then x else car u, "algebraic operator") else if flagp(car u,'nochange) then return !*ssave(simp lispeval u,u) else if get(car u,'psopfn) or get(car u,'rtypefn) then typerr(u,"scalar") else <<redmsg(car u,"operator"); mkop car u; varstack!* := delete(u,varstack!*); return !*ssave(simp u,u)>>; end) where varstack!* = varstack!*; symbolic procedure opmtchrevop u; % The following structure is designed to make index mu; p1.mu^2; % work. It also introduces a redundant revlis in most cases. if null !*val or smemq('cons,u) then opmtch u else opmtch(car u . revlis cdr u); symbolic procedure simp_without_resimp u; simp u where !*resimp := nil; put('array,'getelemfn,'getelv); put('array,'setelemfn,'setelv); symbolic procedure getinfix u; %finds infix symbol for U if it exists; begin scalar x; return if x := get(u,'prtch) then x else u end; symbolic procedure !*ssave(u,v); % We keep !*sub2 as well, since there may be an unsubstituted % power in U. begin if not !*uncached then rplaca(alglist!*,(v . (!*sub2 . u)) . car alglist!*); simpcount!* := simpcount!*-1; return u end; symbolic procedure numlis u; null u or (numberp car u and numlis cdr u); symbolic procedure simpatom u; % if null u then typerr("NIL","algebraic identifier") if null u then nil ./ 1 % Allow NIL as default 0. else if numberp u then if u=0 then nil ./ 1 else if not fixp u then ('!:rd!: . cdr fl2bf u) ./ 1 % we assume that a non-fixp number is a float. else if flagp(dmode!*,'convert) and u neq 1 % Don't convert 1 then !*d2q apply1(get(dmode!*,'i2d),u) else u ./ 1 else if stringp u then typerr(list("String",u),"identifier") else if flagp(u,'share) then <<(if x eq u then mksq(u,1) else simp x) where x=lispeval u>> else begin scalar z; if z := get(u,'idvalfn) then return apply1(z,u) else if !*numval and dmode!* and flagp(u,'constant) and (z := get(u,dmode!*)) and not errorp(z := errorset!*(list('lispapply,mkquote z,nil), nil)) then return !*d2q car z else if getrtype u then typerr(u,'scalar) else return mksq(u,1) end; flag('(e pi),'constant); symbolic procedure mkop u; begin scalar x; if null u then typerr("Local variable","operator") else if (x := gettype u) eq 'operator then lprim list(u,"already defined as operator") else if x and not(x memq '(fluid global procedure)) then typerr(u,'operator) % else if u memq frlis!* then typerr(u,"free variable") else put(u,'simpfn,'simpiden) end; symbolic procedure operatorp u; gettype u eq 'operator; symbolic procedure simpcar u; simp car u; put('quote,'simpfn,'simpcar); symbolic procedure share u; begin scalar y; for each v in u do if not idp v then typerr(v,"id") else if flagp(v,'share) then nil else if flagp(v,'reserved) then rsverr v else if (y := getrtype v) and y neq 'list then rerror(alg,13,list(y,v,"cannot be shared")) else % if algebraic value exists, transfer to symbolic. <<if y then remprop(v,'rtype); if y := get(v,'avalue) then <<setifngfl(v,cadr y); remprop(v,'avalue)>> % if no algebraic value but symbolic value, leave unchanged. else if not boundp v then setifngfl(v,v); % if previously unset, set symbolic self pointer. flag(list v,'share)>> end; symbolic procedure boundp u; % Determines if the id u has a value. % NB: this function must be redefined in many systems (e.g., CL). null errorp errorset!*(u,nil); symbolic procedure setifngfl(v,y); <<if not globalp v then fluid list v; set(v,y)>>; rlistat '(share); flag('(ws !*mode),'share); flag('(share),'eval); % ***** SIMPLIFICATION FUNCTIONS FOR EXPLICIT OPERATORS - EXP ***** symbolic procedure simpexpon u; % Exponents must not use non-integer arithmetic unless NUMVAL is on, % in which case DOMAINVALCHK must know the mode. simpexpon1(u,'simp!*); symbolic procedure simpexpon1(u,v); if !*numval and (dmode!* eq '!:rd!: or dmode!* eq '!:cr!:) then apply1(v,u) else begin scalar dmode!*,alglist!*; return apply1(v,u) end; symbolic procedure simpexpt u; % We suppress reordering during exponent evaluation, otherwise % internal parts (as in e^(a*b)) can have wrong order. begin scalar expon; expon := simpexpon carx(cdr u,'expt) where kord!*=nil; % We still need the right order, else % explog := {sqrt(e)**(~x*log(~y)/~z) => y**(x/z/2)}; % on ezgcd,gcd; let explog; fails. expon := simpexpon1(expon,'resimp); return simpexpt1(car u,expon,nil) end; symbolic procedure simpexpt1(u,n,flg); % FLG indicates whether we have done a PREPSQ SIMP!* U or not: we % don't want to do it more than once. begin scalar !*allfac,!*div,m,x,y; if onep u then return 1 ./ 1; !*allfac := t; m := numr n; if m=1 and denr n=1 then return simp u; % this simplifies e^(n log x) -> x^n for all n,x. if u eq 'e and domainp denr n and not domainp m and ldeg m=1 and null red m and eqcar(mvar m,'log) then return simpexpt1(prepsq!* simp!* cadr mvar m,lc m ./ denr n,nil); if not domainp m or not domainp denr n then return simpexpt11(u,n,flg); x := simp u; if null m then return if null numr x then rerror(alg,14,"0**0 formed") else 1 ./ 1; % We could use simp!* here, except it messes up the handling of % gamma matrix expressions. % if denr x=1 and not domainp numr x and not(denr n=1) % then <<y := sqfrf numr x; %% then <<y := fctrf numr x; %% if car y=1 then y := cdr y %% else if minusp car y then y := {1}; % if length y>1 then return simpexptfctr(y,n)>>; return if null numr x then if domainp m and minusf m then rerror(alg,15,"Zero divisor") else nil ./ 1 else if atom m and denr n=1 and domainp numr x and denr x=1 then if atom numr x and m>0 then !*d2q(numr x**m) else <<x := !:expt(numr x,m) ./ 1; %remove rationals where possible. if !*mcd then resimp x else x>> else if y := domainvalchk('expt,list(x,n)) then y else if atom m and denr n=1 then <<if not(m<0) then exptsq(x,m) else if !*mcd then invsq exptsq(x,-m) else multf(expf(numr x,m),mksfpf(denr x,-m)) ./ 1>> % This uses OFF EXP option. % There may be a pattern matching problem though. % We need the subs2 in the next line to take care of power and % product simplification left over from the call of simp on u. else simpexpt11(if flg then u else prepsq!* subs2!* x,n,t) end; symbolic procedure simpexptfctr(u,n); begin scalar x; x := 1 ./ 1; for each j in u do x:= multsq(simpexpt1(prepf car j,multsq(cdr j ./ 1,n),nil),x); return x end; symbolic procedure simpexpt11(u,n,flg); % Expand exponent to put expression in canonical form. begin scalar x; return if domainp denr n or not(car(x := qremf(numr n,denr n)) and cdr x) then simpexpt2(u,n,flg) else multsq(simpexpt1(u,car x ./ 1,flg), simpexpt1(u,cdr x ./ denr n,flg)) end; symbolic procedure simpexpt2(u,n,flg); % The "non-numeric exponent" case. FLG indicates whether we have % done a PREPSQ SIMP!* U or not: we don't want to do it more than % once. begin scalar m,n,x,y; if u=1 then return 1 ./ 1; % The following is now handled in mkrootsq. % else if fixp u and u>0 and (u<factorbound!* or !*ifactor) % and (length(x := zfactor u)>1 or cdar x>1) % then <<y := 1 ./ 1; % for each j in x do % y := multsq(simpexpt list(car j, % prepsq multsq(cdr j ./ 1,n)), % y); % return y>>; m:=numr n; if pairp u then << if car u eq 'expt then <<n:=multsq(m:=simp caddr u,n); if !*precise % and numberp numr m and evenp numr m % and numberp numr n and not evenp numr n % then u := cadr u % list('abs,cadr u) then u := list('abs,cadr u) else u := cadr u; return simpexpt1(u,n,flg)>> else if car u eq 'sqrt and not !*keepsqrts then return simpexpt2(cadr u, multsq(1 ./ 2,n),flg) % We need the !*precise check for, say, sqrt((1+a)^2*y*z). else if car u eq 'times and not !*precise then <<x := 1 ./ 1; for each z in cdr u do x := multsq(simpexpt1(z,n,flg),x); return x>> % For a product under *precise we isolate positive factors. else if car u eq 'times and (y:=split!-sign cdr u) and car y then <<x := simpexpt1(retimes append(cadr y,cddr y),n,flg); for each z in car y do x := multsq(simpexpt1(z,n,flg),x); return x>> else if car u eq 'quotient % The next lines did not allow, e.g., sqrt(a/b) => sqrt(a)/sqrt(b). % when precise is on and there is a risk of % E.g., sqrt(a/b) neq sqrt(a)/sqrt(b) when a=1, b=-1. % We allow however the denominator to be a positive number. and (not !*precise % or alg_constant_exptp(cadr u,n) % or alg_constant_exptp(caddr u,n) or posnump caddr u and posnump prepsq n ) then <<if not flg and !*mcd then return simpexpt1(prepsq simp!* u,n,t); n := prepsq n; return quotsq(simpexpt{cadr u,n},simpexpt{caddr u,n})>> % Special case of (-expression)^(1/2). % else if car u eq 'minus % and (n = '(1 . 2) or n = '((!:rd!: . 0.5) . 1) % or n = '((!:rd!: 5 . -1) . 1) % or n = '((!:rn!: 1 . 2) . 1)) % then return simptimes list('i,list('expt,cadr u,prepsq n))>>; % else if car u eq 'minus and numberp m and denr n=1 % then return multsq(simpexpt list(-1,m), % simpexpt list(cadr u,m))>>; else if car u eq 'minus and not !*precise and not(cadr u = 1) then return (multsq(simpexpt list(-1,expon), simpexpt list(cadr u,expon))) where expon=prepsq n>>; if null flg then <<% Don't expand say e and pi, since whole expression is not % numerical. if null(dmode!* and idp u and get(u,dmode!*)) then u := prepsq simp!* u; return simpexpt1(u,n,t)>> else if numberp u and zerop u then return nil ./ 1 else if not numberp m then m := prepf m; n := prepf denr n; if m memq frlis!* and n=1 then return list ((u . m) . 1) . 1; % "power" is not unique here. if !*mcd or not numberp m or n neq 1 or atom u or denr simp!* u neq 1 then return simpx1(u,m,n) else return mksq(u,m) % To make pattern matching work. end; symbolic procedure posnump u; % True if u is a positive number. Test is naive but correct. if atom u then (numberp u and u>0) or u memq '(e pi) else if car u memq '(expt plus quotient sqrt times) then posnumlistp cdr u else nil; symbolic procedure posnumlistp u; null u or posnump car u and posnumlistp cdr u; % symbolic procedure alg_constant_exptp(u,v); % % U an expression, v a standard quotient. % alg_constantp u and alg_constantp car v and alg_constantp cdr v; % symbolic procedure alg_constantp u; % % True if u is an algebraic constant whose surd is unique. % if atom u then numberp u % else if car u memq % '(difference expt plus minus quotient sqrt times) % then alg_constant_listp cdr u % else nil; % symbolic procedure alg_constant_listp u; % null u or alg_constantp car u and alg_constant_listp cdr u; put('expt,'simpfn,'simpexpt); symbolic procedure split!-sign u; % U is a list of factors. Split into positive, negative % and unknown sign part. Nil if no sign is known. begin scalar p,n,w,s; for each f in u do if 1=(s:=sign!-of f) then p:=f.p else if -1=s then n:=f.n else w:=f.w; if null p and null n then return nil; return p.n.w; end; symbolic procedure conv2gid(u,d); if null u or numberp u or eqcar(u,'!:gi!:) then d else if domainp u then if eqcar(u,'!:crn!:) then lcm(d,lcm(cdadr u,cdddr u)) else if eqcar(u,'!:rn!:) then lcm(d,cddr u) else d else conv2gid(lc u,conv2gid(red u,d)); symbolic procedure conv2gi2 u; if null u then u else if numberp u then u * den!* else if eqcar(u,'!:gi!:) then '!:gi!:.((den!**cadr u).(den!**cddr u)) else if eqcar(u,'!:crn!:) then <<u := cdr u; u:= '!:gi!: . ((den!*/cdar u*caar u).(den!*/cddr u*cadr u))>> else if eqcar(u,'!:rn!:) then den!*/cddr u*cadr u else if domainp u then rerror(alg,16,list("strange domain",u)) else lpow u .* conv2gi2(lc u) .+ conv2gi2(red u); symbolic procedure simpx1(u,m,n); % U,M and N are prefix expressions. % Value is the standard quotient expression for U**(M/N). % FLG is true if we have seen a "-" in M. begin scalar flg,x,z; % Check for imaginary result. if eqcar(u,'!*minus!*) then if m=1 and fixp n and remainder(n,2)=0 or n=1 and eqcar(m,'quotient) and cadr m=1 and fixp caddr m and remainder(caddr m,2)=0 then return multsq(simp list('expt,'i, list('quotient,1,n/2)), simpexpt list(cadr u,list('quotient,m,n))) % and for negative result. else if m=1 and fixp n % n must now be odd. then return negsq simpexpt list(cadr u,list('quotient,m,n)); if numberp m and numberp n or null(smemqlp(frlis!*,m) or smemqlp(frlis!*,n)) then go to a; % exptp!* := t; return mksq(list('expt,u,if n=1 then m else list('quotient,m,n)),1); a: if numberp m then if minusp m then <<m := -m; go to mns>> else if fixp m then if fixp n then << if flg then m := -m; z := m; if !*mcd and (fixp u or null !*notseparate) then <<z := z-n*(m := m/n); if z<0 then <<m := m-1; z := z+n>>>> else m := 0; x := simpexpt list(u,m); if z=0 then return x else if n=2 and !*keepsqrts then <<x := multsq(x,apply1(get('sqrt,'simpfn), list u)); % z can be 1 or -1. I'm not sure if other % values can occur. if z<0 then <<x := invsq x; z := -z>>; return exptsq(x,z)>> % Note the indirect call: the integrator rebinds this property. % JHD understands this interaction - don't change without % consulting him. Note that, since KEEPSQRTS is true, SIMPSQRT % won't recurse on SIMPEXPT1. else return multsq(x,exptsq(simprad(simp!* u,n),z))>> else <<z := m; m := 1>> else z:=1 else if atom m then z:=1 else if car m eq 'minus then <<m := cadr m; go to mns>> else if car m eq 'plus and !*expandexpt then << z := 1 ./ 1; for each x in cdr m do z := multsq(simpexpt list(u, list('quotient,if flg then list('minus,x) else x,n)), z); return z >> %% else if car m eq 'times and fixp cadr m and numberp n %% then << %% z := gcdn(n,cadr m); %% n := n/z; %% z := cadr m/z; %% m := retimes cddr m >> %% BEGIN modification by Francis J. Wright: else if car m eq 'times and fixp cadr m then << if numberp n then <<z := gcdn(n,cadr m); n := n/z; z := cadr m/z>> else z := cadr m; % retimes seems to me to be overkill here, so try just ... m := if cdddr m then 'times . cddr m else caddr m>> %% END modification by FJW. else if car m eq 'quotient and n=1 and !*expandexpt then <<n := caddr m; m := cadr m; go to a>> else z := 1; if idp u and not flagp(u,'used!*) then flag(list u,'used!*); if u = '(minus 1) and n=1 and null numr simp list('difference,m,'(quotient 1 2)) then <<u := simp 'i; return if flg then negsq u else u>>; u := list('expt,u,if n=1 then m else list('quotient,m,n)); return mksq(u,if flg then -z else z); %U is already in lowest terms; mns: %if numberp m and numberp n and !*rationalizeflag % then return multsq(simpx1(u,n-m,n),invsq simp u) else % return invsq simpx1(u,m,n) if !*mcd then return invsq simpx1(u,m,n); flg := not flg; go to a; end; symbolic procedure expf(u,n); %U is a standard form. Value is standard form of U raised to %negative integer power N. MCD is assumed off; %what if U is invertable?; if null u then nil else if u=1 then u else if atom u then mkrn(1,u**(-n)) else if domainp u then !:expt(u,n) else if red u then mksp!*(u,n) else (lambda x; if x>0 and sfp mvar u then multf(exptf(mvar u,x),expf(lc u,n)) else mvar u .** x .* expf(lc u,n) .+ nil) (ldeg u*n); % ******* The "radical simplifier" section ****** symbolic procedure simprad(u,n); % Simplifies radical expressions. if !*reduced then multsq(radfa(numr u,n),invsq radfa(denr u,n)) else begin scalar iflag,x,y,z; if !*rationalize then << % Move all radicands into numerator. y:=list(denr u,1); % A partitioned expression. u:=multf(numr u, exptf(denr u,n-1)) ./ 1 >> else y := radf(denr u,n); if n=2 and minusf numr u % Should this be 'evenp n'? then <<iflag := t; x := radf(negf numr u,n)>> else x := radf(numr u,n); z := simp list('quotient,retimes cdr x, retimes cdr y); if domainp numr z and domainp denr z % This test allows transformations like sqrt(2/3)=>sqrt(2)/sqrt(3) % whereas we really don't want to do this for symbolic elements % since we can introduce paradoxes that way. then z := multsq(mkrootsq(prepf numr z,n), invsq mkrootsq(prepf denr z,n)) else <<if iflag then <<iflag := nil; % Absorb the "i" in square root. z := negsq z>>; z := mkrootsq(prepsq z,n)>>; z := multsq(multsq(if !*precise and evenp n then car x ./ 1 % mkabsf0 car x else car x ./ 1, 1 ./ car y), z); if iflag then z := multsq(z,mkrootsq(-1,2)); return z end; symbolic procedure radfa(u,n); begin scalar x,y; x := fctrf u; if numberp car x then x := append(zfactor car x,cdr x) else x := (car x ./ 1) . cdr x; y := 1 ./ 1; for each j in x do y := multsq(y,radfb(car j,cdr j,n)); return y end; symbolic procedure radfb(u,m,n); begin scalar x,y; x := radf(u,n); % if !*precise and evenp n then y := mkabsf0 car x ./ 1 else y := exptf(car x,m) ./ 1; return multsq(exptsq(mkrootlsq(cdr x,n),m),y) end; symbolic procedure mkrootlsq(u,n); % U is a list of prefix expressions, N an integer. % Value is standard quotient for U**(1/N); % NOTE we need the REVAL call so that PREPSQXX is properly called on % the argument for consistency with the pattern matcher. Otherwise % for all x,y let sqrt(x)*sqrt(y)=sqrt(x*y); sqrt(30*(l+1))*sqrt 5; % goes into an infinite loop. if null u then !*d2q 1 else if null !*reduced then mkrootsq(reval retimes u,n) else mkrootlsq1(u,n); symbolic procedure mkrootlsq1(u,n); if null u then !*d2q 1 else multsq(mkrootsq(car u,n),mkrootlsq1(cdr u,n)); symbolic procedure mkrootsq(u,n); % U is a prefix expression, N an integer. % Value is a standard quotient for U**(1/N). if u=1 then !*d2q 1 else if n=2 and (u= -1 or u= '(minus 1)) then simp 'i else if eqcar(u,'expt) and fixp caddr u then exptsq(mkrootsq(cadr u,n),caddr u) else begin scalar x,y; if fixp u and not minusp u and (length(x := zfactor1(u,u<factorbound!* or !*ifactor))>1 or cdar x>1) then return mkrootsql(x,n); x := if n=2 then mksqrt u else list('expt,u,list('quotient,1,n)); if y := opmtch x then return simp y else return mksq(x,1) end; symbolic procedure mkrootsql(u,n); if null u then !*d2q 1 else if cdar u>1 then multsq(exptsq(mkrootsq(caar u,n),cdar u),mkrootsql(cdr u,n)) else multsq(mkrootsq(caar u,n),mkrootsql(cdr u,n)); comment The following four procedures return a partitioned root expression, which is a dotted pair of integral part (a standard form) and radical part (a list of prefix expressions). The whole structure represents U**(1/N); symbolic procedure check!-radf!-sign(rad,result,n); % Changes the sign of result if result**n = -rad. rad and result are % s.f.'s, n is an integer. (if evenp n and s = -1 or not evenp n and numberp s and ((numberp s1 and s neq s1) where s1 = reval {'sign,mk!*sq !*f2q rad}) then negf result else result) where s = reval{'sign,mk!*sq !*f2q result}; symbolic procedure radf(u,n); % U is a standard form, N a positive integer. Value is a partitioned % root expression for U**(1/N). begin scalar ipart,rpart,x,y,z,!*gcd,!*mcd; if null u then return list u; !*gcd := !*mcd := t; % mcd cannot be off in this code. ipart := 1; z := 1; while not domainp u do <<y := comfac u; if car y then <<x := divide(pdeg car y,n); if car x neq 0 then ipart := multf( if evenp car x then !*p2f(mvar u .** car x) % else if !*precise % then !*p2f mksp(numr % then exptf(numr % simp list('abs,if sfp mvar u % then prepf mvar u % else mvar u), else check!-radf!-sign(!*p2f(mvar u .** pdeg car y), !*p2f(mvar u .** car x), n), ipart); if cdr x neq 0 then rpart := mkexpt(sfchk mvar u,cdr x) . rpart>>; x := quotf(u,comfac!-to!-poly y); % We need *exp on here. u := cdr y; if !*reduced and minusf x then <<x := negf x; u := negf u>>; if flagp(dmode!*,'field) then <<y := lnc x; if y neq 1 then <<x := quotf(x,y); z := multd(y,z)>>>>; if x neq 1 then <<x := radf1(sqfrf x,n); y := car x; if y neq 1 then <<%if !*precise and evenp n % then y := !*kk2f {'abs,prepf y}; ipart := multf(y,ipart)>>; rpart := append(rpart,cdr x)>>>>; if u neq 1 then <<x := radd(u,n); ipart := multf(car x,ipart); rpart := append(cdr x,rpart)>>; if z neq 1 then if !*numval and (y := domainvalchk('expt, list(!*f2q z,!*f2q !:recip n))) then ipart := multd(!*q2f y,ipart) else rpart := prepf z . rpart; % was aconc(rpart,z). return ipart . rpart end; symbolic procedure radf1(u,n); %U is a form_power list, N a positive integer. Value is a %partitioned root expression for U**(1/N); begin scalar ipart,rpart,x; ipart := 1; for each z in u do <<x := divide(cdr z,n); if not(car x=0) then ipart := multf( check!-radf!-sign(!*p2f z,exptf(car z,car x),n),ipart); if not(cdr x=0) then rpart := mkexpt(prepsq!*(car z ./ 1),cdr x) . rpart>>; return ipart . rpart end; symbolic procedure radd(u,n); %U is a domain element, N an integer. %Value is a partitioned root expression for U**(1/N); begin scalar bool,ipart,x; if not atom u then return list(1,prepf u); % then if x := integer!-equiv u then u := x % else return list(1,prepf u); if u<0 and evenp n then <<bool := t; u := -u>>; x := nrootnn(u,n); if bool then if !*reduced and n=2 then <<ipart := multd(car x,!*k2f 'i); x := cdr x>> else <<ipart := car x; x := -cdr x>> else <<ipart := car x; x := cdr x>>; return if x=1 then list ipart else list(ipart,x) end; % symbolic procedure iroot(m,n); % %M and N are positive integers. % %If M**(1/N) is an integer, this value is returned, otherwise NIL; % begin scalar x,x1,bk; % if m=0 then return m; % x := 10**iroot!-ceiling(lengthc m,n); %first guess; % a: x1 := x**(n-1); % bk := x-m/x1; % if bk<0 then return nil % else if bk=0 then return if x1*x=m then x else nil; % x := x - iroot!-ceiling(bk,n); % go to a % end; symbolic procedure iroot(n,r); % N, r are integers; r >= 1. If n is an exact rth power then its % rth root is returned, otherwise NIL. begin scalar tmp; tmp := irootn(n,r); return if tmp**r = n then tmp else nil end; symbolic procedure iroot!-ceiling(m,n); %M and N are positive integers. Value is ceiling of (M/N) (i.e., %least integer greater or equal to M/N); (lambda x; if cdr x=0 then car x else car x+1) divide(m,n); symbolic procedure mkexpt(u,n); if n=1 then u else list('expt,u,n); % The following definition is due to Eberhard Schruefer. symbolic procedure nrootn(n,x); % N is an integer, x a positive integer. Value is a pair % of integers r,s such that r*s**(1/x)=n**(1/x). begin scalar fl,r,s,m,signn; r := 1; s := 1; if n<0 then <<n := -n; if evenp x then signn := t else r := -1>>; fl := zfactor n; for each j in fl do <<m := divide(cdr j,x); r := car j**car m*r; s := car j**cdr m*s>>; if signn then s := -s; return r . s end; % symbolic procedure nrootn(n,x); % % N is an integer, X a positive integer. Value is a pair % % of integers I,J such that I*J**(1/X)=N**(1/X). % begin scalar i,j,r,signn; % r := 1; % if n<0 then <<n := -n; if evenp x then signn := t else r := -1>>; % j := 2**x; % while remainder(n,j)=0 do <<n := n/j; r := r*2>>; % i := 3; % j := 3**x; % while j<=n do % <<while remainder(n,j)=0 do <<n := n/j; r := r*i>>; % if remainder(i,3)=1 then i := i+4 else i := i+2; % j := i**x>>; % if signn then n := -n; % return r . n % end; % ***** simplification functions for other explicit operators ***** symbolic procedure simpiden u; % Convert the operator expression U to a standard quotient. % Note: we must use PREPSQXX and not PREPSQ* here, since the REVOP1 % in SUBS3T uses PREPSQXX, and terms must be consistent to prevent a % loop in the pattern matcher. begin scalar bool,fn,x,y,z; fn := car u; u := cdr u; % Allow prefix ops with names of symbolic functions. if (get(fn,'!:rn!:) or get(fn,'!:rd!:)) and (x := valuechk(fn,u)) then return x; % Keep list arguments in *SQ form. if u and eqcar(car u,'list) and null cdr u then return mksq(list(fn,aeval car u),1); x := for each j in u collect aeval j; u := for each j in x collect if eqcar(j,'!*sq) then prepsqxx cadr j else if numberp j then j else <<bool := t; j>>; % if u and car u=0 and (flagp(fn,'odd) or flagp(fn,'oddreal)) if u and car u=0 and flagp(fn,'odd) and not flagp(fn,'nonzero) then return nil ./ 1; u := fn . u; if flagp(fn,'noncom) then ncmp!* := t; if null subfg!* then go to c else if flagp(fn,'linear) and (z := formlnr u) neq u then return simp z else if z := opmtch u then return simp z; % else if z := get(car u,'opvalfn) then return apply1(z,u); % else if null bool and (z := domainvalchk(fn, % for each j in x collect simp j)) % then return z; c: if flagp(fn,'symmetric) then u := fn . ordn cdr u else if flagp(fn,'antisymmetric) then <<if repeats cdr u then return (nil ./ 1) else if not permp(z:= ordn cdr u,cdr u) then y := t; % The following patch was contributed by E. Schruefer. fn := car u . z; if z neq cdr u and (z := opmtch fn) then return if y then negsq simp z else simp z; u := fn>>; % if (flagp(fn,'even) or flagp(fn,'odd)) % and x and minusf numr(x := simp car x) % then <<if flagp(fn,'odd) then y := not y; % if (flagp(fn,'even) or flagp(fn,'odd) or flagp(fn,'oddreal) % and x and not_imag_num car x) if (flagp(fn,'even) or flagp(fn,'odd)) and x and minusf numr(x := simp car x) then <<if not flagp(fn,'even) then y := not y; u := fn . prepsqxx negsq x . cddr u; if z := opmtch u then return if y then negsq simp z else simp z>>; u := mksq(u,1); return if y then negsq u else u end; switch rounded; symbolic procedure not_imag_num a; % Tests true if a is a number that is not a pure imaginary number. % Rebinds sqrtfn and *keepsqrts to make integrator happy. begin scalar !*keepsqrts,!*msg,!*numval,dmode,sqrtfn; dmode := dmode!*; !*numval := t; sqrtfn := get('sqrt,'simpfn); put('sqrt,'simpfn,'simpsqrt); on rounded,complex; a := resimp simp a; a := numberp denr a and domainp numr a and numr repartsq a; off rounded,complex; if dmode then onoff(get(dmode,'dname),t); put('sqrt,'simpfn,sqrtfn); return a end; flagop even,odd,nonzero; symbolic procedure domainvalchk(fn,u); begin scalar x; if (x := get(dmode!*,'domainvalchk)) then return apply2(x,fn,u); % The later arguments tend to be smaller ... u := reverse u; a: if null u then return valuechk(fn,x) else if denr car u neq 1 then return nil; x := mk!*sq car u . x; u := cdr u; go to a end; symbolic procedure valuechk(fn,u); begin scalar n; if (n := get(fn,'number!-of!-args)) and length u neq n or not n and u and cdr u and (get(fn,'!:rd!:) or get(fn,'!:rn!:)) then rerror(alg,17,list("Wrong number of arguments to",fn)); u := opfchk!!(fn . u); if u then return znumrnil ((if eqcar(u,'list) then list((u . 1) . 1) else u) ./ 1) end; symbolic procedure znumrnil u; if znumr u then nil ./ 1 else u; symbolic procedure znumr u; null (u := numr u) or numberp u and zerop u or not atom u and domainp u and (y and apply1(y,u) where y=get(car u,'zerop)); symbolic procedure opfchk!! u; begin scalar fn,fn1,sf,sc,int,ce; fn1 := fn := car u; u := cdr u; % first save fn and check to see whether fn is defined. % Integer functions are defined in !:rn!:, % real functions in !:rd!:, and complex functions in !:cr!:. fn := if flagp(fn,'integer) then <<int := t; get(fn,'!:rn!:)>> else if !*numval and dmode!* memq '(!:rd!: !:cr!:) then get(fn,'!:rd!:); if not fn then return nil; sf := if int then 'simprn else if (sf := get(fn,'simparg)) then sf else 'simprd; % real function fn is defined. now check for complex argument. if int or not !*complex then go to s; % the simple case. % mode is complex, so check for complex argument. % list argument causes a slight complication. if eqcar(car u,'list) then if (sc := simpcr revlis cdar u) and eqcar(sc,nil) then go to err else go to s; if not (u := simpcr revlis u) then return nil % if fn1 = 'expt, then evaluate complex function only; else % if argument is real, evaluate real function, but if error % occurs, then evaluate complex function. else if eqcar(u,nil) or fn1 eq 'expt and rd!:minusp caar u then u := cdr u else <<ce := cdr u; u := car u; go to s>>; % argument is complex or real function failed. % now check whether complex fn is defined. evc: if fn := get(fn1,'!:cr!:) then go to a; err: rerror(alg,18,list(fn1,"is not defined as complex function")); s: if not (u := apply1(sf, revlis u)) then return nil; a: u := errorset!*(list('apply,mkquote fn,mkquote u),nil); if errorp u then if ce then <<u := ce; ce := nil; go to evc>> else return nil else return if int then intconv car u else car u end; symbolic procedure intconv x; if null dmode!* or dmode!* memq '(!:rd!: !:cr!:) then x else apply1(get(dmode!*,'i2d),x); symbolic procedure simpcr x; % Returns simprd x if all args are real, else nil . "simpcr" x. if atom x then nil else <<(<<if not errorp y then z := car y; y := simplist x where dmode!* = '!:cr!:; if y then z . y else z>>) where z=nil,y=errorset!*(list('simprd,mkquote x),nil)>>; symbolic procedure simprd x; % Converts any argument list that can be converted to list of rd's. if atom x then nil else <<simplist x where dmode!* = '!:rd!:>>; symbolic procedure simplist x; begin scalar fl,c; c := get(dmode!*,'i2d); x := for each a in x collect (not fl and <<if null (a := mconv numr b) then a := 0; if numberp a then a := apply1(c,a) else if not(domainp a and eqcar(a,dmode!*)) then fl := t; if not fl and (numberp(b := mconv denr b) and (b := apply1(c,b)) or domainp b and eqcar(b,dmode!*)) then apply2(get(dmode!*,'quotient),a,b) else fl := t>> where b=simp!* a); if not fl then return x end; symbolic procedure mconv v; <<dmconv0 dmode!*; mconv1 v>>; symbolic procedure dmconv0 dmd; dmd!* := if null dmd then '!:rn!: else if dmd eq '!:gi!: then '!:crn!: else dmd; symbolic procedure dmconv1 v; if null v or eqcar(v,dmd!*) then v else if atom v then if flagp(dmd!*,'convert) then apply1(get(dmd!*,'i2d),v) else v else if domainp v then apply1(get(car v,dmd!*),v) else lpow v .* dmconv1(lc v) .+ dmconv1(red v); symbolic procedure mconv1 v; if domainp v then drnconv v else lpow v .* mconv1(lc v) .+ mconv1(red v); symbolic procedure drnconv v; if null v or numberp v or eqcar(v,dmd!*) then v else <<(if y and atom y then apply1(y,v) else v) where y=get(car v,dmd!*)>>; % Absolute Value Function. symbolic procedure simpabs u; if null u or cdr u then mksq('abs . revlis u, 1) % error?. else begin scalar x; u := car u; if numberp u then return abs u ./ 1 else if x := sign!-abs u then return x; u := simp!* u; return if null numr u then nil ./ 1 else quotsq(simpabs1 numr u, simpabs1 denr u); end; symbolic procedure simpabs1 u; % Currently abs(sqrt(2)) does not simplify, whereas it clearly % should simplify to just sqrt(2). The facts that abs(i) -> 1 and % abs(sqrt(-2)) -> abs(sqrt(2)) imply that REDUCE regards abs as % the complex modulus function, in which case I think it is always % correct to commute abs and sqrt. However, I will do this only if % the result is a simplification. FJW, 18 July 1998 begin scalar x,y,w; x:=prepf u; u := u ./ 1; if eqcar(x,'minus) then x:=cadr x; % FJW: abs sqrt y -> sqrt abs y if abs y simplifies. if eqcar(x,'sqrt) then return !*kk2q if eqcar(y:=reval('abs.cdr x), 'abs) then {'abs, x} else {'sqrt, y}; %% if eqcar(x,'times) and (y:=split!-sign cdr x) then %% <<w:=simp!* retimes car y; u:=quotsq(u,w); %% if cadr y then %% <<y:=simp!* retimes cadr y; u:=quotsq(u,y); %% w:=multsq(negsq y,w)>> %% >>; if eqcar(x,'times) then begin scalar abslist, noabs; for each fac in cdr x do % FJW: abs sqrt y -> sqrt abs y if abs y simplifies. if eqcar(fac,'sqrt) and not eqcar(y:=reval('abs.cdr fac), 'abs) then noabs := {'sqrt, y} . noabs else abslist := fac . abslist; abslist := reversip abslist; if noabs then u := quotsq(u, noabs := simp!*('times . reversip noabs)); if (y:=split!-sign abslist) then <<w:=simp!* retimes car y; u:=quotsq(u,w); if cadr y then <<y:=simp!* retimes cadr y; u:=quotsq(u,y); w:=multsq(negsq y,w)>>; if noabs then w := multsq(noabs, w) >> else w := noabs end; if numr u neq 1 or denr u neq 1 then u:=quotsq(mkabsf1 absf numr u,mkabsf1 denr u); if w then u:=multsq(w,u); return u end; %symbolic procedure rd!-abs u; % % U is a prefix expression. If it represents a constant, return the % % abs of u. % (if !*rounded or not constant_exprp u then nil % else begin scalar x,y,dmode!*; % setdmode('rounded,t) where !*msg := nil; % x := aeval u; % if evalnumberp x % then if null !*complex or 0=reval {'impart,x} % then y := if evalgreaterp(x,0) then u % else if evalequal(x,0) then 0 % else {'minus,u}; % setdmode('rounded,nil) where !*msg := nil; % return if y then simp y else nil % end) where alglist!*=alglist!*; symbolic procedure sign!-abs u; % Sign based evaluation of abs - includes the above rd!-abs % method as sub-branch. <<if not numberp n then nil else simp if n<0 then {'minus,u} else if n=0 then 0 else u >> where n=sign!-of u; symbolic procedure constant_exprp u; % True if u evaluates to a constant (i.e., number). if atom u then numberp u or flagp(u,'constant) or u eq 'i and idomainp() else (flagp(car u,'realvalued) or flagp(car u,'alwaysrealvalued) or car u memq '(plus minus difference times quotient) or get(car u,'!:rd!:) or !*complex and get(car u,'!:cr!:)) and not atom cdr u and constant_expr_listp cdr u; symbolic procedure constant_expr_listp u; % True if all members of u are constant_exprp. % U can be a dotted pair as well as a list. if atom u then null u or numberp u or flagp(u,'constant) or u eq 'i and idomainp() else constant_exprp car u and constant_expr_listp cdr u; symbolic procedure mkabsf0 u; simp{'abs,mk!*sq !*f2q u}; symbolic procedure mkabsf1 u; if domainp u then mkabsfd u else begin scalar x,y,v; x := comfac!-to!-poly comfac u; u := quotf1(u,x); y := split!-comfac!-part x; x := cdr y; y := car y; if positive!-sfp u then <<y := multf(u,y); u := 1>>; u := multf(u,x); v := lnc y; y := quotf1(y,v); v := multsq(mkabsfd v,y ./ 1); return if u = 1 then v else multsq(v,simpiden list('abs,prepf absf u)) end; symbolic procedure mkabsfd u; if null get('i,'idvalfn) then absf u ./ 1 else (simpexpt list(prepsq nrm,'(quotient 1 2)) where nrm = addsq(multsq(car us,car us), multsq(cdr us,cdr us)) where us = splitcomplex u); symbolic procedure positive!-sfp u; if domainp u then if get('i,'idvalfn) then !:zerop impartf u and null !:minusp repartf u else null !:minusp u else positive!-powp lpow u and positive!-sfp lc u and positive!-sfp red u; symbolic procedure positive!-powp u; not atom car u and caar u memq '(abs norm); % symbolic procedure positive!-powp u; % % This definition allows for the testing of positive valued vars. % if atom car u then flagp(car u, 'positive) % else ((if x then apply2(x,car u,cdr u) else nil) % where x = get(caar u,'positivepfn)); symbolic procedure split!-comfac!-part u; split!-comfac(u,1,1); symbolic procedure split!-comfac(u,v,w); if domainp u then multd(u,v) . w else if red u then if positive!-sfp u then multf(u,v) . w else v . multf(u,w) else if mvar u eq 'i then split!-comfac(lc u,v,w) else if positive!-powp lpow u then split!-comfac(lc u,multpf(lpow u,v),w) else split!-comfac(lc u,v,multpf(lpow u,w)); put('abs,'simpfn,'simpabs); symbolic procedure simpdiff u; <<ckpreci!# u; addsq(simpcar u,simpminus cdr u)>>; put('difference,'simpfn,'simpdiff); symbolic procedure simpminus u; negsq simp carx(u,'minus); put('minus,'simpfn,'simpminus); symbolic procedure simpplus u; begin scalar z; if length u=2 then ckpreci!# u; z := nil ./ 1; a: if null u then return z; z := addsq(simpcar u,z); u := cdr u; go to a end; put('plus,'simpfn,'simpplus); symbolic procedure ckpreci!# u; % Screen for complex number input. !*complex and (if a and not b then ckprec2!#(cdar u,cadr u) else if b and not a then ckprec2!#(cdadr u,car u)) where a=timesip car u,b=timesip cadr u; symbolic procedure timesip x; eqcar(x,'times) and 'i memq cdr x; symbolic procedure ckprec2!#(im,rl); % Strip im and rl to domains. <<im := if car im eq 'i then cadr im else car im; if eqcar(im,'minus) then im := cadr im; if eqcar(rl,'minus) then rl := cadr rl; if domainp im and domainp rl and not(atom im and atom rl) then ckprec3!#(!?a2bf im,!?a2bf rl)>>; remflag('(!?a2bf),'lose); % Until things stabilize. symbolic smacro procedure make!:ibf (mt, ep); '!:rd!: . (mt . ep); symbolic smacro procedure i2bf!: u; make!:ibf (u, 0); symbolic procedure !?a2bf a; % Convert decimal or integer to bfloat. if atom a then if numberp a then i2bf!: a else nil else if eqcar(a,'!:dn!:) then a; symbolic procedure ckprec3!#(x,y); % if inputs are valid, check for precision increase. if x and y then precmsg max(length explode abs cadr x+cddr x, length explode abs cadr y+cddr y); symbolic procedure simpquot q; (if null numr u then if null numr v then rerror(alg,19,"0/0 formed") else rerror(alg,20,"Zero divisor") else if dmode!* memq '(!:rd!: !:cr!:) and domainp numr u and domainp denr u and domainp denr v and !:onep denr u and !:onep denr v then (if null numr v then nil else divd(numr v,numr u)) ./ 1 else <<q := multsq(v,simprecip cdr q); if !*modular and null denr q then rerror(alg,201,"Zero divisor"); q>>) where v=simpcar q,u=simp cadr q; put('quotient,'simpfn,'simpquot); symbolic procedure simprecip u; if null !*mcd then simpexpt list(carx(u,'recip),-1) else invsq simp carx(u,'recip); put('recip,'simpfn,'simprecip); symbolic procedure simpset u; begin scalar x; x := prepsq simp!* car u; if null x % or not idp x then typerr(x,"set variable"); let0 list(list('equal,x,mk!*sq(u := simp!* cadr u))); return u end; put ('set, 'simpfn, 'simpset); symbolic procedure simpsqrt u; if u=0 then nil ./ 1 else if null !*keepsqrts then simpexpt1(car u, simpexpon '(quotient 1 2), nil) else begin scalar x,y; x := xsimp car u; return if null numr x then nil ./ 1 else if denr x=1 and domainp numr x and !:minusp numr x then if numr x=-1 then simp 'i else multsq(simp 'i, simpsqrt list prepd !:minus numr x) else if y := domainvalchk('sqrt,list x) then y else simprad(x,2) end; symbolic procedure xsimp u; expchk simp!* u; symbolic procedure simptimes u; begin scalar x,y; if null u then return 1 ./ 1; if tstack!* neq 0 or null mul!* then go to a0; y := mul!*; mul!* := nil; a0: tstack!* := tstack!*+1; x := simpcar u; a: u := cdr u; if null numr x then go to c else if null u then go to b; x := multsq(x,simpcar u); go to a; b: if null mul!* or tstack!*>1 then go to c; x:= apply1(car mul!*,x); alglist!* := nil . nil; % since we may need MUL!* set again. mul!*:= cdr mul!*; go to b; c: tstack!* := tstack!*-1; if tstack!* = 0 then mul!* := y; return x; end; put('times,'simpfn,'simptimes); symbolic procedure resimp u; % U is a standard quotient. % Value is the resimplified standard quotient. resimp1 u where varstack!*=nil; symbolic procedure resimp1 u; begin u := quotsq(subf1(numr u,nil),subf1(denr u,nil)); !*sub2 := t; return u end; symbolic procedure simp!*sq u; if cadr u and null !*resimp then car u else resimp1 car u; put('!*sq,'simpfn,'simp!*sq); endmodule; end;